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Abstract

Matrix completion with prescribed eigenvalues is a special type of inverse eigenvalue prob-
lem. The goal is to construct a matrix subject to both the structural constraint of prescribed
entries and the spectral constraint of prescribed spectrum. The challenge of such a completion
problem lies in the intertwining of the cardinality and the location of the prescribed entries
so that the inverse problem is solvable. An intriguing question is whether matrices can have
arbitrary entries at arbitrary locations with arbitrary eigenvalues and how to complete such
a matrix. Constructive proofs exist to a certain point (and those proofs, such as the classical
Schur–Horn theorem, are amazingly elegant enough in their own right) beyond which very
few theories or numerical algorithms are available. In this paper the completion problem is
recast as one of minimizing the distance between the isospectral matrices with the prescribed
eigenvalues and the affined matrices with the prescribed entries. The gradient flow is proposed
as a numerical means to tackle the construction. This approach is general enough that it can
be used to explore the existence question when the prescribed entries are at arbitrary locations
with arbitrary cardinalities.
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1. Introduction

An inverse eigenvalue problem (IEP) concerns the reconstruction of a structured
matrix from prescribed spectral data. Such an inverse problem arises in many disci-
plines of science. A collection of important applications can be found in a recent
survey article [5]. Generally speaking, such an application involves determining
parameters of a certain physical system from the knowledge or expectation of its
dynamical behavior. Since the dynamical behavior often is governed by the un-
derlying natural frequencies and normal modes, spectral information is entailed in
the inverse problem. On the other hand, designated structural stipulation is also
involved in the formulation because the desired physical system often is subject to
some feasibility constraints. The spectral data involved may consist of complete or
only partial information of eigenvalues or eigenvectors. The required structure of
the matrices can take many forms, ranging from linear form to implicit qualification.
The objective of an inverse eigenvalue problem is to construct a matrix that maintains
both the specific structure as well the given spectral property.

Depending on the application, inverse eigenvalue problems appear in many dif-
ferent forms. Thirty-nine types of IEPs are reviewed in [3]. Twenty-one structures
of IEPs are discussed in [5]. This paper deals with one special kind of IEPs where,
under the circumstances that a portion of the physical system is known a priori, a
portion of the matrix to be constructed has fixed entries. The prescribed entries are
used to characterize the underlying structure. The task is to specify values for the
remaining entries so that the completed matrix has prescribed eigenvalues.

For convenience, let σ(X) denote henceforth the spectrum of a given matrix X.
The most general setting of an inverse eigenvalue problem with prescribed entries
(PEIEP) can be delineated as follows [18]: Given a certain subset L = {(iν, jν)}�ν=1
of pairs of subscripts, 1 � iν , jν � n, a certain set of values {a1, . . . , a�} over a field
F, and a set of n values {λ1, . . . , λn} over the algebraically closed extension of F,
find a matrix X ∈ Fn×n such that{

σ(X) = {λ1, . . . , λn},
Xiν,jν = aν, for ν = 1, . . . , �.

(1.1)

Let |L| denote the cardinality � of the index set L in general. The PEIEP is to
determine (complete) the values for the n2 − |L| positions of X that do not belong
to L so as to satisfy the spectral constraint.

By comparing the coefficients in the characteristic polynomial det(λI − X) with
the symmetric functions of the prescribed eigenvalues {λ1, . . . , λn}, it is clear that
solving a PEIEP can be cast as solving a polynomial system. The prescribed data, that
is, entries, locations, and spectrum of each PEIEP, determine a polynomial system.
At the first glance, if |L| < n2 − n, such a polynomial system would be under-
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determined and should always be solvable. It turns out that whether a matrix can
have arbitrary entries at arbitrary locations with arbitrary eigenvalues is not as easy
as it seems for two reasons: one is that there are situations where the intertwining of
the cardinality, the values, and the location of the prescribed entries affects whether
such a polynomial system is consistent and, hence, whether an inverse problem can
be completed; and the other is that to complete such a construction numerically, after
knowing its existence, is a fairly challenging task.

A very large class of inverse problems can be described as PEIEPs. The additive
inverse eigenvalue problem (AIEP), for example, concerns adding a diagonal matrix
D to a given matrix A so that σ(A + D) agrees with prescribed set of eigenvalues.
In the context of PEIEP, the AIEP is equivalent to the condition that all n2 − n off-
diagonal entries of A + D are prescribed. The Jacobi inverse eigenvalue problem
(JIEP), on the other hand, concerns constructing a symmetric tridiagonal matrix with
prescribed eigenvalues. The Jacobi structure can be considered as a special case of
the PEIEP where, in addition to the desired symmetry of the band, all (n − 1)(n − 2)

elements outside the tridiagonal band are required to be zero. Both problems have
been extensively studied in the literature. Readers are referred to [1,3,5] and the
extensive bibliography contained therein for more details.

In the first part of this paper, we want to demonstrate that several other classical
results, such as the Schur–Horn theorem, the Mirsky theorem, the Sing–Thompson
theorem, and the London–Minc theorem, can also be characterized as relating to PEI-
EPs. These developments will be briefly reviewed in Section 2. Most of the existence
proofs in the literature are elegantly done by mathematical induction. In the environ-
ment where a programming language allows a routine to invoke itself, an inductive
proof can often be converted into a constructive proof and, hence, a rational algorithm
can be developed. Unfortunately, results as such exist only to a certain point beyond
which little understanding is known and very few numerical algorithms are available.

Our main contribution in this paper is that we propose a general approach that
can handle various kinds of PEIEPs under the same framework. The solution of the
PEIEP is equivalent to finding the intersection of two geometric entities, character-
ized respectively by the spectral constraints and the structural constraints. Our idea
is to recast the problem of finding the intersection as a minimization of the distance
between these two entities. We show in Section 3 that the gradient of the objective
function can be explicitly calculated. A steepest descent gradient flow therefore can
be formulated. By integrating this gradient flow numerically, we have developed
a reasonable means to tackle the PEIEP. In this paper, we further exploit a restart
procedure to stabilize the calculation.

It is worthy to point out that there is another way to formulate a PEIEP. This is the
case where the completion only requires a one-to-one correspondence between the �

positions in L and the � prescribed values {a1, . . . , a�}, but this correspondence does
not need to be in any specific order. Clearly, the order-specified PEIEP as we defined
in (1.1) is only one of the �! many possible permutations of this correspondence. This
interesting yet more general formulation will not be studied in the present paper.
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We should also mention that most inverse eigenvalue problems have multiple
solutions. The PEIEPs are of no exception. Therefore, it might be desirable to seek
the solution that is least sensitive to perturbations. This interesting subject requires
additional attention and will be discussed in a separate paper. In view of the lack of a
general theory even for the basic PEIEPs, this paper addresses the fundamental issue
of first solving the PEIEPs.

This paper is organized as follows: We begin in Section 2 with a brief review of
some classical IEPs. We chronicle how these results have been developed one after
another in the literature. This historic recount shows us that there has been a long
and outstanding interest in PEIEPs. It also illustrates the difficulties and limitations
of our current understanding. In Section 3, we formulate our minimization prob-
lem and calculate the gradient. The formulation is generic enough that it can handle
PEIEPs with arbitrary entries and arbitrary cardinalities at arbitrary locations. In the
event that a solution does not exist, the formulation enables us to find a least squares
solution. In Section 4, we propose two numerical procedures to follow the gradient
flows. The restart scheme, in particular, seems to stabilize the calculation. Finally, in
the last section we report some of our numerical experiments.

2. Classical IEPs

Many different classical IEPs may be classified as PEIEPs with various cardinality
|L| and various prescribed locations L. Most of the existing studies in the literature
thus far seem to have been focusing on cases of fairly limited cardinality and specific
locations of the prescribed entries. In contrast, our goal of this paper is to propose a
framework for the most general PEIEP setting. To emphasize our point we briefly
describe the chronological development of some of the classical IEPs in this section.
This review not only unifies the formulations of these classical IEPs under the context
of PEIEPs, but also provides a motivation for our general computational framework.

2.1. Prescribed entries along the diagonal

Perhaps a natural starting point to consider the PEIEP is the construction of a
matrix with prescribed diagonal entries and eigenvalues. We begin with Hermitian
matrices and then extend the discussion to general cases.

Recall first that a vector a ∈ Rn is said to majorize � ∈ Rn if, assuming the order-
ing aj1 � · · · � ajn and λm1 � · · · � λmn of their elements, the following relation-
ships hold:



k∑
i=1

λmi
�

k∑
i=1

aji
, k = 1, . . . , n,

n∑
i=1

λmi
=

n∑
i=1

aji
.

(2.1)
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The notion of majorization is related to doubly stochastic matrices and many other
applications (see [17,20]). For a Hermitian matrix, there is a majorization relation-
ship between its diagonal elements and its eigenvalues, as asserted by the well-
known Schur–Horn theorem [16].

Theorem 2.1 (Schur–Horn). A Hermitian matrix H with eigenvalues � and diagonal
entries a exists if and only if a majorizes �.

It turns out that the direction of sufficiency is harder to prove than the direction of
necessity. Such a corroboration of existence is precisely the heart of the Schur–Horn
inverse eigenvalue problem (SHIEP): Given two vectors a and � where a majorizes
�, construct a Hermitian matrix with diagonal a and spectrum �. Note that the SHIEP
is the opposite extreme of the AIEP. For the former, the prescribed entries lie entire-
ly along the diagonal (without any specific ordering). For the latter, the prescribed
entries take possession of all off-diagonal positions. On the other hand, it should
also be pointed out that the SHIEP is not exactly in the same class of PEIEPs as we
have defined earlier because there is an additional Hermitian structure in the SHIEP.
The existence of a solution to the SHIEP was originally proved by induction [16].
Numerical construction can be done by using either a continuous method [2] or a
finite iterative method [29].

Without the Hermitian structure, the connection between eigenvalues and diago-
nal entries of a general matrix is characterized by the Mirsky theorem [21].

Theorem 2.2 (Mirsky). A square matrix with eigenvalues λ1, . . . , λn and main dia-
gonal elements a1, . . . , an exists if and only if

n∑
i=1

ai =
n∑

i=1

λi. (2.2)

Again, the sufficient condition in the Mirsky theorem leads to a PEIEP with card-
inality |L| = n where the prescribed entries are located precisely on the diagonal.
It can be shown that such an inverse problem has a closed-form solution for all n

[18], though the algebraic expressions involved could be quite complicated. As an
example, the following formulas define a sufficient condition for the 5 × 5 matrix

A =




a11 1 0 −1 0
a21 a22 a23 a24 1
0 0 a33 1 0
0 a42 a43 a44 1

a51 a52 a53 a54 a55




to have (arbitrarily) prescribed diagonal elements {a11, . . . , a55} and eigenvalues
{λ1, . . . , λ5} where necessarily λ5 = ∑5

i=1 aii − ∑4
j=1 λj , if
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a21 = (λ1 − a11)λ1 − (λ1 − a11)(λ2 + λ1 − a11),

a23 = 1 + (λ3 − a33)λ3 − (λ3 − a33)(λ4 + λ3 − a33),

a24 = −λ2 − λ1 + a11 + a44,

a42 = −λ2 − λ1 + a11 + a22,

a43 = (λ3 − a33)λ3 − (λ3 − a33)(λ4 + λ3 − a33),

a51 = (λ2 + λ1 − a11 − a22)
(
(λ1 − a11)λ1 − (λ1 − a11)(λ2 + λ1 − a11)

)
,

a52 = (λ2 + λ1 − a11 − a22)(λ2 + λ1 − a11) − (λ2 + λ1 − a11 − a22)

× (a33 + a44 + a5 − λ3 − λ4) + (λ4 + λ3 − a33 − a44)

× (−λ2 − λ1 + a11 + a22),

a53 = (λ2 + λ1 − a11 − a22)
(
1 + (λ3 − a33)λ3 − (λ3 − a33)(λ4 + λ3 − a33)

)
+ (λ4 + λ3 − a33 − a44)

(
(λ3 − a33)λ3 − (λ3 − a33)(λ4 + λ3 − a33)

)
,

a54 = (λ2 + λ1 − a11 − a22)(λ4 + λ3 − a33 − λ2 − λ1 + a11)

+ (λ4 + λ3 − a33 − a44)(λ4 + λ3 − a33) − (λ4 + λ3 − a33 − a44)a55.

A PEIEP in general has n2 − |L| entries to be determined. If |L| < n2 − n, then
there are more than n entries to be determined, and this is more than the number of
equations the prescribed eigenvalues can specify. As such, the PEIEPs usually have
multiple solutions. Among these multiple solutions, the one that is least sensitive
to perturbations of problem data perhaps is most critical from a practical point of
view. Such a solution, called the robust solution in the literature, usually is found
by minimizing the condition number associated with the solution. This issue is in
addition to the task of just finding a solution to a PEIEP. In order that we can first
focus on the general framework we are about to propose in this paper, we will address
the problem of finding the robust solution in another paper. The 5 × 5 example given
above, for instance, is not the unique expression of a solution and might very well
not be the robust solution.

To move to the next level of PEIEPs, we mention the notion of �-diagonal in-
troduced in [7–9]. Given a permutation �, the positions in a matrix corresponding
to the index set L = {(i, �(i))}ni=1 is referred to as the �-diagonal of that matrix.
The following de Oliveira theorem generalizes the Mirsky theorem and allows us to
discuss a PEIEP with entries prescribed at non-principal diagonals.

Theorem 2.3 (de Oliveira). Let {λ1, . . . , λn} and {a1, . . . , an} be two sets of ar-
bitrary numbers over a field F and let σ be a given permutation. Suppose that at
least one of the disjoint cycles in the product representation � = �1 · · · �s of σ has
length > 2. Then there exists a matrix X ∈ Fn×n such that σ(X) = {λ1, . . . , λn} and
Xi,�(i) = ai for i = 1, . . . , n.

Note that the assumption in the above theorem that at least once cycle has length
great than 2 precludes the case that � is the identity and, hence, the equality (2.2)
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is not needed. If no cycle is of length > 2, then a similar result holds under some
additional restrictions [8, Theorem 2]. We shall see latter that the de Oliveira the-
orem becomes obsolete because the existence theory for a PEIEP can be further
generalized.

The PEIEP concerns the completion of a (square) matrix with prescribed eigen-
values. A natural generalization is to consider the completion of a (rectangular) ma-
trix with prescribed singular values (PEISVP). This PEISVP might well be an open
question in the field because we are not aware much discussion in the literature.
We note that a PEISVP can be converted into a PEIEP because eigenvalues of the
structured symmetric matrix

C =
[

0 A

AT 0

]
(2.3)

are precisely the pluses and minuses of singular values of A. The PEIEP for C has
the fixed structure of zero diagonal blocks plus whatever prescribed entries inherited
from A. The PEISVP for a structured A is solvable if and only if the PEIEP for C

with structure defined in (2.3) is solvable.
We mention only the special case of the Sing–Thompson theorem [25,27] to il-

lustrate the notion of PEISVP. The theorem characterizes the relationship between
singular values and diagonal entries of a general matrix in the following way.

Theorem 2.4 (Sing–Thompson). Assume that elements in two given vectors d, s ∈
Rn satisfy s1 � s2 � · · · � sn and |d1| � |d2| � · · · � |dn|. Then a real matrix with
singular values s and main diagonal entries d (possibly in different ordering) exists
if and only if



k∑
i=1

|di | �
k∑

i=1
si, for k = 1, . . . , n,

(
n−1∑
i=1

|di |
)

− |dn| �
(

n−1∑
i=1

si

)
− sn.

(2.4)

As for the SHIEP, the sufficient condition in the Sing–Thompson theorem gives
rise to an inverse singular value problem (STISVP): construct a square matrix with
prescribed diagonals and singular values, if (2.4) is satisfied. The original inductive
proof can translated into a divide-and-conquer algorithm [4] that, in return, can con-
veniently be implemented in a programming environment that supports recursion.

2.2. Prescribed entries at arbitrary locations

The cardinality and the location of the prescribed entries are not totally indepen-
dent of each other in the description of a PEIEP. The specified locations sometimes
imply inadvertently additional constraints on the problem. The PEIEP involved in
the Mirsky theorem is one such instance. The fact that the prescribed entries are on
the diagonal imply that the condition (2.2) must hold so that only n − 1 prescribed



92 M.T. Chu et al. / Linear Algebra and its Applications 379 (2004) 85–112

entries a1, . . . , an−1 are involved in the (Mirsky) PEIEP. The value for an is nec-
essarily determined from (2.2) due to the specific location of diagonal entries. We
thus wonder whether matrices can have n − 1 arbitrary prescribed entries at n − 1
arbitrary locations with n arbitrary eigenvalues. The affirmative answer comes from
the London–Minc theorem [19] that was also proved in [8].

Theorem 2.5 (London–Minc). Let {λ1, . . . , λn} and {a1, . . . , an−1} be two sets
of arbitrary numbers over a field F. Suppose L = {(iν, jν)}n−1

ν=1 is a set of arbi-
trary but distinct positions. Then there exists a matrix X ∈ Fn×n such that σ(X) =
{λ1, . . . , λn} and Xiν,jν = aν for ν = 1, . . . , n − 1.

An immediate follow-up question of the London–Minc theorem is this: how many
more entries of a matrix can be specified, and the associated PEIEP still be solvable.
Obviously, we must be cautious that the locations of these prescribed entries might
affect the solvability. With |L| = n − 1, the London–Minc theorem asserts that the
PEIEP is always solvable without any location constraints. With |L| = n, the fol-
lowing theorem generalizes both the Mirsky and the de Oliveira results. Furthermore,
it nicely characterizes the only possible cases where the location of prescribed entries
will affect the solvability of a PEIEP. The proof can be found in [18, Section 3b].

Theorem 2.6 (Ikramov–Chugunov). Suppose that the field F is algebraically closed
and that |L| = n. Assume that L is arbitrary, but if L happens to contain all po-
sitions of the principal diagonal or all positions of a certain row, then the following
two conditions must be met, respectively:

{
That (2.2) is satisfied, if L = {(i, i)}ni=1, or

That ai = λj for some j, if L = {(i, ν)}nν=1 and aν = 0 for all ν /= i.

(2.5)

Then the PEIEP is solvable via rational algorithms in F.

When |L| < n2 − n, there are more unknowns than the number of equations that
the prescribed eigenvalues can defined. It is conceivable that this situation will leave
more degrees of freedom for manipulation in constructing such a matrix. So how
much further can |L| go in a PEIEP without suffering from much restriction on
the location of prescribed entries? To help better grasp the scope of this complicated
issue, we reconsider the subclass AIEP of the PEIEP before we return to this question
in Section 2.3.

The classical AIEP exemplifies the other extreme of PEIEPs where there is no
room left for free locations. Recall that the AIEP concerns adding a diagonal matrix
D to a given matrix A so that σ(A + D) has a prescribed spectrum. (In a more
general sense, any PEIEP is an AIEP in that the matrix D to be added needs not
be a diagonal. Rather, the entries to be added are located at those positions that are
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complement to the given index set L.) In the classical AIEP, the prescribed entries
consist of all elements not on the principal diagonal. Thus, |L| = n2 − n. In this
case, only n positions (along the diagonal) are left to be determined from the n ei-
genvalues. It is remarkable to have the following result due to Friedland [10] (see
also [11]).

Theorem 2.7 (Friedland). The AIEP over any algebraically closed field is always
solvable. If n is the order of the problem, then there exist at most n! solutions. For
almost all given {λ1, . . . , λn}, there are exactly n! solution.

In contrast to Theorem 2.6, the AIEP in general cannot be solved in finitely many
steps. The AIEP in which all off-diagonal entries are 1, for example, is not solvable
in radicals for n � 5. The AIEP for a Jacobi matrix with subdiagonal (and super-
diagonal) entries 1 is not solvable in radicals even for n = 4 [18]. The AIEP has to
be solved by other types of numerical methods [5,12,22].

It is critical to observe that the solvability assured in both Theorems 2.6 and 2.7
requires that the underlying field F be algebraically closed. In [3], such an AIEP was
referred to as AIEP3. The AIEP over the field R of real numbers was referred to
as the AIEP1, and AIEP2 if the matrix A is real symmetric. All these problems are
different. The AIEP is not always solvable over R. It is easy to see, for example, that
a necessary condition for the real solvability of the AIEP1 is that∑

i /=j

(λi − λj )
2 � 2n

∑
i /=j

aij aji .

On the other hand, let π(X) := ‖X − diag(X)‖∞ denote a measure of the size of the
off-diagonal entries of a given matrix X. The following theorem demonstrate that
enough separation of prescribed eigenvalues relative to the size of the (prescribed)
off-diagonal entries of A leads to some sufficient conditions for the real solvability
[6,13] for the AIEP.

Theorem 2.8. Given a set � = {λ1, . . . , λn} of eigenvalues, define

d(�) := min
i /=j

|λi − λj |. (2.6)

Then,

1. (Hadeler) If d(�) > 2
√

3(π(A ◦ A))1/2, then the AIEP2 is solvable.
2. (de Oliveira) If d(�) > 4π(A), then the AIEP1 is solvable.

This theorem offers no clue on what will happen when the separation d(�) is too

small. Consider the example where A =
[ 0 3

3 0

]
and � = {3, −3}. Note that d(�) =

6 and does not satisfy Hadeler’s sufficient condition. Yet, D = diag{0, 0} does solve
the AIEP2. At the extreme case, Shapiro [24] and Sun and Qiang [26] proved that
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the problem would be unsolvable almost everywhere. This is very different from the
complex solvability guaranteed by the Friedland theorem.

Theorem 2.9 (Shapiro–Sun–Qiang). Both AIEP1 and AIEP2 are unsolvable almost
everywhere if multiple eigenvalues are present in �.

In addition, the symmetric problem AIEP2 enjoys a complete set of orthogonal
eigenvectors that, in turn, facilitates a sensitivity analysis for the AIEP2 as was done
in [28, Corollary 4.5.5].

Theorem 2.10 (Xu). Suppose D is a solution to the AIEP2 with symmetric matrix A

and eigenvalues {λ1, . . . , λn}. Let the spectral decomposition of A + D be written
as A + D = Q(D)T diag{λ1, . . . , λn}Q(D) with Q(D) = [qij (D)] = [q1, . . . , qn].
Define

�(D) := [
q2
ji(D)

]
,

b(D) := [
q1(D)TAq1(D), . . . , qn(D)TAqn(D)

]T
.

Assume that the matrix �(D) is nonsingular and that the perturbation

δ = ‖λ − λ̃‖∞ + ‖A − Ã‖2

is sufficiently small. Then the AIEP2 associated with the perturbed data Ã and λ̃ is
solvable. Furthermore, there is a solution D̃ near to X in the sense that

‖D − D̃‖∞
‖D‖∞

� κ∞(�(D))

(
δ

‖λ − b‖∞

)
+ O(δ2),

where κ∞(M) stands for the condition number of the matrix M in the infinity norm.

In view of these classical results and the advance made for the class of AIEPs, it
is reasonable to ask how far the existence theory can be extended beyond the AIEPs,
particular for n � |L| � n2 − n. It is equally important to develop some numerical
schemes to complete the matrix construction for a given PEIEP.

2.3. Cardinality and locations

The prescribed entries in both the SHIEP and the STISVP are located along the
diagonal; this means certain inequalities involving the prescribed eigenvalues and
entries must be satisfied (Theorems 2.1 and 2.4). The prescribed entries in an AIEP
being located at the off-diagonal, the complex solvability is answered in Theorem
2.7. In all these cases, the prescribed entries are located at special positions. Theorem
2.6 relaxes the specification to arbitrary locations and, under very mild conditions,
asserts the existence of a solution to the PEIEP when |L| = n. It is clear that we
somehow need to strike a balance between how freely we want the prescribed entries
to be located and how many prescribed entries we want to impose upon a PEIEP.
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Suppose we insist on the freedom of location with restrictions no more than the
obvious stipulation such as (2.5). Then possibly the strongest result known today
about |L| in the class of PEIEPs is the work presented in the M.Sc. thesis by Hersh-
kowitz [14] that was proved again in [15,18].

Theorem 2.11 (Hershkowitz). Suppose that the field F is algebraically closed and
that |L| = 2n − 3. Assume that L is arbitrary, but if L happens to contain as a
subset all positions of the principal diagonal or all positions of a certain row, then
the following two conditions must be met, respectively:

{
That (2.2) is satisfied, if L ⊇ {(i, i)}ni=1, or

That ai = λj for some j, if L ⊇ {(i, ν)}nν=1 and aν = 0 for all ν /= i.

(2.7)

Then the PEIEP is solvable in F.

Note that the effect of locations in L is limited to the two conditions (2.7) stated
in the theorem. These conditions are quite straightforward, so we might say that the
Hershkowitz theorem has the least restriction on the locations of prescribed entries.
The proof of the Hershkowitz theorem was established by induction. In principle,
it was declared in [18] that the construction could be done by a rational algorithm.
The seven basic cases plus the many subcases of analysis in the 15-page proof might
make a computer implementation quite a challenge. It would be interesting to see
if other numerical algorithms could be developed. Even beyond, we are curious to
know what can be said and done for the case when |L| > 2n − 3. Toward that goal,
we propose our optimization formulation.

3. Optimization formulation

The approach proposed below can easily be generalized to the complex case, but
we shall limit our discussion to the real matrices henceforth. Consequently, the pre-
scribed eigenvalues λ1, . . . , λn are necessarily closed under complex conjugation.

Let � ∈ Rn×n denote a matrix with eigenvalues λ1, . . . , λn. The simplest choice
of � would be either � = diag{λ1, . . . , λn}, if all eigenvalues are real, or the block
diagonal matrix with one 2 × 2 real-valued block for every complex conjugate pair
of eigenvalues. However, we shall see in Section 4 that during the restart procedure
the matrix � will be replaced step by step by new matrices with the same prescribed
eigenvalues. If necessary, we could also consider � as the (real) Jordan canonical
form or the Schur form to include the geometric multiplicities. Let Gl(n) denote the
general group of n × n nonsingular matrices in Rn×n. The set

M(�) = {
V �V −1 | V ∈ Gl(n)

}
(3.1)
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consists of all matrices that are isospectral to (and with the same kind of geometric
multiplicity as) �. Given an index subset of locations L = {(iν, jν)}�ν=1 and the
prescribed values a = {a1, . . . , a�}, the set

S(L, a) = {
A ∈ Rn×n | Aiνjν = aν, ν = 1, . . . , �

}
(3.2)

contains all matrices with the prescribed entries at the desired locations. Solving the
PEIEP is equivalent to finding the intersection of M(�) and S(L, a). Toward that
end, we propose a least squares approximation.

3.1. Descent flow

For convenience, split any given matrix X as the sum

X = XL + XLc (3.3)

where entries in XL are the same as X, except those that do not correspond to posi-
tions in L are set identically zero and Lc is simply the index subset complementary
to L. The drawing in Fig. 1, though only symbolic, indicates the various situations
in our approach. With respect to the Frobenius inner product

〈A, B〉 =
n∑

i,j=1

aij bij ,

the projection P(X) of any matrix X onto the affine subspace S(L, a) is given by

P(X) = AL + XLc , (3.4)

where AL is the constant matrix in S(L, a) with zero entries at all locations corre-
sponding to Lc. Note that the Fréchet derivative of the projection P at X acting on
a general H ∈ Rn×n is simply

Fig. 1. Representation of splitting, intersection, and least squares solution.
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P ′(X) · H = HLc . (3.5)

For each given X ∈ M(�), we intend to minimize the distance between X and
S(L, a). Equivalently, we want to minimize the function defined by

f (X) = 1
2

〈
X − P(X), X − P(X)

〉
. (3.6)

We can rewrite this minimization more conveniently as an unconstrained optimiza-
tion problem in terms of V in the open set Gl(n). Let X = V �V −1. The objective
function f (X) can be written as

g(V ) = 1
2

〈
V �V −1 − P(V �V −1), V �V −1 − P(V �V −1)

〉
. (3.7)

Since the action of the derivative of P (see (3.5)) is perpendicular to the residual
X − P(X) = XL − AL, the Fréchet derivative of g at V ∈ Gl(n) acting on H ∈
Rn×n is given by

g′(V ) · H = 〈
H�V −1 − V �V −1HV −1, V �V −1 − P(V �V −1)

〉
. (3.8)

By the Riesz representation theorem and the fact that

〈A, BC〉 = 〈BTA, C〉 = 〈ACT, B〉,
we find that the gradient ∇g of the objective function g is given by

∇g(V ) = (
V �V −1 − P(V �V −1)

)
V −T�

− (V �V −1)T(
V �V −1 − P(V �V −1)

)
V −T. (3.9)

Equivalently, the equation

∇g(V )V T = [X − P(X), XT] (3.10)

with [M, N] = MN − NM denoting the Lie bracket commutator is true. It follows
that the vector field

dV

dt
= k(X)V −T, (3.11)

where

k(X) = [XT, X − P(X)], (3.12)

defines a flow in the open set Gl(n) and moves in the steepest descent direction to
reduce the value of g(V ). Likewise, the vector field

dX

dt
= [hV (X), X] (3.13)

with

hV (X) = k(X)V −TV −1 (3.14)

defines the steepest descent flow on the manifold M(�) for f (X). The system (3.13)
is not particularly important in practice since it is known that its solution is X(t) =
V (t)�V (t)−1.
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The differential equation (3.11) can be readily integrated from a starting point,
say, V (0) = I . This forms the basis of our numerical algorithm. We shall discuss
its numerical implementation and, particularly, a restart strategy to avoid ill-condi-
tioning of V in more detail in Section 4. At this moment, it is appropriate to point
out that the framework of our gradient flow (3.11) applies to general PEIEPs with
any kind of index subset L. Different specifications of L simply mean different
projections P(X). It is important to note that, except for the AIEPs, all the classical
IEPs discussed in the previous section can be solved (over the complex field) by
using rational algorithms. The theory developed hitherto, however, only supports
|L| � 2n − 3. In contrast, our differential equation offers a continuous approach
that has no limitation on either the locations L or the cardinality |L|. If a PEIEP is
not solvable, our approach finds a least squares solution.

Finally, we point out that the formulation above is for general matrices in Rn×n.
If we are interested only in symmetric matrices, the group action by Gl(n) is re-
placed by the group O(n) of n × n orthogonal matrices, V −1 = V T, and many of the
expressions can be simplified.

3.2. Convergence

Along the solution flow V (t) of (3.11), it is clear that

dg(V (t))

dt
= −‖∇g(V (t))‖2

F � 0.

The functional value g(V (t)) will continue to decrease until one of only two possible
events happens. The first is that V (t) becomes undefined in finite time. This is the
case when V (t) converges to a singular matrix. The restart strategy proposed in the
next section can remedy this failure. The second is that ∇g(V (t)) converges to zero
as t goes to infinity, implying that we have found a local minimum for g(V ).

We characterize the local minimum solution further. The first order optimality
condition follows directly from the right-hand side of (3.11).

Theorem 3.1. Suppose that V̂ is a stationary point at which ∇g(V̂ ) = 0. Then the
corresponding X̂T = V̂ �V̂ −1 and X̂ − P(X̂) commutes.

Observe that for any given nonsingular matrix V ∈ Rn×n, the set I(V ) =
{V DV −1 | D = diag{d1, . . . , dn} arbitrary} of all real matrices having columns of
V as eigenvectors form an n-dimensional subspace in Rn×n. Given any index subset
L, the subset IL(V ) = {X ∈ I(V ) | XLc = 0}, containing at least the zero matrix,
is an even smaller subspace of I(V ). Consider the generic case that all prescribed
eigenvalues λ1, . . . , λn in the PEIEP have linear elementary divisor. In this case, it
is well known that X̂ − P(X̂) is a simple matrix and that X̂ − P(X̂) and X̂T must
have a set of n linearly independent eigenvectors in common. Additionally, note that
the matrix
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X̂ − P(X̂) = X̂L − AL

has zeros at all locations in Lc, i.e., X̂L − AL ∈ IL(V̂ ). Clearly, if X̂L − AL = 0,
then we have solved the PEIEP; otherwise, what this optimality condition suggests
is that the critical point X̂ must be quite “peculiar” in that changes by zeroing out its
Lc components and by subtracting AL from its L components remain to have the
same eigenvectors as X̂T. Our descent flow moves to find such a peculiar stationary
point. We are hoping that this peculiarity happens at X̂ = P(X̂) and hence the PEIEP
is solved. We shall see some numerical examples at the end of this paper.

4. Numerical methods

We can rewrite the differential equation (3.11) as a self-sustaining system

dV

dt
= k(V �V −1)V −T, (4.1)

where we recall that � is a constant real matrix with prescribed eigenvalues {λ1, . . . ,

λn}. Since V (t) generally has no additional structure, the system can be integrated
by any available ODE solver starting with initial value V (0) = I . This naturally
constitutes a reasonable numerical method for solving the PEIEP.

Clearly, the initial value at t = 0 is perfectly conditioned. By continuity, the con-
ditioning of V (t) will remain reasonable good for at least small values of t . As the
integration continues, however, concerns about V (t) converging to singularity or
becoming ill-conditioned may arise. We thus propose an alternative numerical algo-
rithm. We begin to outline a restart strategy with the following theorem.

Theorem 4.1. Let B : Rn×n → Rn×n be a given piecewise continuous function.
Then the solution X(t) to the initial value problem


dX

dt
= [B(X), X], t � 0,

X(0) = X0,

(4.2)

satisfies the relationship

X(t) = U(t)X0U
−1(t) (4.3)

if and only if the nonsingular matrix U(t) is the solution to the initial value problem


dU

dt
= B(UX0U

−1)U, t � 0,

U(0) = I.

(4.4)

To emphasize the dependence on the initial value X0, it is convenient to denote
the solution of problem (4.2) by X(t; X0). Observe that
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X(t; X(s; X0)) = X(t + s; X0), (4.5)

at whichever t and s where the pertaining solution is defined. Let {ti}∞i=0 be a se-
quence of positive numbers whose values will be defined later. For each i = 0, 1, . . . ,

let Ui(t) denote the solution to the initial value problem


dUi

dt
= B

(
UiXiU

−1
i

)
Ui, t ∈ [0, ti],

Ui(0) = I,

(4.6)

where, starting with X0, we recursively define

Xi+1 = Ui(ti)XiU
−1
i (ti ). (4.7)

It follows from Theorem 4.1 that Ui(t) implicitly defines a flow

X(t; Xi) = Ui(t)XiU
−1
i (t) (4.8)

for t ∈ [0, ti], although such a flow is never needed in real calculation. Furthermore,
by (4.5), we know that

X(t; Xi) = X(t; X(ti−1; Xi−1)) = X(t + ti−1; Xi−1) · · ·

= X

(
t +

i−1∑
j=0

tj ; X0

)
. (4.9)

On the other hand, applying (4.7) to (4.8) recursively, we obtain a different repre-
sentation of X(t; Xi), i.e.,

X(t; Xi) = Ui(t)Ui−1(ti−1) · · ·U0(t0)X0U
−1
0 (t0) · · ·U−1

i−1(ti−1)U
−1
i (t).

(4.10)

Comparing (4.9) with (4.10) and using Theorem 4.1, we find an alternative way to
compute the flow U(t) of (4.4) via factorization as follows.

Theorem 4.2. Suppose that the point t + t0 + · · · + ti−1 belongs to the interval of
existence for the initial value problem (4.4). Then

U

(
t +

i−1∑
j=0

tj

)
= Ui(t)Ui−1(ti−1) · · ·U0(t0), (4.11)

where each Uj (t) is the solution of (4.6).

Theorem 4.2 is remarkable on two fronts: First, with sufficiently small ti , the
solution Ui(t) should be well conditioned because Ui(0) is perfectly conditioned.
Secondly, even if the solution U(t) becomes ill conditioned for large t , we can cir-
cumvent this situation by computing U(t) via its decomposition into the product of
a sequence of well conditioned matrices. The formulation of this sequence conforms
naturally with a restart numerical algorithm which we now describe.
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Clearly, the value of ti for each i must be within the maximal interval of existence
for each system (4.6). In theory, we can continue to integrate (4.6) within that interval
until the condition number of Ui(t) reaches some predesignated threshold. The value
of t at which that threshold is reached is the maximal ti we can define. We then update
Xi+1 according to (4.7) and switch to solve a new initial value problem (4.6). We call
this process a restart. The choice of ti can be quite flexible. In the extreme case, we
can restart after each single integration step.

Applying this notion to our problem of solving the PEIEP, we note that B(X) =
hV (X) = k(X)V −TV −1 and that the right-hand side of (4.4) reduces to that of (4.1).
Because our ultimate goal is to find the stationary point for the objective function
g(V ), and also because (4.1) defines a steepest descent flow, the issue of following
the analytic solution V (t) closely does not seem to be critically important, so long
as we stay in a neighborhood of V (t) where g(V ) is going downhill. Thus it seems
likely that by using a (low-order) fixed-step size method, we could jump over the
singularity when it occurs.

5. Test results

We have found success in solving many PEIEPs by using our schemes. Some ex-
perimental results on the various behavior of the dynamical system (4.1) are reported
in this section. To avoid overrunning by the display of large matrices we shall limit our
presentation to the case n = 5 only. Similar behavior has been observed for higher n,
but will not be reported. For the ease of running text, we shall exhibit all numerics in
only 5 digits, although all computations are done using complex double precision.

For the purpose of demonstration, we shall employ existing routines in Matlab as
the ODE integrators. It is understood that any other available ODE solver can be used
as well. The ODE Suite [23] in Matlab contains in particular a Klopfenstein-Sham-
pine, quasi-constant step size, stiff system solver ode15s. To control the integration,
we set local tolerance AbsTol = 10−10 and RelTol = 10−9 while maintaining all
other parameters at the default values of the Matlab codes.

In what follows, the matrix AL contains all information needed about the pre-
scribed index subset L = {(iν, jν)}�ν=1 and the corresponding prescribed values
{aν}�ν=1. To check how the optimality conditions are met, we plot for each example
the history of the residual

R(t) = ‖X(t) − P(X(t))‖F

( = √
2g(V (t))

)
and the commutativity

C(t) = ‖k(X(t))‖F .

In an ideal situation when the PEIEP is solved, R(t) should be monotone decreasing
and both R(t) and C(t) should converge to zero. To compare the limiting behavior,
we sample values of solution V (t) of (4.1) and Ui(t) of (4.6) at predesignated



102 M.T. Chu et al. / Linear Algebra and its Applications 379 (2004) 85–112

output points tk = khrestart, k = 0, 1, . . . whereas hrestart is a user-specified value.
For convenience, let

X∗(X0) = lim
t→∞ X(t; X0) and R∗(X0) = lim

k→∞ Xk,

denote, respectively, the (numerical) limit points of the flow X(t; X0) and the se-
quence {Xk} generated by the restart scheme that starts with initial values X0. We
terminate the integration (and likewise, the iteration) when the stop criteria

min
{‖X(tk) − P(X(tk))‖F , ‖V (tk) − V (tk−1)‖F , ‖k(X(tk))‖F

}
� 10−8

are satisfied. The choice of threshold 10−8 for stopping is based on the heuristic
assumption that the global error is usually one or two orders less accurate than the
local error.

We shall assume throughout the testing that the prescribed eigenvalues are the
well separated integers λi = i, i = 1, . . . , 5. In the first three examples below, both
the index set L and the prescribed entries for experiment are randomly generated. In
the fourth example, the prescribed entries, also randomly generated, take positions
at all off-diagonal locations. We shall use the diagonal matrix � = diag(λ1, . . . , λn)

as well as other kinds of isospectral matrices as the initial values.

Example 1. We first consider the case where |L| = n. Recall that the Ikramov–
Chugunov theorem asserts that such a problem can be solved via a rational algo-
rithm. A Maple code based on the proof in [18] has been implemented by Chugunov.
Using our gradient flow approach, we have observed some additional interesting
behavior.

Case 1a. We first demonstrate that different (isospectral) initial values often lead
to different limit points. We further demonstrate that even starting with the same
initial value, the scheme with restart often ends at a limit point that is different from
the scheme with continuation. The latter is partly due to the fact that the solutions
of a PEIEP normally form an algebraic variety. A PEIEP with continuum solutions
is ill-posed. A small perturbation can easily drive the numerical calculation to fol-
low a different trajectory. Nevertheless, because we are following descent flows, the
objective value g(V (t)) will continue to descend even if we are not following a
certain trajectory precisely. It will be interesting to see how the ill-posedness can be
regulated and we will discuss this issue in a separate paper.

Assume that

AL =




−6.9178 0 −13.3618 0 16.2356
0 0 2.9441 0 0
0 0 0 0 0
0 0 0 7.1432 0
0 0 0 0 0


 ,



M.T. Chu et al. / Linear Algebra and its Applications 379 (2004) 85–112 103

at t ≈ 0.15, the continuation scheme with integrator ode15s converges to the approx-
imate limit point

X∗(�) ≈




−6.9178 0.3827 −13.3618 0 16.2356
1.8749 1.9146 2.9441 0 −3.7011
0.1940 −0.0070 3.0274 0 0.1342

0 0 0 4.0000 0
−5.6139 0.2481 −7.9730 0 12.9758


 .

Observe that values at the (4, 4) position remains at the constant λ4 throughout the
integration. This limit point certainly does not solve our PEIEP. Rather, it is a least
squares solution. Likewise, from the restart technique with the same initial value �
and hrestart = 10−2, a different least squares solution

R∗(�) ≈




−6.9178 0.2354 −13.3618 0 16.2356
1.9519 1.9477 2.9441 0 −3.6421
0.2259 −0.0045 3.0740 0 0.0764

0 0 0 4.0000 0
−5.5727 0.1519 −7.9087 0 12.8962




is found at t ≈ 0.1. The history of R(t), C(t), the condition numbers, and the small-
est singular values for both methods are recorded in Fig. 2.

Changing the initial value also changes the behavior. Suppose X0 = M�M−1

where M is a random matrix, say,

M =




−10.1063 −6.4360 0.0004 8.9564 5.6890
6.1446 3.8034 −3.1786 7.3096 −2.5565
5.0774 −10.0912 10.9500 5.7786 −3.7747

16.9243 −0.1951 −18.7399 0.4031 −2.9589
5.9128 −0.4822 4.2818 6.7709 −14.7513


 .

We find that at t ≈ 0.09, ode15s converges to a limit point

X∗(M�M−1) ≈




−6.9178 19.2148 −13.3618 −4.6997 16.2356
3.4353 −1.6506 2.9441 0.9474 −4.5826

−2.9331 5.9434 −3.1618 −1.5972 6.1474
9.3879 −16.5491 8.7526 7.1432 −12.1577

−9.4871 16.8368 −13.9850 −3.9572 19.5870




that can be considered as an approximate solution to the PEIEP. In the meantime, the
restart technique with hrestart = 10−2 converges to a different approximate solution

R∗(M�M−1) ≈




−6.9178 12.0373 −13.3618 −4.3334 16.2356
2.7285 1.4068 2.9441 0.2729 −4.0318
1.1038 −2.1165 2.5431 0.8937 −1.3976
7.9886 −10.1791 7.8301 7.1432 −11.7856

−4.4404 3.3882 −8.1308 −0.6934 10.8247


 ,

at t ≈ 0.13. The history of convergence is recorded in Fig. 3.
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Fig. 2. Case 1a. History of R(t) and C(t) with X0 = � and a least square solution.

It is necessary to make one interesting and important remark. While the solu-
tion X(tk; X0) from the continuation scheme and the iterates Xk from the restart
scheme should be identical in theory, we have observed time and again that their
numerical results behave very differently. They give rise to entirely different lim-
it points. Computations for ill-posed problems such as this would have been diffi-
cult, but it seems that the descent property inherent in our flow approach has the
advantage that it is able to track down multiple solutions of the PEIEPs without
much trouble.

Case 1b. In theory, the flow V (t) of the dynamical system (4.1) could evolve to
become ill-conditioned. In this example, we experiment with a hybrid method that
caps the condition number under a given threshold and automatically applies a restart
when the condition number of V violates the given threshold. This is not the most
robust way to control the condition number, but we demonstrate in this example that
this primitive composite scheme offers an interesting way to control the condition
number.
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Fig. 3. Case 1a. History of R(t) and C(t) with X0 = M�M−1 and convergence.

Assume that

AL =




0 0 0 0 5.7980
0 0 2.2594 4.3290 0
0 5.2982 7.6036 0 0
0 0 0 0 0
0 0 0 0 0


 ,

at t ≈ 0.5, the integrator ode15s reports an approximate solution

X∗(�) ≈




−0.0603 0 0 0 5.7980
0 4.7356 2.2594 4.3290 0
0 5.2982 7.6036 −2153.4 0
0 0.0206 0.0201 −3.3392 0

−0.9254 0 0 0 6.0603


 .

Note that this equilibrium point has a much larger component at the (3, 4)-position,
making this matrix extremely unbalanced. Indeed, nearby this equilibrium we find
that smallest singular value of the matrix V has dropped to approximately 1.2985 ×
10−4, and the condition number cond(X∗(�)) ≈ 1.0165 × 106 is fairly high.
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On the other hand, by applying ode15s with auto-restart and setting the threshold
at, say, 40, we find that only one restart is enough. After one restart at approximately
t = 0.25, we obtain an approximate limit point

X∗
R(�) ≈




−0.0603 0 0 0 5.7980
0 3.4828 2.2594 4.3290 0
0 5.2982 7.6036 −50.0641 0
0 0.6370 0.7466 −2.0864 0

−0.9254 0 0 0 6.0603


 ,

at t ≈ 1.3. In this case, cond(X∗
R(�)) ≈ 528, representing a significant improvement

over cond(X∗(�)). We plot the history of convergence in Fig. 4. If the threshold is
lowered, it is possible that several restarts will be needed. This way of controlling
the condition number via restart is quite interesting.

In addition to the hybrid method described above, we could also affect the
conditioning behavior by using different initial values for the flows. For instance,
if we start with X0 = M�M−1, the continuation method finds an approximate limit
point
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Fig. 4. Case 1b. History of R(t) and C(t) with X0 = �. Ill-conditioning and restart-control.
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X∗(M�M−1) ≈




0.6191 3.8118 2.7968 6.8257 5.7980
−1.4213 4.6582 2.2594 4.3290 1.9759
−4.2898 5.2982 7.6036 10.0042 7.1066

2.0087 −1.3904 −2.0907 −1.8566 −3.4188
0.2537 −0.7727 −0.5389 −0.1400 3.9756




that has condition number around 105. If we start with the diagonal matrix �r =
diag(5, 4, 3, 2, 1), we find an approximate limit point

X∗(�r ) ≈




6.0603 0 0 0 5.7980
0 5.3552 2.2594 4.3290 0
0 5.2982 7.6036 8.3259 0
0 −4.0560 −3.7227 −3.9588 0

−0.9254 0 0 0 −0.0603




that has condition number around 28.

Example 2. In this example, we demonstrate the Hershkowitz theorem where |L| =
2n − 3. This is the maximal cardinality under which the PEIEP is known to be solvable.
No rational algorithm for find this matrix is known to exist at the writing of this paper.

Assume that

AL =




4.6478 0 0 0 3.0769
0 0 5.4142 0 0
0 3.4176 4.0180 0 9.4233
0 0 5.0605 0 0
0 0 0 0 0


 .

Using X0 = M�M−1 as the starting value, we find an approximate PEIEP solu-
tion

X∗(M�M−1) ≈




4.6478 1.4747 0.2769 −2.1889 3.0769
5.8775 7.6853 5.4142 −8.5807 25.4085
2.7866 3.4176 4.0180 −4.4980 9.4233
5.4620 4.2719 5.0605 −5.2338 24.1737

−0.2689 −0.4190 0.4635 0.3473 3.8826


 ,

at t ≈ 1.01, while the restart technique with hrestart = 1 × 10−2 leads to the limit
point

R∗(M�M−1) ≈




4.6478 2.1026 −0.7122 −1.6803 3.0769
7.6563 8.4636 5.4142 −4.2439 21.9336
2.7615 3.4176 4.0180 −2.1595 9.4233
5.5707 3.2899 5.0605 0.3565 16.6768

−2.2464 −2.1997 −0.3955 1.8084 −2.4859


 ,

at t ≈ 1.3. The history of R(t) and C(t) for both method is plotted in Fig. 5.
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Fig. 5. Example 2. History of R(t) and C(t) with X0 = M�M−1 and convergence.

Example 3. In this example, we examine the convergence behavior when |L| =
2n. This is a situation that goes beyond existing theory, so it is particularly interesting
to see that our gradient flow can still find a solution.

Assume

AL =




0 2.2191 2.3114 0 0
0 0 0 0 2.2804

1.7220 7.1335 5.2206 7.0368 9.6882
0 0 0 0 4.4964
0 0 0 0 9.7709


 .

By means of the integrator ode15s and starting with X0 = M�M−1, we obtain an
approximate solution at t ≈ 0.63

X∗(M�M−1) ≈




−6.3069 2.2191 2.3114 −40.5399 −63.9824
0.1834 0.5859 −0.7024 1.3190 2.2804
1.7220 7.1335 5.2206 7.0368 9.6882
1.1973 −0.1793 −0.5067 5.7296 4.4964
0.5877 −0.0496 0.0617 4.3919 9.7709


 ,
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Fig. 6. Example 3. |L| = 2n with X0 = M�M−1.

while the restart method with hrestart = 10−2 gives rise to another limit point

R∗(M�M−1) ≈




−5.7391 2.2191 2.3114 −35.4855 −68.9824
0.0699 0.5252 −0.71140 0.6925 2.2804
1.7220 7.1335 5.2206 7.0368 9.6882
0.8172 −0.2678 −0.3317 5.2224 4.4964
0.6835 −0.0095 −0.0580 3.5772 9.7709


 ,

at T ≈ 2.66. The history of convergence for both methods is reported in Fig. 6.

Example 4. In this example, we consider solving the AIEP where |L| = n2 − n

and the prescribed entries are located along the off-diagonal. Recall that the Fried-
land theorem guarantees only that the AIEP is solvable over the complex field. Thus
the problem of AIEP1 where the desired solution is real-valued imposes particular
challenges. To generate feasible test data, we take AL = off-diag(Q�Q−1) where
Q is a random matrix, and attempts to recover the diagonal entries. Note that the
AIEP for such an AL is real solvable, since Q�Q−1 is a already solution. We are
curious to know what the gradient flow will find.
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Case 4a. Suppose Q is a random orthogonal matrix, say,

Q =




0.5246 0.2559 −0.6663 −0.4108 0.0396
0.3078 0.7086 0.4825 −0.4108 0.0396

−0.6242 0.5398 −0.4824 −0.1286 −0.2639
−0.0557 −0.3681 −0.1963 −0.8907 0.1716
−0.4871 0.0737 0.2279 0.1102 0.8326


 ,

so that

AL =




0 −0.5077 0.2648 0.2232 1.2588
−0.5077 0 0.0337 0.6747 0.2683

0.2648 0.0337 0 0.1531 −1.1016
0.2232 0.6747 0.1531 0 0.1606
1.2588 0.2683 −1.1016 0.1606 0




is symmetric. This is the AIEP2 described earlier. We have observed that the flow
starting with X0 = � converges slowly to an AIEP solution X∗(�) with

diag(X∗(�)) = [2.5076, 2.1235, 2.7057, 3.7506, 3.9126],
at an extended t ≈ 304. For this symmetric problem, note that the solution V (t)

should remain orthogonal at all t . Being ideally conditioned all the time, no restart
is needed. It is interesting to note that the limit point of our flow differs from the
original randomly generated matrix Q�QT in that

diag(Q�QT) = [2.8054, 2.4803, 2.0852, 3.7106, 3.9186].

Case 4b. Suppose matrix Q is just random but not orthogonal, say,

Q =




−10.1063 −6.4360 0.0004 8.9564 5.6890
6.1446 3.8034 −3.1786 7.3096 −2.5565
5.0774 −10.0912 10.9500 5.7786 −3.7747

16.9243 −0.1951 −18.7399 0.4031 −2.9589
5.9128 −0.4822 4.2818 6.7709 −14.7513


 ,

so that

AL =




0 3.2301 1.2912 −0.2463 −1.9822
1.0504 0 −0.6282 −0.0002 1.0437
0.3767 0.3454 0 −0.5026 0.9917
1.6297 −2.1979 −1.9755 0 1.9820
1.1029 −2.0588 −1.6816 0.0962 0


 .

We find that the flow starting with X0 = � converges to a least square solution,
while the flow starting with X0 = �r , defined previously in Example 1 (Case 1b),
solves the AIEP with an approximate solution
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diag(X∗(�r )) = [0.8456, 0.6733, 1.8224, 2.9538, 4.7049],
at t ≈ 136 after about 1374 internal steps. In contrast, we also have observed that the
flow starting with X0 = M�M−1 can be more effectively followed in computation.
At t ≈ 116, the flow converges to another AIEP solution with

diag(X∗(M�M−1)) = [2.0403, 2.2429, 1.8523, 2.6714, 6.1931]
that happen to coincide with the diagonal of the original randomly generated matrix
Q�Q−1. This time, however, much larger step sizes are taken since ode15s requires
only about 131 internal steps to accomplish the integration.

6. Conclusion

Matrix completion with prescribed spectrum has been a classical yet quite chal-
lenging problem both theoretically and computationally. In the first part of this paper,
we have chronicled some major developments on this subject in the literature. Start-
ing with the well-known Schur–Horn theorem, we point out in particular that the
attention has been centering around special locations of the prescribed entries and
that the cardinality has usually been low. We also point out that the Hershkowitz
theorem where |L| = 2n − 3 appears to be the most general result at present under
which the PEIEP is ensured to be solvable. In the second part of this paper, we
have proposed a dynamical system of which the trajectory allows us to complete
the construction of a matrix numerically even under the situation when no existence
theory is available at all. Extensive numerical experiments seem to suggest that our
idea of gradient flow approach can serve as a reasonable means to tackle the most
general PEIEPs where the prescribed entries are at arbitrary locations with arbitrary
cardinalities.
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