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Abstract. Optimizing correlations between sets of variables is an important
task in many areas of applications. There are plenty of algorithms for comput-

ing the maximum correlation. Most disappointedly, however, these methods
typically cannot guarantee attaining the absolute maximum correlation which

would have significant impact on practical applications. This paper makes
two contributions. Firstly, some distinctive traits of the absolute maximum
correlation are characterized. By exploiting these attributes, it is possible to
propose an effective starting point strategy that significantly increases the like-

lihood of attaining the absolute maximum correlation. Numerical testing of
the classical Horst algorithm with the starting point strategy seems to evince

the potency of this approach. Secondly, the Horst algorithm is but one ag-
gregated Jacobi-type power method. Following the innate iterative structure,

a generalization to the Gauss-Seidel formulation is proposed as a natural im-

provement on the power method. Monotone convergence of the Gauss-Seidel
algorithm is proved. When combined with the starting point strategy, the

newer Gauss-Seidel approach leads to faster computation of the absolute max-

imum correlation.

1. Introduction

Canonical correlation analysis (CCA) is an important tool for assessing the rela-
tionship between sets of variables. Considerable research efforts have been devoted
to the development of theory and techniques for CCA. The notion of CCA has
been applied to areas such as cluster analysis, data classification, pattern recogni-
tion, principal component analysis, and bioinformatics. Some general treatments as
well as practicalities on this subject can be found in treatises [5, 6, 8, 9, 12, 15, 18].
One very early development of CCA is the maximal correlation problem (MCP)
proposed by Hotelling [10, 11] where the goal is to find the linear combination of
one set of variables that correlates maximally with the linear combination of an-
other set of variables. If this maximal correlation can be satisfactorily established,
then we have the advantage of using one set of variables to predict the other. As a
necessary condition to the solution of the MCP, the multivariate eigenvalue problem
(MEP) arises, which we delineate below.

A concise brief about the statistical background of MCP and its relationship to
the MEP can be found in [4, Section 2]. Here we only introduce the notation for
the convenience of subsequent discussions. Given a set of positive integers

P = {n1, n2, · · · , nm},(1.1)
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with
∑m

i=1 ni = n, partition a matrix A ∈ Rn×n and a vector x ∈ Rn into blocks

A =




A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm


 ∈ Rn×n,(1.2)

x = [x>1 , . . . ,x>m]> ∈ Rn,(1.3)

with Aij ∈ Rni×nj and xi ∈ Rni , respectively. Under the context of multivariate
statistical analysis, the matrix A is usually assumed to be symmetric and positive
definite. The assumption of positive definiteness generally is not needed in most
results derived in this paper. We shall carefully mark out this assumption only
when it is necessary. The maximum correlations in the MCP correspond to the
extreme values of the equality constrained optimization problem [4, 9]:

(1.4)
{

Maximize r(x) := x>Ax
subject to ‖xi‖2 = 1, i = 1, 2, · · · ,m.

There are many local maximizers, and the emphasis of this paper is on finding the
global maximizer. Upon employing the Lagrange multiplier theory, it is easy to see
that the first order optimality condition for (1.4) is the existence of real scalars,
namely, the Lagrange multipliers, λ1, . . . , λm and a vector x ∈ Rn such that the
system of equations

{
Ax = Λx,
‖xi‖2 = 1, i = 1, 2, · · · ,m,

(1.5)

is satisfied, where

Λ := diag{λ1I
[n1], λ2I

[n2], · · · , λmI [nm]}(1.6)

with I [ni] ∈ Rni×ni denoting the ni × ni identity matrix [4, 18]. We shall exploit
this condition again in Section 2. The system (1.5) is referred to hereby as the
MEP with partition P.

We mention in passing that the MEP, as a generalization of the classical eigen-
value problem, is of mathematical interest in its own right. The MEP arises also
in entirely different non-statistical settings. For instance, the MEP finds applica-
tions in the perturbation analysis of linear dynamical systems subject to additive
bounded noises [19]. A special bivariate eigenvalue problem arises from identi-
fication of finite impulse response systems [13]. See also [1] for a related linear
complementary problem.

To our knowledge, a direct tackling of the MCP itself (and, hence, obtaining a
solution in closed form) is possible only for the case when m = 2 and A11 = I [n1]

and A22 = I [n2]. An argument can be found in [8]. Higher dimensional problems
can be solved perhaps only by means of iteration on the MEP. In that regard, just
like the power method plays a fundamental role in the numerical procedures for
solving the classical eigenvalue problem, an aggregated power method that iterates
on blocks of A has been proposed by Horst [8] as a general means for solving the
MEP numerically. So that the paper is self-contained, we summarize the iterative
scheme as Algorithm 1 below. While this algorithm has been used in practice for
decades, its convergence theory was established three decates later in [4].
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Algorithm 1 The Horst-Jacobi algorithm for the MEP [8].

Given x(0) ∈ Rn,
for k = 0, 1, · · · , do

for i = 1, 2, · · · ,m do
y(k)

i :=
∑m

j=1 Aijx
(k)
j

λ
(k)
i := ‖y(k)

i ‖2
x(k+1)

i := y
(k)
i

λ
(k)
i

end for
end for

The recurrence structure in Algorithm 1 is of Jacobi-type (and thus is named
Horst-Jacobi). In other words, the updating of the blocks x(k+1)

i , i = 1, . . . , m, is
completely independent of each other. The blocks in each sweep of k can be calcu-
lated in parallel. Following the conventional treatment in matrix iteration analysis,
it is natural to consider adopting the Gauss-Seidel-type iteration by injecting the
newly computed updates into the computation. The modification, made at the
definition of y(k)

k in Algorithm 2, raises the hope of improved convergence behavior
which is yet to be justified in the literature.

Algorithm 2 The Gauss-Seidel algorithm for the MEP [4].

Given x(0) ∈ Rn,
for k = 0, 1, · · · , do

for i = 1, 2, · · · ,m do
y(k)

i :=
∑i−1

j=1 Aijx
(k+1)
j +

∑m
j=i Aijx

(k)
j

λ
(k)
i := ‖y(k)

i ‖2
x(k+1)

i := y
(k)
i

λ
(k)
i

end for
end for

One of our contributions in this paper is to analyze the dynamical behavior of
the Gauss-Seidel algorithm. In particular, we prove the monotone convergence of
the sequence {r(x(k))} to an optimal value for (1.4) when {x(k)} is generated by
Algorithm 2.

The most troubling issue is that, even if the sequence {r(x(k))} from either
algorithm converges monotonically, we cannot be sure that the limit point of {x(k)}
is a global maximizer. As the constraints in (1.4) form a compact set, there must
be at least one global maximizer for r(x). On the other hand, the constraints
are non-convex, suggesting the existence of multiple local maximizers. Indeed,
in the generic case where A has n distinct eigenvalues, it has been proved that
the MEP has precisely

∏m
i=1(2ni) solutions [4], counting multiplicities. Unless the

starting point is judiciously selected, numerical experiments indicate a substantially
high probability that the iterates converge to local maximizers. Without the global
maximizer, the maximal correlation would not be established, making the statistical
prediction less reliable.
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Being able to characterize global maximizers, therefore, would be highly desir-
able. Surprisingly, research results in this regard are not so extensive in the litera-
ture. To our knowledge, the only other pertaining effort was made in [5] where it
was shown that if m = 2, or if m > 2 with A being a positive matrix, then x∗ is a
global solution to (1.4) if and only if (Λ∗,x∗) is a solution pair to the MEP and the
matrix A − Λ∗ is negative semi-definite. For the general case, however, examples
were given in [5] to demonstrate the complexity in analysis.

Our main contribution in the current paper is to offer a strategy to improve the
likelihood of finding a global maximizer. In particular, we are able to establish
some distribution bounds for the multivariate eigenvalues λ1, · · · , λm in terms of
the eigenvalues of A and of the block diagonal matrix

D = diag {A11, . . . , Amm} ∈ Rn×n(1.7)

of A. By exploiting these relationships, we obtain important information for setting
up an effective starting point strategy. Upon equipping the Gauss-Seidel algorithm
with the starting point strategy, we think we have a much more successful algorithm
in producing a global solution for the MCP. Extensive numerical testing seems to
suggest two advantages of our approach — the effectiveness of our strategy in
boosting up the probability of finding a global maximizer of (1.4) and the superior
convergence of the Gauss-Seidel algorithm over the Horst-Jacobi algorithm on large
scale problems.

The paper is organized as follows. In Section 2, we establish the first-order and
second-order optimality conditions for (1.4). We also attain a perturbation result
for the MEP through the notion of the classical Rayleigh quotient. These basic
facts allow us to characterize in Section 3 the Lagrange multipliers λ1, . . . , λm in
terms of the eigenvalues of both A and D. From these estimates of λ1, . . . , λm, we
propose some initial point strategies in Section 4. The convergence dynamics of
the Gauss-Seidel algorithm is studied in Section 5. Finally, we report in Section 6
numerical testing results to evidence the effectiveness of our theory and algorithm.

2. Optimality Conditions

Since the MCP is formulated as an equality constrained problem (1.4), we first
explore the optimality conditions. The discussion in this section applies to any
symmetric matrix A in general without the assumption of positive definiteness.

Denote the unit sphere in Rni by Sni−1. The feasible set

M := {x ∈ Rn | ‖xi‖2 = 1, xi ∈ Rni}(2.1)

can be cast as the smooth manifold
∏m

i=1 Sni−1 embedded in
∏m

i=1 Rni under the
product topology. For any x ∈M, the tangent space TxM can be expressed as

TxM = {Pxz | z ∈ Rn} ,(2.2)

where

Px := diag
{

I [n1] − x1x>1 , . . . , I [nm] − xmx>m
}
∈ Rn×n.(2.3)

The projected gradient of r(x) therefore is given by

ProjTxM∇r(x) = Px(∇r(x)) = 2(A− Λ(x))x,(2.4)
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where

Λ(x) := diag
{

λ1(x)I [n1], . . . , λm(x)I [nm]
}

,(2.5)

λi(x) := x>i Aix, i = 1, . . . , m,(2.6)

and
Ai := [Ai1, Ai2, · · · , Aim] ∈ Rni×n

denotes the ith row block of A. It follows that the set

S := {x ∈M | Ax = Λ(x)x}(2.7)

contains all critical points for the constrained optimization problem (1.4). This
constitutes the first-order optimality condition, which is precisely the MEP.

The following theorem characterizes the second-order optimality condition.

Theorem 2.1. Suppose A ∈ Rn×n is symmetric and x∗ ∈ S. Then a second-order
necessary condition for x∗ to be a local maximizer of (1.4) is that the inequality

z>Px∗ (A− Λ(x∗))Px∗z ≤ 0(2.8)

holds for all z ∈ Rn, where Px∗ and Λ(x∗) are defined in (2.3) and (2.5), respec-
tively. In other words, the matrix A− Λ(x∗) restricted to the tangent space Tx∗M
is negative semi-definite. Moreover, if A − Λ(x∗) restricted to the tangent space
Tx∗M is negative definite, then x∗ is a local maximizer.

Proof. To derive the second-order optimality condition, the projected Hessian tech-
nique developed in [3] becomes handy. The idea is to first extend the projected
gradient smoothly to the entire space Rn. For ProjTxM∇r(x) in (2.4), this can
easily be done because the function

g(x) := 2 (A− Λ(x))x

can be defined for every x ∈ Rn. The action of the Fréchet derivative of g(x) at
any v ∈ Rn is given by

g′(x)v = 2 (Av − Λ(x)v)

−2diag
{(

x>1 A1v + v>1 A1x
)
I [n1], . . . ,

(
x>mAmv + v>mAmx

)
I [nm]

}
x.

The bilinear action of g′(x) therefore can be expressed as

v>g′(x)v = 2

[
v>Av − v>Λ(x)v −

m∑

i=1

(
x>i Aiv + v>i Aix

)
v>i xi

]
.

For the critical point x∗ to be a local maximizer, it is necessary that v>g′(x∗)v ≤ 0
for any v ∈ Tx∗M. The assertion (2.8) thus follows from the fact that if v ∈ Tx∗M
then v>i x∗i = 0 for all i = 1, . . . , m.

For the last part of the theorem, define

C(x) =



‖x1‖22 − 1

...
‖xm‖22 − 1


 .

Note that for any x ∈ Rn satisfying C(x) = 0, we have x ∈ M and rank(C ′(x)) =
m, implying that 0 is a regular value of C(x). Therefore, x∗ must be a local maxi-
mizer if A−Λ(x∗) restricted to the tangent space Tx∗M is negative definite [7]. ¤
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It is interesting to note that the objective function r(x) can be regarded as
a generalization of the classical Rayleigh quotient. Consequently, it is expected
that a small perturbation around any critical point should give rise to a quadratic
perturbation in r(x). More specifically, we have the following observation.

Theorem 2.2. Suppose A ∈ Rn×n is symmetric and x∗ ∈ S. Then for any x ∈M,
it is true that

|r(x)− r(x∗)| ≤ ‖A− Λ(x∗)‖2 · ‖x− x∗‖22.(2.9)

Proof. Since Ax∗ = Λ(x∗)x∗ and x∗ ∈M, we have

r(x∗) = x∗>Ax∗ =
m∑

i=1

λi(x∗).

For any x ∈ Rn, define ∆x := x− x∗. Then

r(x) = x>Ax = r(x∗) + 2x∗>A∆x + ∆x>A∆x

= r(x∗) + 2x∗>Λ(x∗)∆x + ∆x>A∆x.

If x ∈M, then it must be that

x∗i
>∆xi = −1

2
∆x>i ∆xi, i = 1, . . . , m.

It follows that

2x∗>Λ(x∗)∆x = 2
m∑

i=1

λi(x∗)x∗i
>∆xi = −

m∑

i=1

λi(x∗)∆x>i ∆xi = −∆x>Λ(x∗)∆x,

and thus

r(x) = r(x∗)−∆x>Λ(x∗)∆x + ∆x>A∆x(2.10)

= r(x∗) + ∆x>(A− Λ(x∗))∆x.

The assertion (2.9) is proved. ¤
The optimality conditions characterized above serve as basic tools for further

refining our estimation of the multivariate eigenvalues. The relationship (2.10) will
be particularly useful for deciding whether an objective value r(x) can be increased
or not. Equipped with these facts, we continue to carry out our analysis in the next
section.

3. Estimation of multivariate eigenvalues at a global maximizer

It is convenient to arrange the spectrum of the diagonal block Aii ∈ Rni×ni in
the descending order

σ1(Aii) ≥ · · · ≥ σni
(Aii).

Henceforth let (Λ,x) with Λ := diag{λ1I
[n1], . . . , λmI [nm]} typify any solution to

the MEP. We first provide a lower bound for λi, when x is a local maximizer for
(1.4). The following result still does not need positive definiteness for A.

Theorem 3.1. Suppose that A ∈ Rn×n is symmetric and (Λ,x) is a solution to
the MEP. If x is a local maximizer for (1.4), then for any i = 1, . . . , m, it is true
that

λi ≥ σni(Aii),(3.1)

whenever ni > 1.
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Proof. If ni > 1, then there exists some zi ∈ Rni such that (I [ni] − xix>i )zi 6= 0.
Define

z = (0, 0, · · · , z>i , 0, · · · , 0)> ∈ Rn.

Since x is a local minimizer, it is necessary by Theorem 2.1 that

z>i (I [ni] − xix>i )(Aii − λiI
[ni])(I [ni] − xix>i )zi ≤ 0.

It follows that

λi‖(I [ni] − xix>i )zi‖22 ≥ z>i (I [ni] − xix>i )Aii(I [ni] − xix>i )zi

≥ σni
(Aii)‖(I [ni] − xix>i )zi‖22.

This completes the proof. ¤

The case ni = 1 for some i deserves special attention. Since ±1 are the only two
possible choices for xi, the feasible set M is made of disjoint connected subsets.

Example 1. Consider the example when m = 2, P = {1, 2} and

A =




1 0 − 1
2

0 2 0
− 1

2 0 3


 ∈ R3×3.

It is easy to check that x = (1, 0, 1)> is a local maximizer for (1.4). Nevertheless, we
see that λ1(x) = x>1 A1x = 1

2 < σ1(A11) = 1, violating the estimate (3.1) asserted
in Theorem 3.1.

Suppose now x∗ is a global maximizer for (1.4). Then Theorem 3.1 has an
interesting and important extension which provides a much sharper estimate of the
absolute optimal value. Still, the positive definiteness is not needed.

Theorem 3.2. Suppose that A ∈ Rn×n is symmetric and (Λ∗,x∗) is a solution to
the MEP. If x∗ is a global maximizer of (1.4), then

λ∗i ≥ σ1(Aii),(3.2)

for every i = 1, . . . , m.

Proof. We prove by contradiction. Suppose that there exists some 1 ≤ i ≤ m such
that λ∗i < σ1(Aii). Since we also have (3.1), we can assume that the eigenvalues of
the matrix Aii − λ∗i I

[ni] are distributed on two sides of zero, say,

η1 ≥ · · · ≥ η` > 0 ≥ η`+1 ≥ · · · ≥ ηni
,

for some ` ≥ 1. Let the corresponding orthogonal eigenvectors of Aii − λ∗i I
[ni]

be denoted by w1,w2, · · · ,w`,w`+1 · · · ,wni . We analyze x∗i in the following two
cases.
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Case I: Suppose w>
1 x∗i 6= 0. (This includes the special case when ni = 1.)

Consider the new vector

x̂ :=




x∗1
...

x∗i−1

x∗i − 2(w>
1 x∗i )w1

x∗i+1
...

x∗m




= x∗ −




0
...
0

2(w>
1 x∗i )w1

0
...
0




︸ ︷︷ ︸
q

.(3.3)

Observe first that

‖x̂i‖22 = ‖x∗i − 2(w>
1 x∗i )w1‖22 = 1.

Thus x̂ ∈M. Observe further by (2.10) that

r(x̂)− r(x∗) = q>(A− Λ∗)q = 4(w>
1 x∗i )

2w>
1 (Aii − λ∗i I

[ni])w1

= 4(w>
1 x∗i )

2η1 > 0,

implying that r(x̂) > r(x∗). This would contradict with the assumption that x∗ is
a global solution to (1.4).

Case II: Suppose w>
1 x∗i = 0. Upon substituting the particular vector

z := (0, 0, · · · ,w>
1 , 0, · · · , 0)> ∈ Rn,

into (2.8), we see that

z>Px∗(A− Λ∗)Px∗z = w>
1 (Aii − λ∗i I

[ni])w1 = η1 > 0.

Based on the second-order necessary condition in Theorem 2.1, we concluse that
x∗ could not be even a local maximizer. This is again a contradiction.

The two cases are mutually exclusive. The assertion (3.2) must be true. ¤

We stress the importance of Theorem 3.2 by stating that a necessary qualifi-
cation of x∗ being a global maximizer is that each λ∗i must be no less than the
largest eigenvalue of the corresponding diagonal block Aii. A demonstration by the
example in [5] would be instructive.

Examle 2. Consider the case where

A =




45 −20 5 6 16 3
−20 77 −20 −25 −8 −21

5 −20 74 47 18 −32
6 −25 47 54 7 −11

16 −8 18 7 21 −7
3 −21 −32 −11 −7 70



∈ R6×6,(3.4)

m = 3, and P = {2, 2, 2}. Both of the following vectors

x∗ = (0.4921,−0.8705, 0.8004, 0.5995, 0.5648,−0.8228)>,

x = (−0.4003, 0.9164, 0.8847, 0.4661, 0.1191,−0.9929)>,
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together with the corresponding multivariate eigenvalues

Λ∗ = diag{109.2864 I [2], 179.7093 I [2], 89.9667 I [2]},
Λ = diag{75.4245 I [2], 114.1218 I [2], 125.1093 I [2]}

solve the MEP [5]. Nonetheless, we note that

σ1(A11) = 86.6125, σ1(A22) = 112.0521, σ1(A33) = 70.9804.

Since σ1(A11) = 86.6125 > λ1 = 75.4245, by Theorem 3.2, we know that x is not a
global maximizer for (1.4).

The following two corollaries are in consequence of Theorem 3.2, but nicely
generalize the results in [5].

Corollary 3.3. Under the same assumptions of Theorem 3.2, let D be the block
diagonal matrix of diagonal blocks of A (see definition (1.7)). If x∗ is a global
maximizer of (1.4), then D−Λ∗ and Aii−λ∗i I

[ni] are negative semi-definite for all
i = 1, . . . , m.

Corollary 3.4. Under the same assumptions of Theorem 3.2, let

v := (v>1 ,v>2 , · · · ,v>m)> ∈ Rn

be the vector consisting of unit eigenvectors vi ∈ Rni , i = 1, . . . , m, each of which
is associated with the largest eigenvalue of Aii. If x∗ is a global maximizer of (1.4),
then r(x∗) ≥ r(v).

Two more remarks about the applications of Theorem 3.2 are worth noting.
First, the inequality (3.2) holds even when m = 1 or A is block diagonal. Secondly,
the proof in Theorem 3.2 suggests a constructive way to increase the objective value
r(x) if x is not yet a global maximizer, which we shall further exploit in Section 4.

Finally, recall the results in [5] asserting that the matrix A− Λ∗ being negative
semi-definite is a sufficient condition for x∗ ∈ S being a global maximizer of (1.4)
and that it is also a necessary condition if m = 2 or if m > 2 with A being positive.
In contrast, our Theorem 3.2 and Corollary 3.3 put forward a necessary condition
by using submatrices which are much refined and “localized”.

The next theorem relates the multivariate eigenvalues λ∗i of A to the eigenvalues
of A in an ordered way, when A − Λ∗ is negative semi-definite. Note that the
positive definiteness of A is now assumed.

Theorem 3.5. Suppose A ∈ Rn×n is symmetric and positive semi-definite. If
(Λ∗,x∗) is a solution to the MEP such that A− Λ∗ is negative semi-definite, then

σj(Λ∗) ≥ σj(A), j = 1, 2, · · · , n,(3.5)

where σj(·) stands for the j-th largest eigenvalue of the respective matrices.

Proof. By the classical Monotonicity Theorem for eigenvalue [14, Page 322], it is
true that

σ1(A− Λ∗) ≥ σj(A) + σn−j+1(−Λ∗), j = 1, 2, · · · , n.(3.6)

The positive semi-definiteness of A and Theorem 3.2 imply that λ∗i ≥ 0 for all
i = 1, 2, · · · ,m and, consequently, σn−j+1(−Λ∗) = −σj(Λ∗). Together with the
negative semi-definiteness of A− Λ∗, we see from (3.6) that

0 ≥ σ1(A− Λ∗) ≥ σj(A)− σj(Λ∗), j = 1, 2, · · · , n,

which yields the inequalities (3.5). ¤
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4. Starting point strategy

By taking advantage of the bounds established in the preceding section for the
multivariate eigenvalues, we propose in this section two starting point strategies to
help finding a global maximizer for the MCP.

Consider first the situation that at a given point x ∈ S, there exists a block Aii,
1 ≤ i ≤ m, such that the largest eigenvalue η1 of Aii − λiI

[ni] is positive. Let w1

be the unit eigenvector of Aii − λiI
[ni] associated with the eigenvalue η1. Assume

the scenario that w>
1 xi 6= 0. Then the choice x̃ = x − q with q being defined

as in (3.3) is in M and leads to r(x̃) = r(x) + 4(w>
1 xi)2η1 > r(x). We then can

repeat this process until either Aii − λiI
[ni] becomes negative semi-definite for all

1 ≤ i ≤ m (Note that this is not sufficient to say that we have reached a global
maximizer, since Theorem 3.2 is only a necessary condition), or w>

1 xi = 0. In the
latter scenario, we consider a new vector of the form

x̂ :=




x1

...
xi−1

αxi + βw1

xi+1

...
xm




= x−




0
...
0

(1− α)xi − βw1

0
...
0




︸ ︷︷ ︸
bq

,

where real scalars α and β are to be determined. It is easy to see that x̂ ∈ M if
α2 + β2 = 1. It then follows by (2.10) that

r(x̂)− r(x) = q̂>(A− Λ)q̂

= (1− α)2xi
>(Aii − λiI

[ni])xi + β2η1,

since w>
1 (Aii − λiI

[ni])xi = η1w>
1 xi = 0. For convenience, denote

ti := xi
>(Aii − λiI

[ni])xi.

Our task is to select α, β such that α2 + β2 = 1 and

r(x̂)− r(x) = (1− α)2ti + β2η1 = (1− α)2ti + (1− α2)η1

= (α− 1)[α(ti − η1)− (ti + η1)] > 0.

By the facts that ti − η1 ≤ 0 and η1 > 0, it is easy to check that this quadratic
form attains its maximum, which is positive, at some α∗. More precisely, we claim
that the optimal α∗ is given by

α∗ =





ti

ti−η1
, if − 1 ≤ ti

ti−η1
< 1,

−1, if ti

ti−η1
< −1,

0, if ti = η1.

From here, we see that r(x̂) is an improvement.
In either scenarios, we can always construct a point better than x so long as the

condition (3.2) is not met. After repeating this process either finitely many times
or until the condition (3.2) is satisfied, we then call upon either the Horst-Jacobi
algorithm which monotonically converges [4] or the Gauss-Seidel algorithm whose
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monotone convergence will be proved in the next section to produce yet an even
better solution to the MEP. Results from our numerical experiments support the
effectiveness of this starting point strategy in both reducing the number of iterations
and finding the global maximizer.

Example 3. Returning to Example 2 discussed earlier, we find that x>1 w1 6= 0.
Applying the scheme described above once, we obtain an updated point

x̃ = (0.4655,−0.8851, 0.8847, 0.4661, 0.1191,−0.9929)> ∈M
at which r(x̃) = 359.3493 > r(x) = 314.6556. Using x̃ as the starting point, the
Horst-Jacobi algorithm converges to the global maximizer x∗.

Because both Algorithms 1 and 2 generate an increasing sequence {r(x(k))} along
the iteration, the larger the initial value {r(x(0))} is, the better chance the sequence
{x(k)} converges to a global maximizer. With this in mind, we approximate the
original matrix A by its block diagonal D. Observe that the vector v defined in
Lemma 3.4 is a global maximizer of the resulting approximate problem. We may
thus think heuristically that v might be a reasonable approximation to the global
maximizer. That is, setting x(0) = v ∈ M might be another slightly easier-to-use
staring point strategy. For large scale problems, perhaps we can adopt only a few
diagonal blocks Aii, say, those with relatively smaller sizes, and assign x(0)

i = vi only
at those chosen blocks. Indeed, this choice of v as the starting point is particularly
attractive if A is positive as we shall see below.

Theorem 4.1. Suppose that A is a symmetric and positive matrix. Then there
is a unique positive vector v = (v>1 , · · · ,v>m)> ∈ M, where vi ∈ Rni is the unit
eigenvector of Aii corresponding to the largest eigenvalue σ1(Aii), such that λi(v) ≥
σ1(Aii) for every i = 1, 2, · · · ,m. The inequality holds strictly when m > 1.

Proof. By the Perron-Frobenius Theorem [14, Page 473], the largest eigenvalue
σ1(Aii) of Aii is the spectral radius of Aii for each i = 1, 2, · · · ,m. Also, there is
a unique unit eigenvector vi with positive elements associated with σ1(Aii). It is
obvious that

λi(v) = v>i Aiv = v>i Aiivi +
m∑

j 6=i

v>i Aijvj ≥ σ1(Aii),

since vi,vj and Aij are all of positive elements for i, j = 1, 2, · · · ,m. ¤

It is clear that both stated starting point strategies can be combined easily and in
all our numerical experiments in Section 6, we have employed this combined starting
point strategy, which guarantees that the computed point satisfies the necessary
global optimal condition Theorem 3.5. Testing results seem to suggest that this
strategy always improves the likelihood of convergence to a global maximizer.

5. Convergence analysis

This section is momentarily independent of the preceding three sections. Our
goal here is to investigate the dynamical behavior of the Gauss-Seidel Algorithm
and show its convergence to a solution of the MEP, provided that A is a generic,
symmetric, and positive definite matrix. We shall eventually implement this algo-
rithm together with the starting point strategy proposed earlier as a more promising
numerical means for solving the MCP. The following analysis follows along the same
path as that carried out for Algorithm 1 in [4]. The key point in the proof is to show
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that the objective values {r(x(k))} at the iterates generated by the Gauss-Seidel
Algorithm is an increasing sequence.

The Horst-Jacobi algorithm can neatly be expressed in the compact form

Ax(k) = Λ(k)x(k+1),

with

(5.1) Λ(k) := diag{λ(k)
1 I [n1], λ

(k)
2 I [n2], · · · , λ(k)

m I [nm]},
which then motivates the idea of casting the scheme as a variant of the classical
power method [4]. Similarly, the Gauss-Seidel algorithm can be written in matrix
form as

(D + U)x(k) = (Λ(k) − U>)x(k+1),(5.2)

where A is split as

A = D + U + U>,(5.3)

with U being the strictly block upper triangular matrix of A. This compact form
significantly facilitates the convergence analysis. For convenience, denote

s(k) := x(k+1) − x(k),

r(k) := r(x(k)),

c(k) :=
m∑

i=1

λ
(k)
i = x(k+1)>Λ(k)x(k+1) = x(k)>Λ(k)x(k).

To assess the progress made by the iterations, we rewrite r(k) as

r(k) = x(k)> (
D + U + U>)

x(k)

= x(k)>
(
Λ(k) − U>

)
x(k+1) + x(k)>Ux(k)

= x(k)>Λ(k)x(k+1) − s(k)>Ux(k)

= x(k)>Λ(k)s(k) − s(k)>Ux(k) + c(k)

= s(k)>
(
Λ(k) − U

)
x(k) + c(k).(5.4)

In the above, the second equation follows from substitution of (5.2) while the third
and the fourth equations make use the definitions of s(k) and c(k). We also can
express r(k+1) as

r(k+1) = x(k+1)> (
D + U + U>)

x(k+1)

= x(k+1)> (D + U)x(k+1) − x(k+1)> (D + U)x(k)

+ x(k+1)> (D + U)x(k) + x(k+1)>U>x(k+1)

= x(k+1)> (D + U) s(k) + x(k+1)>
(
Λ(k) − U>

)
x(k+1)

+ x(k+1)>U>x(k+1)

= x(k+1)> (D + U) s(k) + c(k),(5.5)
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where again the relationship (5.2) is used to obtain the middle term in the third
equation. We thus can calculate the

∆r(k) := r(k+1) − r(k)

= x(k+1)> (D + U) s(k) − s(k)>
(
Λ(k) − U

)
x(k)

= x(k+1)> (D + U) s(k) − x(k)> (D + U) s(k)

+ x(k)> (D + U) s(k) − s(k)>
(
Λ(k) − U

)
x(k)

= s(k)> (D + U) s(k) + x(k)>
(
D + U − Λ(k) + U>

)
s(k)

= s(k)> (D + U) s(k) + x(k)> (
D + U>)

s(k) − x(k)>(Λ(k) − U)s(k)

= s(k)> (D + U) s(k) + x(k+1)>
(
Λ(k) − U

)
s(k) − x(k)>(Λ(k) − U)s(k)

= s(k)> (D + U) s(k) + s(k)>
(
Λ(k) − U

)
s(k)

= s(k)>
(
D + Λ(k)

)
s(k).(5.6)

If each diagonal block Aii, i = 1, . . . , m, is symmetric and positive definite (note
that this assumption is much weaker than A being positive-definiteness), then so
is D + Λ(k). It follows that r(k+1) ≥ r(k) by (5.6). Clearly, the sequence {r(k)}
is bounded above. Thus, the monotone sequence {r(k)} must converge. We have
proved the following theorem.

Theorem 5.1. Suppose A is symmetric and its diagonal blocks Aii are positive
definite for i = 1, . . . , m. Then the sequence {r(x(k))} with {x(k)} generated by the
Gauss-Seidel algorithm is a monotone increasing sequence and converges.

Trivially, Λ(k) is bounded for all k. From (5.6), there exists a constant κ > 0
such that

∆r(x(k)) ≥ κ‖s(k)‖22.
It follows that the sequence {s(k)} converges to zero. As useful byproducts, we can
derive convergence of various other objects in the iteration.

Corollary 5.2. Under the same assumptions of Theorem 5.1, the residual vectors
{δx(k)} defined by

δx(k) := Ax(k) − Λ(k)x(k)(5.7)

with {x(k)} generated by the Gauss-Seidel algorithm converges to zero.

Proof. Using (5.2), it is easy to see from (5.7) that

δx(k) = Ax(k) − Λ(k)x(k)

= (D + U + U> − Λ(k))x(k)

= (Λ(k) − U>)x(k+1) − (Λ(k) − U>)x(k)

= (Λ(k) − U>)s(k).(5.8)

The limiting behavior of {δx(k)} is now clear, since {s(k)} converges to zero. ¤
Corollary 5.3. Suppose A is symmetric and Aii is positive definite for i = 1, . . . , m.
Suppose further that A has n distinct eigenvalues. Then the sequence {Λ(k)} con-
verges as k goes to infinity.
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Proof. By compactness, we can only be sure that {(Λ(k),x(k))} has a convergent
subsequence {(Λ(kj),x(kj))} whose limit point is a solution to the MEP. On the
other hand, recall that under the generic assumption the MEP has only finitely
many solutions [4, Theorem 3.8], that is, there are only finitely many such limit
points.

Partition the matrices U> and D + U into rows of blocks and denote

U> =




(U>)1
...

(U>)m


 , and D + U =




(D + U)1
...

(D + U)m


 .(5.9)

By the iterative scheme of the Gauss-Seidel algorithm (5.2) and (5.9), we have

λ
(k)
i = ‖(U>)ix(k+1) + (D + U)ix(k)‖2,

and thus

|λ(k+1)
i − λ

(k)
i | = | ‖(U>)ix(k+2) + (D + U)ix(k+1)‖2

− ‖(U>)ix(k+1) + (D + U)ix(k)‖2 |
≤ ‖(U>)is(k+1) + (D + U)is(k)‖2
≤ ‖(U>)i‖2‖s(k+1)‖2 + ‖(D + U)i‖2‖s(k)‖2.

By Theorem 5.1, we see that |λ(k+1)
i − λ

(k)
i | → 0 as k goes to infinity. This fact

together with the finite cardinality of limit points is sufficient to conclude the con-
vergence of {Λ(k)} by using the proposition in [4, Lemma 4.3]. ¤

Finally, we establish the convergence of the iterates {x(k)}.

Theorem 5.4. Under the assumptions of Corollary 5.3, the sequence {x(k)} from
the Gauss-Seidel algorithm converges monotonically to a solution to the MEP.

Proof. The proof basically is the same as that in Theorem 5.3. Observe from
Theorem 5.1 that componentwise the difference x(k+1) − x(k) converges to zero as
k goes to infinity. With the help of the proposition in [4, Lemma 4.3] again, this is
sufficient enough to conclude that {x(k)} converges to a solution of the MEP. ¤

We conclude this section by pointing out that the updating of x(k)
i in the Gauss-

Seidel Algorithm can be carried out in any order. Algorithm 2 is a forward version
in the sense that the updates x(k) are calculated from x(k)

1 to x(k)
m . A backward

Gauss-Seidel algorithm, for example, updates x(k) from x(k)
m to x(k)

1 . It then can
be expressed in the compact form

(D + U>)x(k) = (Λ(k) − U)x(k+1).(5.10)

Convergence results follow by using the same arguments as before. We speculate
that such a rearrangement of order in computation might have some advantages
when the blocks in the partition P are of diverse sizes, but we will not report our
investigation in this regard in this paper.
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6. Numerical experiment

We have experimented with our proposed methods extensively. In this section
we report some testing results to demonstrate two main points — the effectiveness
of our (combined) starting point strategy in Section 4, and the superior convergence
behavior of the Gauss-Seidel algorithm over the Horst-Jacobi algorithm. All of our
tests are carried by the MATLAB 7.1 on a PC with Intel(R) Core(TM)2 Duo CPU
E8400 @3.00GHz.

6.1. The effectiveness of the starting point strategy. We first examine the
effect of the starting point strategy. For this purpose, we need the testing problems
whose global maxima are known a prior. Two small size problems are already
available in the literature.

Example 4. The matrix A is given by

A =




4.3229 2.3230 −1.3711 −0.0084 −0.7414
2.3230 3.1181 1.0959 0.1285 0.0727

−1.3711 1.0959 6.4920 −1.9883 −0.1878
−0.0084 0.1285 −1.9883 2.4591 1.8463
−0.7414 0.0727 −0.1878 1.8463 5.8875



∈ R5×5,

with m = 2 and P = {2, 3}. This example is from [4].
Example 5. The matrix A is of size 6 × 6 is already described in (3.4) with

m = 3 and P = {2, 2, 2}. This example is from [5].
The sizes of the preceding two problems are small enough that their global max-

imizers are characterizable through an exhaustive search. Both problems have
already served as examples in [4] and [5]. It is known that when the Horst-Jacobi
algorithm is applied to these two problems, the iterates have high probabilities of
converging to local maxima. In fact, by randomly choosing 104 starting points for
the Horst-Jacobi algorithm and the Gauss-Seidel algorithm, Table 1 summarizes
their sample probabilities (labelled as “% to Global”), out of the random tests,
of convergence to a global maximizer, and their corresponding average numbers
of iterations (labelled as “Avg. Iter. #”) needed to meet the stopping criterion
‖δx(k)‖ ≤ 10−6. On the other hand, when our combined starting point strategy
is employed, both problems are solved successfully, and for the Horst-Jacobi al-
gorithm moreover, the numbers of iterations for Examples 4 and 5 are 58 and 18
respectively, while for the Gauss-Seidel algorithm, the numbers of iterations for
Examples 4 and 5 are 56 and 17, respectively.

Table 1. Performances of the Horst-Jacobi algorithm and the
Guass-Seidel algorithm on Example 4 and Example 5.

Example The Horst-Jacobi algorithm The Guass-Seidel algorithm

Avg. Iter. # % to Global Avg. Iter. # % to Global

Example 4 (104 random x(0)’s) 80.96 53.95 76.91 52.41

Example 5 (104 random x(0)’s) 22.64 88.65 23.10 89.39

For problems of relatively larger sizes, though it would be harder to perform an
thorough search among all local solutions to verify a global maximizer, to create
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an MCP with the known global maximizer could still be realized in the following
two different ways. The first way is based on the necessary and sufficient global
optimality for the case when m = 2 or when A is a positive matrix. However, for
the later case, it has been proved recently that both algorithms are able to converge
to the global solution whenever x(0) is nonnegative [20], and therefore, we use the
case m = 2 to demonstrate the effectiveness of the starting point strategy. By
selecting the testing matrices from the Matrix Market1, and by randomly choosing
their corresponding partitions P, we generate our first relatively large size testing
problems set in Example 6. The other way to produce the testing problems is based
on the solution of the following semi-definite programming (SDP):

minF (A)



Ax∗ = Λ∗x∗

Λ∗ −A º 0
A º 0,

(6.1)

with the preselected x∗ and the corresponding Λ∗. It is clear according to the
sufficient global optimality [5] that any feasible point A of the previous problem (6.1)
yields a global maximizer x∗ of the MCP, and therefore, by randomly prescribing
x∗,Λ∗ and the objective function F (A), we have the second set of testing problems
described in Example 7.

Example 6. We choose the first 5 symmetric and positive definite matrices (see
Table 2) in the set BCSSTRUC1 from the Harwell-Boeing collection as the original
matrices A’s for the MCP. For each matrix in Table 2, we then randomly partition
(1000 times) the size n into two parts to form P, each of which consequently
corresponds to a particular MCP problem.

The behavior of both the Horst-Jacobi algorithm and the Gauss-Seidel algo-
rithm starting from random x(0)’s, with and without the starting point strategy, is
summarized in Table 3. We terminate the iterations whenever the residual reaches
‖δx(k)‖2 ≤ 10−6 or k > 10000. Under the column “% to Global” are the sample
probabilities, out of the random tests, of convergence to a global maximizer. Under
the column “Avg. Iter. #” are the average number of iterations needed to meet
the stopping criteria. The rows marked by “Strategy active” mean that we have
activated our combined starting point strategy.

Table 2. Summary of the testing problems in Example 6.

Matrix name Size Condition number 2-norm

BCSSTK01 48× 48 1.6e + 06 3.0e + 09

BCSSTK02 66× 66 1.3e + 04 1.8e + 04

BCSSTK03 112× 112 9.5e + 06 2.0e + 11

BCSSTK04 132× 132 5.6e + 06 9.6e + 06

BCSSTK05 153× 153 3.5e + 04 6.2e + 06

1http://math.nist.gov/MatrixMarket/
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Table 3. Performances of the Horst-Jacobi algorithm, the Guass-
Seidel algorithm and the starting point strategy on Example 6.

Example 6 The Horst-Jacobi algorithm The Guass-Seidel algorithm

Matrix name Avg. Iter. # % to Global Avg. Iter. # % to Global

BCSSTK01 1391.41 63.40 1369.72 63.60

BCSSTK01 (Strategy active) 1304.01 100.00 1280.31 100.00

BCSSTK02 251.61 97.30 232.10 97.50

BCSSTK02 (Strategy active) 262.39 100.00 246.86 100.00

BCSSTK03 9460.02 13.30 9557.82 12.70

BCSSTK03 (Strategy active) 6825.78 56.20 6486.28 55.30

BCSSTK04 2951.21 92.00 2835.92 92.00

BCSSTK04 (Strategy active) 2450.22 94.30 2365.93 94.30

BCSSTK05 424.72 82.90 406.58 83.80

BCSSTK05 (Strategy active) 555.26 100.00 542.64 100.00

Example 7. To form the testing problems in this case, we first generate
the partition Pm = {n1, n2, · · · , nm} (for m = 3, 5 and 7) whose element ni

is randomly chosen among {2, 3, · · · , 10}. Then we generate the diagonal matrix
Λ∗ = diag{λ∗1I [n1], · · · , λ∗mI [nm]} together with the corresponding random global
solution x∗ for the MCP, where λ∗i is a random number uniformly distributed in
the interval (100(i − 1), 100i). It is clear that the choice of the objective function
F (A) has significant effect on the convergence behavior of algorithms (Note that
Λ∗ itself is a feasible solution to (6.1)). For this reason, we have tried the following
objective functions in our testing:

F0(A) = [ ], F1(A) = trace(AR), and F2(A) = ‖A−R‖F .

By F0(A) = [ ], we mean that there is no objective function specified in (6.1) and
the n-by-n matrix R in either F1(A) or F2(A) is randomly generated in each testing
case whose elements are uniformly distributed in the interval (0,max(λ∗1, · · · , λ∗m)).

The free MATLAB-based toolbox YALMIP2 is employed to solve the resulted
problem (6.1). For the objective function F0(A), YALMIP then returns an arbitrary
feasible point A for (6.1). To effectuate the comparison, for each m, we generate
1000 testing problems by providing random x∗,Λ∗ and the matrix R for F1(A)
and F2(A). Numerical results of both algorithms from randomly selected starting

2YALMIP is a convenient interface for multiple external optimization solvers and is a free

MATLAB-based toolbox available at: http://control.ee.ethz.ch/∼joloef/yalmip.php. It unifies

and facilitates the different formats in semi-definite programming software. Here, we employ the
SDPT3 package [16, 17] as the solver for our problem (6.1). Refer to [16, 17] and the associated

website for a list of commands and options.
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points x(0)’s are documented in Table 4 with the same meaning of each term as in
Table 3.

Table 4. Performances of the Horst-Jacobi algorithm, the Guass-
Seidel algorithm and the starting point strategy on Example 7.

Example 7 The Horst-Jacobi algorithm The Guass-Seidel algorithm

m Avg. Iter. # % to Global Avg. Iter. # % to Global

m = 3 56.98 100.00 56.82 100.00

m = 3(Strategy active) 66.10 100.00 66.60 100.00

F0(A) m = 5 53.19 100.00 53.62 100.00

m = 5(Strategy active) 54.01 100.00 56.12 100.00

m = 7 53.12 100.00 52.34 100.00

m = 7(Strategy active) 63.14 100.00 62.57 100.00

m = 3 627.55 80.10 589.32 78.30

m = 3(Strategy active) 613.48 95.90 523.01 96.00

F1(A) m = 5 714.36 76.80 668.56 75.30

m = 5(Strategy active) 749.95 92.30 695.84 90.40

m = 7 1064.03 68.60 1015.60 68.50

m = 7(Strategy active) 983.10 88.60 889.85 87.60

m = 3 1182.30 76.80 1053.71 73.40

m = 3(Strategy active) 1238.10 90.50 1128.10 90.80

F2(A) m = 5 3401.61 60.80 3170.92 57.40

m = 5(Strategy active) 3249.40 71.40 3016.42 71.80

m = 7 5908.93 42.50 5732.43 40.70

m = 7(Strategy active) 5955.82 52.30 5620.13 51.00

Besides the preliminary evidence in the average number of iterations in these
tested examples that the Gauss-Seidel algorithm generally converges faster than
the Horst-Jacobi algorithm (more extensive numerical experiments will be carried
out in the next subsection), the most interesting point is the evidence that when our
starting point strategy is employed, not only the number of iterations could possibly
be reduced in both algorithms, but also, and most importantly, the probability to
global solution is also increased significantly. We think this feature should have
consequential effect on applications.

6.2. The convergence speeds. This subsection focuses on the comparison of
the convergence speeds between the Horst-Jacobi algorithm and the Gauss-Seidel
algorithm. As already shown in Subsection 6.1 that they roughly have the same
probability in reaching the global solution, we therefore only need to compare their
speeds in meeting the same stopping criterion ‖δx(k)‖2 ≤ 10−6. For this purpose,
we think it is sufficient to simply feed both algorithms with randomly generated
matrices together with the starting points and make a comparison between their
average numbers of iterations as well as the CPU times. By fixing the matrix size
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as 1000× 1000 and the partitions

Pm = {1000
m

,
1000
m

, · · · ,
1000
m︸ ︷︷ ︸

m

}, for m = 2, 5, 10, 20, 100,

we recorded their corresponding average iteration numbers (“Avg. Iter. #” ) and
the CPU times (“Avg. CPU(s)”) over 104 random tests in Table 5.

Table 5. The summary of iterations of the Horst-Jacobi and the
Guass-Seidel algorithm, over 104 random tests.

The Horst-Jacobi algorithm The Guass-Seidel algorithm

m Avg. Iter. # Avg. CPU(s) Avg. Iter. # Avg. CPU(s)

2 1660.20 45.20 1394.41 28.91

5 2051.72 41.57 1551.81 27.93

10 1928.22 47.62 1389.50 34.19

20 2050.51 52.77 1394.60 39.84

100 1879.71 46.69 1249.30 39.17

A more clear demonstration to see the faster convergence of the Guass-Seidel
algorithm is shown in Figure 1 where 104 random 500 × 500 A’s are tested. The
relationship between the average numbers of iterations (left) as well as the average
CPU times (right) in terms of the partition numbers m are plotted. As is shown
in this figure, the Guass-Seidel algorithm uses much less iteration number and the
CPU time than the Horst-Jacobi algorithm as m increases.

7. Conclusions

Although it arises naturally from the Lagrangian principle for the maximal corre-
lation problem which finds applications in statistical data analysis, the multivariate
eigenvalue problem is itself an interesting generalization of the classical eigenvalue
problem. This paper is not about solving the multivariate eigenvalue problem per
se. Rather, we are interested in find some particular eigenpairs that maximize the
correlations.

While the conventional power method applied to the classical eigenvalue problem
is known to converge generically to the dominant eigenvector, the aggregated power
method such as the Horst-Jacobi algorithm does not have that property, which
has consequential impact on statistical applications. By analyzing the first-order
and second-order optimal conditions of the MCP, we are able to characterize the
multivariate eigenvalues λ1, λ2, · · · , λm for the MEP in terms of the eigenvalues of
the original matrix A and its block diagonal D. In particular, we are able to provide
a lower bound for each of the multivariate eigenvalues at a global maximizer, which
motivates an effective starting point strategy. Numerical tests seem to support that
our approaches significantly increase the probability of finding a global maximizer.
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Figure 1. Experimental comparison of convergence speeds of the
Gauss-Seidel algorithm and the Horst-Jacobi algorithm.

As an improved alternative, we also study analytically and test numerically the
convergence behavior of the Gauss-Seidel algorithm. We find that in general the
Gauss-Seidel algorithm does use less number of iterations than the conventional
Horst-Jacobi algorithm.

Possible future research topics include the convergence analysis of the SOR al-
gorithm proposed in [4] and of other formulations such as those rate acceleration
tactics already developed for matrix iterative analysis. From the eigenvalue com-
putation point of view, the notion of a multivariate shift, Rayleigh quotient type
iteration scheme sketched in Algorithm 3 also seems appealing. Obviously, when

Algorithm 3 A Rayleigh quotient type iteration for the MEP.

Given x(0) ∈ Rn,
for k = 0, 1, · · · , do

Solve
(
A− Λ(x(k))

)
y(k) := x(k)

for i = 1, 2, · · · ,m do

x(k+1)
i := y

(k)
i

‖y(k)
i ‖2

end for
end for

m = 1, Algorithm 3 reduces to the classical Rayleigh quotient iteration which is
known to enjoy cubic convergence. Taking the concern for maximizing the correla-
tions out of consideration, it will be of great interest to investigate whether some
of the classical eigenvalue computation techniques can be generalized to solve this
multivariate eigenvalue problem.
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