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Abstract. Any given nonnegative matrix A ∈ R
m×n can be expressed as the product A = UV for some nonneg-

ative matrices U ∈ R
m×k and V ∈ R

k×n with k ≤ min{m, n}. The smallest k that makes this factorization possible
is called the nonnegative rank of A. Computing the exact nonnegative rank and the corresponding factorization are
known to be NP-hard. Even if the nonnegative rank is known a priori, no simple numerical procedure exists that can
calculate the nonnegative factorization. This paper is the first to describe a heuristic approach to tackle this difficult
problem. Based on the Wedderburn rank reduction formula, the idea is to recurrently extract, whenever possible, a
rank-one nonnegative portion from the previous matrix, starting with A, while keeping the residual nonnegative and
lowering its rank by one. With a slight modification for symmetry, the method can equally be applied to another
important class of completely positive matrices. Numerical testing seems to suggest that the proposed algorithm,
though still lacking in rigorous error analysis, might serve as an initial numerical means for analyzing the nonnegative
rank factorization.
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1. Introduction. Let R+ stand for the half-array of nonnegative real numbers. Given any
matrix A ∈ R

m×n
+ , it is always possible to express A as the sum of a series of nonnegative rank one

matrices. Among the many possible series representations of A by nonnegative rank one matrices,
the number of terms that render the shortest nonnegative rank one series representation is attained
is called the nonnegative rank of the matrix A. For convenience, we denote the nonnegative rank of
A by rank+(A). It is known that the nonnegative rank has upper and lower bounds such as [14]

rank(A) ≤ rank+(A) ≤ min{m, n}.

To determine the exact nonnegative rank for a matrix, however, is known to be NP-hard [40].
The series representation can be rewritten as the product A = UV which obviously is in a

nonnegative factorization form of A. Such a complete factorization, with its product equal to A,
should be distinguished from what is known as the nonnegative matrix factorization (NMF) which
has attracted much attention in the literature [3, 12, 15, 18, 20, 26, 33, 34, 37]. The notion of NMF
is a low rank approximation formulated as the minimization problem

min
U∈R

m×p

+
,V ∈R

p×n

+

‖A− UV ‖F , (1.1)

where p < min{m, n} is a preselected integer. Many specially developed numerical techniques are
available for NMF, including the multiplicative update algorithm [30, 31], the gradient methods
[9, 21], and alternating least square approaches [6, 7, 27, 29, 33]. These NMF techniques, mostly
utilizing the notion of mathematical programming, cannot guarantee the required equality in a
complete factorization. The reason is that, the objective function in (1.1) being non-convex, the
factors U and V acquired by almost all NMF techniques even with p = rank+(A) are local minimizers
and their products typically will not equal to A.
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In this paper, our focus is on a special subclass of nonnegative matrices,

R(m, n) :=
{
A ∈ R

m×n
+ | rank(A) = rank+(A)

}
. (1.2)

We are interested in procuring a nonnegative factorization for A ∈ R(m, n) which is both complete

in the sense that A = UV and minimal in the sense that U ∈ R
m×rank(A)
+ and V ∈ R

rank(A)×n
+ . Such

a factorization is called a nonnegative rank factorization (NRF) of A.
Every nonnegative matrix has a nonnegative factorization, but not every nonnegative matrix

has an NRF [14]. Quite a few nonnegative matrices without NRF have been constructed in [25].
The simplest example is the 4× 4 matrix

C =





1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1



 , (1.3)

with rank(C ) = 3 and rank+(C ) = 4.
Given a matrix A ∈ R

m×n
+ , the question then arises about how to determine if A is in R(m, n).

A necessary and sufficient condition qualifying whether a nonnegative matrix has an NRF is given
in [39], but the algebraic manipulations involved in checking out this condition for a given matrix A
are onerous. Other known sufficient conditions for the existence of an NRF are for more restrictive
subclasses of matrices such as the so called weakly monotone nonnegative matrices [24], λ-monotone
[23], or matrices with nonnegative 1-inverse [8]. Our first contribution in this paper, which we think
is new in theory, is to show that matrices in R(m, n) are generic in the sense that those matrices
whose rank is strictly less than its nonnegative rank form a set of measure zero. Even if the NRF
is known to exist, the next question is how to actually compute the two factors in the NRF. The
main thrust in this paper is to propose a general procedure that computes the NRF numerically, if
it ever exists. We hasten to point out that an error analysis seems to be the norm in proposing any
new algorithm, including our NRF computation. Nevertheless, the existence theory of the NRF is
already scarcely understood in the literature, not to mention its perturbation analysis which is far
beyond current research endeavor. Our goal at present is simply to develop a heuristic algorithm
that, albeit its crudeness, might help as a tool to grasp more understanding of the difficult subject
on nonnegative factorization. To the best of our knowledge, our numerical procedure is the first
algorithm ever proposed to detect whether an NRF exists and to compute the NRF, if it does exist.

This paper is organized as follows. We begin in Section 2 by sketching a geometric meaning of
the nonnegative rank by which we relate the problem of NRF to the classical Sylvester’s problem.
We then develop an interesting theoretical result on existence via the probability standpoint. In
Section 3 we briefly review the critical Wedderburn formula for the purpose of exploiting its rank
reduction property. To satisfy the nonnegativity constraints in the rank reduction process, we
transform in Section 4 the problem of NRF to a sequence of maximin problems which can then
be solved by any available optimization techniques. With a slight modification for symmetry, we
apply in Section 5 our algorithm to the so called completely positive matrices. Again, we think
our approach is new in this area. In Section 6, we raise an interesting question about the maximal
nonnegative rank splitting of a nonnegative matrix when an NRF does not exist. Some interesting
examples are included throughout the paper to enlighten the working of our algorithm.

2. The geometric meaning of nonnegative rank. Let the columns of a given nonnegative
matrix A ∈ R

m×n
+ be denoted by A = [a1, . . . ,an]. Define the scaling factor σ(A) by

σ(A) := diag {‖a1‖1, . . . , ‖an‖1} , (2.1)

where ‖ · ‖1 stands for the 1-norm of a vector, and the pullback map ϑ(A) by

ϑ(A) := Aσ(A)−1. (2.2)
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Each column of ϑ(A) can be regarded as a point on the (m− 1)-dimensional probability simplex Dm

defined by

Dm :=
{
a ∈ R

m
+ |1

⊤
ma = 1

}
, (2.3)

where 1m = [1, . . . , 1]⊤ stands for the vector of all 1’s in R
m.

Suppose a given nonnegative matrix A can be factorized as A = UV , where U ∈ R
m×p
+ and

V ∈ R
p×n
+ . Because UV = (UD)(D−1V ) for any invertible nonnegative matrix D ∈ R

p×p, we may
assume without loss of generality that U is already a pullback so that σ(U) = In. We can write

A = ϑ(A)σ(A) = UV = ϑ(U)ϑ(V )σ(V ). (2.4)

Note that the product ϑ(U)ϑ(V ) itself is on the simplex Dm. It follows that

ϑ(A) = ϑ(U)ϑ(V ), (2.5)

σ(A) = σ(V ). (2.6)

In particular, if p = rank+(A), then we see that rank+(ϑ(A)) = p, and vice versa. The expression
(2.5) means that the columns in the pullback ϑ(A) are convex combinations of columns of ϑ(U). We
thus obtain an interesting geometry interpretation of nonnegative rank.

Lemma 2.1. The nonnegative rank rank+(A) stands for the minimal number of vertices on Dm

so that the resulting convex polytope encloses all columns of the pullback ϑ(A).
A nonnegative matrix A has an NRF means that the minimal convex polytope enclosing ϑ(A)

has exactly rank(A) many vertices. Using this notion, it is insightful to explain by geometry why
the matrix C in (1.3) does not have an NRF. Since each point a = [a1, a2, a3, a4]

⊤ ∈ D4 satisfies
a1 + a2 + a3 + a4 = 1, it suffices to represent the 4-dimensional vector a by the vector [a1, a2, a3]

⊤

of its first three entries. In this way, the probability simplex D4 can easily be visualized via the
unit tetrahedron S in the first octant of R

3. Specifically, columns of ϑ(C ) can be interpreted as
points A1, A2, A3, A4 depicted in Figure 2.1. Note that the four points A1, A2, A3, A4 are coplanar

x
y

z

D
S

A1

A2

A3

A4

Fig. 2.1. A geometric representation of the matrix ϑ(C ).

because rank(ϑ(C )) = 3. On the other hand, the convex hull D of these four points sits on four
separate “ridges” of the tetrahedron, which cannot be enclosed by any three-vertex convex set in
the tetrahedron. The minimum number of vertices for a convex set in the unit tetrahedron to cover
D is four, hence rank+(C ) = 4. The point to make is that the columns of C are at very strategic
positions in the unit tetrahedron. An interesting question to ask is how often this can happen.

(R2R+) : Given an arbitrary nonnegative 4 by 4 matrix of rank 3, what is the probability
that its nonnegative rank is 3?
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To answer R2R+, it suffices to consider matrices in the set

E :=
{
A ∈ R4×4

+ | rank(A) = 3, A = ϑ(A)
}

.

It is clear that A ∈ E only if the four points obtained from columns by deleting the last row of A
are in a plane that intersects the unit tetrahedron. There are two mutually exclusive cases. Firstly,
the cross-section of the plane in the unit tetrahedron is a triangle. Naturally this triangle encloses
the four points and the matrix has nonnegative rank 3. What then is the probability of a randomly
selected plane in the unit tetrahedron to have a triangular cross-section? Secondly, the cross-section
is a quadrilateral. What then is the probability that the four points representing A in the unit
tetrahedron are enclosed in a triangle within the quadrilateral?

There is no easy answer to the above questions. In particular, the first question touches upon
the basis of geometric probability where we must reconcile first how the plane cuts through the
unit tetrahedron [28]. Different definitions of randomness will lead to different answers. The second
question appears to be a generalization of the well known Sylvester’s four-point problem which asks
for the probability, denoted by p(4, K), of four random, independent, and uniform points from a
compact set K such that none of them lies in the triangle formed by the other three [1]. The
conditional probability of the event that rank+(A) = 3, given A ∈ E is in a quadrilateral K,
therefore is greater than or equal to 1−p(4, K). However, it is a well known story that p(4, K) itself
has a number of different answers, prompting Sylvester to exclaim that [38], “This problem does not
admit of a determinate solution!” At present, we do not have a definitive answer to the seemingly
simple problem R2R+.

The flipped side question of R2R+ is also interesting.

(R+2R) : Given an arbitrary nonnegative 4 by 4 matrix of nonnegative rank 3, what is
the probability that its rank is 3?

It turns out we have an easy answer even for the general cases. The following result shows that
matrices which have an NRF are generic. It is based on this insight that we are able to generate
many of our test problems in the subsequent discussion. We think this result is important and new.

Theorem 2.2. Given k < min{m, n}, let R+(k) denote the manifold of nonnegative matrices in

R
m×n
+ with nonnegative rank k. Then the conditional probability of rank(A) = k, given A ∈ R+(k),

is one.

Proof. Without loss of generality, we may assume A = ϑ(A). The fact rank+(A) = k means
that k is the minimum number of vertices for a convex hull on Dm to enclose columns of A. On the
other hand, the subspace orthogonal to columns of A is of dimension m− rank(A) while the column
sum for A is always 1. Together, columns of A satisfy m− rank(A)+1 independent linear equations.
Thus these vertices should reside on an affine subspace of dimension rank(A) − 1. The probability
of k distinct points in R

m to be in an affine subspace of dimension strictly less than k − 1 is zero.
Hence, if rank+(A) = k, then with probability one we have rank(A) = k.

It will be convenient to introduce two basic terms concerning a rank-one matrix. Firstly, any
nonnegative matrix whose subtraction from a given nonnegative matrix remains nonnegative is
called a nonnegative component (NC) of that given matrix. In [32], Levin described an algorithm
for computing the “maximum” rank-one NC of a given nonnegative matrix. The trouble is that the
residual after a rank-one NC subtraction might increase or maintain the rank as the original matrix.
If the process is to be repeated, we might end up with an infinite series of nonnegative rank one
matrices, which defies the minimal length of what an NRF desires. Levin’s algorithm cannot be
applied to compute the NRF of a given matrix in R(m, n).

Secondly, any rank-one NC of a nonnegative matrix A such that the rank of the residual is one
less than rank(A) is called a nonnegative element (NE) of A. The fundamental difference between
an NC and an NE is significant. Unlike Levin’s method, we are not interested in a maximum NC
which typically will not reduce the rank. Rather, we gradually distribute A over a sequence of NEs
each of which is an NC, but will also reduce the rank by one. Since the rank is reduced by one in
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each step, the NRF of a matrix in R(m, n) should be found by at most rank(A) many iterations in
exact arithmetic. The principal tool used in our search for an NE is the Wedderburn rank reduction
formula [10, 41] which will be reviewed in the next section.

Example 1. The matrix C defined in (1.3) has many NCs, but has no NE at all. Indeed, recall
that rank(C ) = 3 and rank+(C ) = 4. If there were an NE for A1 = C , then the residual matrix
A2 after its removal from A1 would be nonnegative and of rank 2. But then by [14, Theorem 4.1],
the matrix A2 would automatically have nonnegative rank 2, implying the matrix C would have
nonnegative rank 3. This is a contradiction.

3. Wedderburn rank reduction formula. The Wedderburn rank reduction formula ap-
peared as a modest statement in Wedderburn’s 1934 book [41] and as an exercise in Householder’s
1964 book [19]. In the review paper [10], however, it was pointed out that almost all known matrix
factorizations can be achieved by this seemingly straightforward expression. An interesting time line
chronicling the appearance of the rank reduction results in the numerical linear algebra as well as
the applied statistics and psychometrics literature can be found in [22, Figure 2.1]. For completion,
we state two main theorems below.

The first formula concerns a necessary and sufficient condition for rank subtraction by a rank-one
matrix. This result is of fundamental importance in our discussion.

Theorem 3.1. Let u ∈ R
m and v ∈ R

n. Then the matrix

B := A− σ−1uv⊤ (3.1)

satisfies the rank subtractivity rank(B) = rank(A) − 1 if and only if there are vectors x ∈ R
n and

y ∈ R
m such that

u = Ax, v = A⊤y, σ = y⊤Ax. (3.2)

Indeed, simultaneous multiple rank reduction is possible. Cline and Funderlic proved that a
generalized formula holds in the following sense [13].

Theorem 3.2. Suppose U ∈ R
m×k, R ∈ R

k×k, and V ∈ R
n×k. Then

rank(A− UR−1V ⊤) = rank(A)− rank(UR−1V ⊤)

if and only if there exist X ∈ R
n×k and Y ∈ R

m×k such that

U = AX, V = A⊤Y, and R = Y ⊤AX. (3.3)

The formula (3.1) provides a mechanism to break down a matrix into a sum of rank-one matrices.
The basic idea is that, starting with A1 = A, we define a sequence {Ak} of matrices by defining

Ak+1 := Ak − (y⊤
k Akxk)−1Akxky

⊤
k Ak. (3.4)

for properly chosen vectors xk ∈ R
n and yk ∈ R

m satisfying y⊤
k Akxk 6= 0. The process can be

continued so long as Ak 6= 0. Since rank(Ak) is reduced by one at each step, the sequence {Ak}
must be finite. In this way, the matrix A is decomposed as a finite series of rank one matrices. A
detailed discussion in this regard can be found in [10].

For our application, we want to break a nonnegative matrix down by taking away one NE a time.
For a rank-one matrix to be an NE, it must assume the Wedderburn form (y⊤

k Akxk)−1Akxky
⊤
k Ak

which is nonnegative for some xk ∈ R
n and yk ∈ R

m. It also needs to ensure Ak+1 ≥ 0. When these
nonnegativity constraints are satisfied, the rank reduction mechanism kicks in. If we can repeat the
process until the rank is reduced to zero (however, see Example 2), then an NRF is thus found. Note
that if Ak is nonnegative, then nonnegative rank-one matrices in the Wedderburn form are easy to
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find. If the process ever terminates prematurely, it is only because it is not possible to keep the
residual Ak+1 nonnegative by any nonnegative rank-one reduction. There are two probable causes
for this to happen. One is that the matrix A is not a matrix in R(m, n) to begin with. This would
be a welcome conclusion which leads to the notion of maximal nonnegative rank splitting of A. The
other is that some bad starting points have branched Ak into a “dead end” through the iteration.
A restart might remedy the problem. In either cause, the point is that when our method ceases
to iterate before the rank is diminished to zero, care must be taken to conclude whether A has an
NRF.

4. NRF by Wedderburn formula. In this section, we give specifics about the application
of the Wedderburn rank reduction formula to the NRF. We first characterize the nonnegativity
constraints by which the NRF problem is cast as a maximin problem. Then we consider the prospect
of multi-dimensional reduction.

Trivially, the rank-one matrix uv⊤ is nonnegative if and only if all entries of u and v are of one
sign. Since the scalar y⊤

k Akxk in the Wedderburn formula (3.4) must be either positive or negative,
we can assume without loss of generality that Akxk ≥ 0, y⊤

k Ak ≥ 0, and y⊤
k Akxk > 0. We assume

further after scaling that y⊤
k Akxk = 1. These conditions constitute our “nonnegativity constraints”.

If these constraints are satisfied, the subtraction of the nonnegative rank-one matrix Akxky
⊤
k Ak

from Ak will reduce the rank by one automatically.

Intrinsic in the NRF is the nature of “additivity” by nonnegative rank-one matrices. We can-
not immediately regard a nonnegative Akxky

⊤
k Ak as an NE of Ak because its subtraction might

over deduct the matrix Ak to have negative entries. To provide a safety guard against this over-
subtraction, we consider the following optimization problem:

max
xk∈Rn,yk∈Rm

min
[
Ak −Akxky

⊤
k Ak

]
,

subject to Akxk ≥ 0,
y⊤

k Ak ≥ 0,
y⊤

k Akxk = 1,

(4.1)

where the minimum is taken over all entries of the matrix. Our rationale is twofold. First, by the non-
negativity constraints, we have Ak−Akxky

⊤
k Ak ≤ Ak. Thus, the maximizer of min

[
Ak −Akxky

⊤
k A

]

always exists. Second, a nonnegative objective value means Ak+1 ≥ 0. In this case, the rank-one
matrix Akxky

⊤
k Ak is a feasible NE and we can move on to find the next NE for Ak+1. We summarize

our NRF computation in Algorithm 1.

Because (4.1) is a nonlinear problem, most maximin algorithms are able to find only a local
solution. However, a local solution with nonnegative objective value is all we need to validate an
NE. A negative objective value, on the other hand, indicates that a rank one NE has not been
found yet. In this event, we may try a different starting point for the maximin algorithm with the
hope that maybe another local solution can be found. Such a strategy has been adopted twice in
Algorithm 1. Line (1.21) is to restart the optimization solver with the current Ak and Line (1.23) is
to restart the entire NRF process with A0.

Example 2. Consider the 4 × 5 matrix A = [C ; c], where c is a randomly chosen nonnegative
vector from R

4
+ such that this matrix A is of full row rank. Therefore rank+(A) = rank(A). Trivially,

splitting A by its rows is automatically an NRF. On the other hand, the 4× 5 matrix ∆ := [04, c]
with 04 standing for the 4 × 4 zero matrix is an NE because it is nonnegative, has rank 1, and
leaves behind a nonnegative matrix A − ∆ = [C ;0] which is of rank 3. But the resulting matrix
[C ;0] does not have an NRF as we have already argued in Example 1. The matrix ∆ is expressible
in the Wedderburn form ∆ = Ax̂ŷ⊤A with x̂ = [0, 0, 0, 0, 1]⊤ and ŷ = [α,−α,−α, α]⊤, where
α = 1/(c1 − c2 − c3 + c4). It can be checked that (x̂, ŷ) is a local maximizer to (4.1). Had the
maximin solver converged to this maximizer, then ∆ would have been the first NE extracted by our
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Algorithm 1: [U, V, p, Iflag] = NRF(A, ǫ, Gmax, Lmax)

Input:
A = matrix in R

m×n
+ to be factorized,

ǫ = threshold for machine zero,
Gmax, Lmax = maximal allowable numbers for retries,

Output:
p = an integer, is the numerical rank+(A) if Iflag = 0,

U ∈ R
m×p
+ ,

V ∈ R
p×n
+ ,

Iflag =

{
0, An NRF is found with ‖A− UV ‖F < ǫ,
1, Failed to find NRF.

begin1.1

Gstart← 0;1.2

B ← A;1.3

initialization

Gstart← Gstart + 1;1.4

Lstart← 0;1.5

U ← [];1.6

V ← [];1.7

p← 0;1.8

if ‖B‖F ≥ ǫ then1.9

if Gstart ≤ Gmax then1.10

x,y← feasible random starting points;1.11

[x,y, ObjValue]← Solve (4.1) with respect to B by available optimization1.12

routines;
if ObjValue ≥ 0 then1.13

p← p + 1;1.14

U ← [U, Bx];1.15

V ← [V ;y⊤B];1.16

B ← B −Bxy⊤B;1.17

else1.18

if Lstart ≤ Lmax then1.19

Lstart← Lstart + 1;1.20

Go to line 1.11;1.21

else1.22

Go to line 1.3;1.23

end1.24

end1.25

else1.26

Report that an NE is not found after retries;1.27

Iflag = 1;1.28

return;1.29

end1.30

else1.31

Iflag = 0;1.32

end1.33

end1.34
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algorithm. But then our iteration would get stuck because there is no more NE contained in C . It
is for situation like this that we suggest in Algorithm 1 by Line (1.23) to restart the process entirely.

The above example demonstrates a pathological phenomenon that a “bad” NE can causes a
break-down for Algorithm 1, even if the NRF does exists. With the aid of the built-in restart
mechanism, we rarely see this happening for generic matrices in R(m, n), especially for matrices
with no zero entries. Our extensive numerical experiments seem to evidence that Algorithm 1, apart
from the fact that the accuracy of the numerical results depends on the stopping criteria set out in
the underlying optimization solver, is generally robust.

For computation, the rank-one reduction procedure as is proposed in Algorithm 1 is sufficient.
For theoretical consideration, Theorem 3.2 suggests that it is possible to reduce multiple ranks of
the matrix Ak simultaneously in one step. A suitable change of variable can diminish the role of the
matrix R−1 in Theorem 3.2 and gives rise to a natural generalization of (4.1) in the form

max
Xk∈Rm×r,Yk∈Rn×r

min
[
Ak −AkXkY ⊤

k Ak

]
,

subject to AkXk ≥ 0,
Y ⊤

k Ak ≥ 0,
Y ⊤

k AkXk = Ir×r,

(4.2)

where Ir×r is the identity matrix of rank r. The next theorem observes an interesting connection
that if the rank of the matrix Ak can be reduced by r in one step via (4.2), then the same reduction
can be achieved by rank-one matrices in r steps via (4.1).

Theorem 4.1. If a nonnegative matrix has a nonnegative rank-r reduction, then it must have

r nonnegative rank-one reductions.

Proof. Suppose the nonnegative matrix A has a nonnegative rank-r reduction. By Theorem 3.2,
we know there are matrices X ∈ R

n×r and Y ∈ R
m×r satisfying

AX ≥ 0, Y ⊤A ≥ 0, Y ⊤AX = Ir×r

and making the matrix B := A − AXY ⊤A nonnegative with rank(B) = rank(A) − r. Denote the
columns of X and Y as

X := [x1, . . . ,xr], Y := [y1, . . . ,yr ].

then we have

Axi ≥ 0, y⊤
i A ≥ 0, y⊤

i Axj =

{
1, if i = j,
0, if i 6= j.

We now show that each pair (xk,yk), k = 1, . . . , r, has the desirable effect of rank-one reduction on
Ak defined successively by (3.4), starting with A1 = A, and that Ar+1 = B.

The case k = 1 is trivial. It is obvious that for 1 ≤ i, j ≤ r, we have

A1xi = Axi ≥ 0, y⊤
i A1 = y⊤

i A ≥ 0, y⊤
i A1xj = y⊤

i Axj =

{
1, if i = j,
0, if i 6= j.

Assume the statement that

Akxi ≥ 0, y⊤
i Ak ≥ 0, y⊤

i Akxj =

{
1, if i = j,
0, if i 6= j,
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is true for all k ≤ i, j ≤ r. Recall that Ak+1 = Ak−Akxky
⊤
k Ak. It follows that for all k+1 ≤ i, j ≤ r,

we have

Ak+1xi = (Ak −Akxky
⊤
k Ak)xi = Akxi ≥ 0,

y⊤
i Ak+1 = y⊤

i (Ak −Akxky
⊤
k Ak) = y⊤

i Ak ≥ 0,

y⊤
i Ak+1xj = y⊤

i (Ak −Akxky
⊤
k Ak)xj = y⊤

i Akxj =

{
1, if i = j,
0, if i 6= j.

By the mathematical induction, we conclude that the very same matrix B can be achieved by r
rank-one reductions via the sequence of vectors {(xk,yk)}rk=1.

Theorem 4.1 avers an important message in that no matrix can have a nonnegative rank-r
reduction by a rank-r matrix without first having a nonnegative rank-one reduction by a rank-one
matrix. For rank-one reduction, there are n + m variables involved in the problem (4.1) and we
have to solve the problem r times (if no restart). For rank-r reduction, there are r(n + m) variables
involved in the problem (4.2), but we just need to solve the problem once. As r grows larger, the
complexity involved in the problem (4.2) even by the same optimization solver would grow far more
rapidly than the total complexity of r applications to the problem (4.1). Nonnegative rank-one
reduction is preferable for the computation of NRF.

5. Completely positive matrices. A nonnegative matrix A ∈ R
n×n
+ is said to be completely

positive (CP) if and only if A can be factorized as

A = BB⊤, (5.1)

where B is nonnegative [5]. The matrix B is not necessarily square. The smallest number of columns
of B satisfying the factorization (5.1) is called the cp-rank of the matrix A, denoted by rankcp(A).
General properties and some applications of CP matrices can be found in the reference [5]. Similar
to the NRF problem, there are two open questions about CP matrices. First, determine whether a
given nonnegative semi-definite matrix is CP. Second, if a matrix is CP, determine its cp-rank [4].

If A is CP, then obviously rank+(A) ≤ rankcp(A). There is also an upper bound estimate [2, 17],

rankcp(A) ≤
rank(A)(rank(A) + 1)

2
− 1,

provided rank(A) > 1. Some sufficient conditions under which rankcp(A) = rank(A) can be found
in [35]. If A is generated by a Soules matrix, for example, then rankcp(A) = rank(A) [36]. Other
than these results, we find very few discussions about how to compute the CP factorization. The
symmetric form demanded in (5.1) seems to make the CP problem for a nonnegative seme-definite
matrix more stringent than the NRF problem for a general nonnegative matrix. Our contribution
to this subject is that our algorithm can determine heuristically whether rankcp(A) = rank(A) and,
if affirmative, we can compute the factor B numerically.

Our idea is a slight modification of the Wedderburn formula. In order to maintain the symmetry,
we only need to require x = y in the rank reduction formula [11]. Starting with A1 = A, the
optimization problem in (4.1) is reformulated as follows:

max
xk∈Rn

min
[
Ak −Akxkx

⊤
k Ak

]

subject to Akxk ≥ 0
x⊤

k Akxk = 1

(5.2)

with Ak+1 := Ak − Akxkx
⊤
k Ak. If the objective value at the local maximizer is nonnegative, then

the matrix Ak has a symmetric NE. The discussion above for the NRF problem can be carried
over to the CP problem until such a symmetric NE can be found no more. As the rank is reduced
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by one in each step, the process must terminate in at most rank(A) steps in exact arithmetic. If
rankcp(A) = rank(A), in particular, then we have now a numerical procedure to find its nonnegative
factor B = (A1x1, . . . , Arank(A)xrank(A)). Our approach perhaps represents only a modest advance
toward the CP problem, but we are not aware of any other way to compute the CP in the literature.

6. Maximal nonnegative rank splitting. Due to its rank subtractivity property, our process
cannot extract more than rank(A) many rank-one NEs. Our approach cannot handle factorization
for the cases rank+(A) > rank(A) or rankcp(A) > rank(A). Nevertheless, we still can use our
algorithm to address another interesting notion of the so called maximal nonnegative rank splitting
(MNRS) defined below.

(MNRS): Given a nonnegative matrix A, find a splitting

A = B + C, (6.1)

where both B and C are nonnegative matrices satisfying

rank(B) = rank+(B),

rank(A) = rank(B) + rank(C),

and rank(B) is maximized.

If A ∈ R(m, n), then trivially B = A and C = 0. Consider the case that A /∈ R(m, n). We know
that A has no NRF. However, it is plausible that A still has a few NEs. By repeatedly applying our
method until it has to be terminated (after many retries), say, at Ak, if we trust that Ak has no
more NE, then B := A−Ak and C := Ak form an MNRS for A.

We mention two examples to demonstrate the notion of MNRS.

Example 3. The matrix C defined in (1.3) has zero B component in its MNRS.

Example 4. Consider the 8 × 8 nonnegative matrix A := [W, H ], where W :=

[
C

04

]
∈ R

8×4

and H ∈ R
8×4 is made of the product H = H1H2 with

H1 :=

2

6

6

6

6

6

6

6

6

6

4

0.2917 0.3109 0.2026
0.4665 0.2558 0.9396
0.9439 0.1048 0.2107
0.0943 0.2903 0.9670
0.0119 0.4985 0.6356
0.3723 0.8205 0.4252
0.3542 0.3074 0.2262
0.0820 0.7715 0.9325

3

7

7

7

7

7

7

7

7

7

5

, H2 :=

2

4

0.7426 0.2143 0.0907 0.1922
0.5133 0.8007 0.8121 0.0639
0.5417 0.6280 0.0968 0.4969

3

5 .

It is easy to observe that rank(H) = rank+(H) = 3 and, hence, rank(A) = 6. Does A have an NRF,
or can we retrieve an MNRS of A?

Apply Algorithm 1 to the matrix A. The farthest we can go is, after three iterations, a splitting
A = B + C with

B =

2

6

6

6

6

6

6

6

6

6

4

0 0 0 0 0.17825 0.36892 0.29782 0.08302
0 0 0 0 0.56400 0.47683 0.34027 0.18382
0 0 0 0 0.38505 0.33387 0.19112 0.16500
0 0 0 0 0.14403 0.42702 0.33791 0.09387
0 0 0 0 0.60902 0.80086 0.46744 0.34997
0 0 0 0 0.92796 1.00378 0.74126 0.33527
0 0 0 0 0.54335 0.46409 0.30366 0.20012
0 0 0 0 0.96204 1.22092 0.72424 0.52842

3

7

7

7

7

7

7

7

7

7

5
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and

C =

2

6

6

6

6

6

6

6

6

6

4

1 1 0 0 0.30770 0.06976 0.00073 0.09358
1 0 1 0 0.42271 0.41803 0.00073 0.38908
0 1 0 1 0.48382 0.08464 0 0.12781
0 0 1 1 0.59883 0.43291 0 0.42331
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

3

7

7

7

7

7

7

7

7

7

5

,

where for the ease of running text we have displayed all numerals in 5 digits only. Since this result
is obtained from the Wedderburn rank reduction process, we naturally are guaranteed by theory
that rank(B) = rank+(B) = 3 and rank(C) = rank(A) − rank(B) = 3. Observe, however, that the
special matrix C is still embedded at the upper left corner of C, forcing the fact that rank+(C) = 4
and that C has no more NE. This splitting is an MNRS of A.

7. Numerical experiments. A general nonnegative matrix may not have an NRF. In this
case, we have already exemplified in Section 6 how the MNRS can be calculated. In this section, we
demonstrate the working of our algorithm by computing the NRF of a few nontrivial matrices.

To ensure the existence of an NRF, we rely on Theorem 2.2 to generate test data. For illus-
tration purpose, we employ the MATLAB routine fminimax as our optimization solver in all our
computation. The threshold for machine zero in Algorithm 1 is set at ǫ = 10−10.

Example 5. We randomly generate two nonnegative matrices W ∈ R
5×3
+ and H ∈ R

3×5
+

W =

2

6

6

6

4

0.9708 0.2140 0.4120
0.9901 0.6435 0.7446
0.7889 0.3200 0.2679
0.4387 0.9601 0.4399
0.4983 0.7266 0.9334

3

7

7

7

5

, H =

2

6

6

6

4

0.6833 0.2071 0.4514
0.2126 0.6072 0.0439
0.8392 0.6299 0.0272
0.6288 0.3705 0.3127
0.1338 0.5751 0.0129

3

7

7

7

5

⊤

,

and define A = WH . Obviously, the matrix A has an NRF by construction. Applying our method,
we find a new NRF of the matrix A = UV with

U =

2

6

6

6

4

0.02556251462152 0.00563995049828 0.05020141897100
0.02170073447446 0.00833461311952 0.10441556394589
0.01809150541560 0.01018126666230 0.05049608516928

0 0.01848758106428 0.11124821245836
0.00844625518446 0 0.11504734974715

3

7

7

7

5

and

V =

2

6

6

6

4

22.65196335171072 0 6.26680882859984
2.42501879200814 7.93355352839419 4.93382971188032

21.86596055059507 15.79385557484764 6.22840681607381
18.88971723342108 4.21210726740658 6.21364289968766

0 7.37487007847031 4.31631898597720

3

7

7

7

5

⊤

,

where, for convenience, we have transcribed all digits of the computed result.
Example 6. To demonstrate the NRF of a CP matrix, we randomly generate a nonnegative

matrix W

W =

2

6

6

6

6

6

4

0.3840 0.0158 0.6315 0.3533
0.6831 0.0164 0.7176 0.1536
0.0928 0.1901 0.6927 0.6756
0.0353 0.5869 0.0841 0.6992
0.6124 0.0576 0.4544 0.7275
0.6085 0.3676 0.4418 0.4784

3

7

7

7

7

7

5

,

and define A = WW⊤. By construction, A is CP. Our algorithm shows that the matrix A has a
nonnegative decomposition A = BB⊤ with

11



B =

2

6

6

6

6

6

4

0.58354630329629 0.35203758768455 0.44908808470853 0.07198556063105
0.58153426004785 0.21962336143449 0.78677873223851 0
0.67910036260539 0.70358647639519 0.14987548760103 0.04842113133372

0 0.91741547294584 0 0
0.45303579486590 0.65652500722113 0.57125648786549 0.38921284477200
0.28134324531544 0.66368746544619 0.63911349062806 0.03680601340055

3

7

7

7

7

7

5

.

Example 7. For a general matrix R with negative entries, it cannot be guaranteed that the
product RR⊤ has an NRF. If R is a Soules matrix, however, then it is known that the product
RDR⊤ is nonnegative and rankcp(RDR⊤) = rank(RDR⊤) for every nonnegative diagonal matrix
D with nonincreasing diagonal elements [36].

The matrix

R =

2

6

6

6

4

0.1348 0.1231 0.1952 0.3586 0.8944
0.2697 0.2462 0.3904 0.7171 −0.4472
0.4045 0.3693 0.5855 −0.5976 0
0.5394 0.4924 −0.6831 0 0
0.6742 −0.7385 0 0 0

3

7

7

7

5

has negative entries, but is a Soules matrix [16]. With this R and with

D = diag([0.7, 0.5, 0.4, 0, 0]),

we define

A = RDR⊤ =

2

6

6

6

4

0.035537749 0.071084934 0.106614875 0.027868556 0.018162837
0.071084934 0.142188747 0.213258065 0.055774870 0.036372868
0.106614875 0.213258065 0.319849520 0.083670750 0.054535705
0.027868556 0.055774870 0.083670750 0.511545776 0.072745736
0.018162837 0.036372868 0.054535705 0.072745736 0.590873073

3

7

7

7

5

.

Thus, by theory, A is a CP matrix. However, because of the two zeros in D, we also know that
rank(A) = 3. By this construction, A is a nontrivial, rank deficient, positive semi-definite CP matrix,
Applying our method, we find rankcp(A) = 3 as is expected and obtain a decomposition A = BB⊤

with

B =

2

6

6

6

4

0.18851458564260 0 0
0.37707922576755 0.00005556024891 0.00003751809670
0.56555239286434 0.00006079293882 0.00008502728571
0.14783235952195 0.07671246735655 0.69556205102811
0.09634711785325 0.76262068283226 0

3

7

7

7

5

.

8. Conclusion. The notion of NMF has many important applications, but NMF usually only
computes an approximation for a given nonnegative matrix. Detecting the nonnegative rank and
computing a complete nonnegative factorization for a general nonnegative matrix are a very chal-
lenging problem both in theory and in practice. No existing NMF algorithms can guarantee to find
a complete nonnegative factorization of a nonnegative matrix.

When rank+(A) = rank(A), we say that the matrix A has an NRF. The main thrust of this
paper is to present a numerical method to assess whether a given nonnegative matrix does have an
NRF. Our method is still heuristic, but empirical results seem to strongly suggest that our algorithm
can handle the situation reasonable well for generic nonnegative matrices. Our method can also be
used to study the notion of MNRS and works in a similar way for CP matrices.

The crux of our algorithm is the employment of the Wedderburn rank reduction formula. At each
step, we look for an NE that not only reduces the rank by one, but also maintains the nonnegativity
for the residual. To search for an NE, we need to resolve a maximin problem numerically by existing
optimization solvers.
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Described in this paper is only a numerical procedure that might serve as a possible compu-
tational tool for the NRF problem. The method is admittedly quite crude, but it is perhaps the
first algorithm ever proposed in the literature which is able to explore the NP-hard nonnegative fac-
torization numerically with considerable success. No backward stability of our algorithm has been
analyzed. Indeed, perturbation analysis for NRF in general has not been studied in the literature
at all. The following questions remain to be further investigated.

1. Given a nonnegative matrix A which has an NRF, under what condition will the perturbed
nonnegative matrix A + E still have an NRF?

2. Given a nonnegative matrix A which has an NRF, let U and V be the nonnegative factors
found by Algorithm 1 so that UV is a numerical NRF of A. Is UV the exact NRF of some
perturbed nonnegative matrix A + E?
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