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Abstract. The nonlinear matrix equationX+A∗X−1A = Q can be cast as a linear Sylvester equation subject to unitaryconstraint.
The Sylvester equation can be obtained by means of hermitianeigenvalue computation. The unitary constraint can be satisfied by means of
either a straightforward alternating projection method orby a coordinate-free Newton iteration. The idea proposed inthis paper originates
from the operator-valued Fejér-Riesz theorem on an abstract factorization of some rational matrix-valued function over the unit disk. The
work now makes the factorization realizable by numerical computation.
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1. Introduction. The nonlinear matrix equation

X +A∗X−1A = Q, (1.1)

whereA,Q ∈ Cn×n are given andQ is hermitian positive definite (HPD), has been extensively studied in the
literature. Far from being complete, we mention [1, 6, 8, 10,15] as a few general references on the subject of
existence theory. A variety of numerical methods for actually computing the HPD solution has been proposed
in [9, 12, 14, 18]. The majority of currently available algorithms takes on notions from fixed-point iteration,
Newton-type iteration, or cyclic reduction. Often these methods are effective only for computing the so called
extreme solutions, though the problem generally has multiple solutions.

With regard to the solvability of (1.1), perhaps the most complete analysis is developed in [6] by using
an analytic factorization argument. The following result,in particular, characterizes a sufficient and necessary
condition for the existence of an HPD solution [6, Theorem 2.1] .

THEOREM 1.1. Corresponding to (1.1), define a rational matrix-valued function via

ψ(λ) = λA+Q+
A∗

λ
. (1.2)

Then, (1.1) has an HPD solution if and only ifdet(ψ(λ)) is not identically zero andψ(λ) � 0 for all λ on the
unit circle. In this case,

a. The functionψ(λ) can be factorized as

ψ(λ) = (C∗
0 +

C∗
1

λ
)(C0 + λC1), (1.3)

with det(C0) 6= 0, and

X = C∗
0C0 (1.4)

is a solution of (1.1).
b. Every positive definite solution of (1.1) is obtained in this way.

The factorization (1.3) in Theorem 1.1 is a special case of the more comprehensive operator-valued Fejér-
Riesz theorem [16, Theorem 6.6] which is a generalization the classical Fejér-Riesz theorem for nonnegative
trigonometric Laurent polynomials on the unit circle. It isinteresting to note that the proof of the operator-
valued Fejér-Riesz theorem in the monograph [16] itself is merely a one-line statement calling on another
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result concerning the factorization of pseudo-meromorphic functions. Over all, the disquisition in [16] employs
machineries built upon the notion of Nevanlinna and Hardy classes. A more direct proof of the matrix-valued
Fejér-Riesz factorization is given in [7]. See also [4] for an excellent survey of this topic.

While a factorization such as (1.3) might be obvious from operator theory point of view, the needed simul-
taneous decomposition

{
Q = C∗

0C0 + C∗
1C1

A = C∗
0C1

(1.5)

for a given pair of matricesA,Q ∈ Cn×n is not obvious. Motivated by (1.4) and the fact that every positive
definite solution is obtained in this way, we are curious to think that it might be reasonable to propose a feasible
numerical procedure that does the factorization (1.5). Simultaneous decomposition of multiple matrices should
be an interesting mathematical problem in itself.

In this paper, we offer a framework to tackle this particulardecomposition problem (1.5). In turns, the
decomposition can be adapted to formulate two new numericalmethods for solving (1.1). The advantages of
our approach are multi-fold:

1. It effectively reduced the problem via spectral decomposition to the problem of finding the intersection
of the manifoldU (n) of unitary matrices with a specific affine subspace.

2. Projections ontoU (n) and the affine subspace can easily be done. Hence, a convenient, but global
convergent alternating projection method is readily available.

3. Using merely the geometry, a coordinate-free Newton-type iteration can also be developed to gain
high precision and quadratic rate of convergence.

4. All positive solutions can be parameterized by means ofU (n) and, hence, all positive solutions are
taken into account.

This paper is organized as follows. We begin in Section 2 by sampling the rational functionψ(λ) at two
points on the unit disk. Using spectral information of the samples, we rewrite the nonlinear equation (1.1) into a
Sylvester equation which is linear. The cost for clearing out the nonlinearity by such a transformation is that the
solution to the Sylvester equation must remain unitary. Ourfirst main result is a one-to-one correspondence in
representing the solution to the nonlinear problem by a unitary solution to the linear problem. In Section 3 we
argue by using the theory of parameter continuation that generically there are only finitely many geometrically
isolated solutions. More importantly, the geometry of unitary matrices is so well structured that we propose
two simple numerical procedures by using projections. In Section 3.1 we employ the standard Euclidean
projection, including the polar decomposition, to formulate an alternative projection algorithm. The method
converges linearly, but globally. In Section 3.2 we employ aprojection along the tangent direction which thus
constitutes a Newton-type iteration. A nice feature of thisquadratically convergent method is that it refers to
no particular coordinate frame. In our actual implementation for numerical test, we combine both methods
into a hybrid algorithm that starts with several steps of alternating projection to drive the iterates closer to a
true solution before the Newton projection is activated forfaster convergence and better precision. Finally, in
Section 4, we present a new way to characterize the partial ordering among solutions.

2. Discrete Fejér-Riesz factorizations.As det(ψ(λ)) is itself a rational (scalar) function, there are only
a finite number of points for whichdet(ψ(λ)) = 0. Using different values ofλ on the unit circle if necessary,
we may assume without loss of generality that the two discrete samplesψ(1) andψ(−1) are positive definite.
Thus, there exist matricesα, β ∈ Cn×n such that

{
Q +A+A∗ = α∗α

Q −A−A∗ = β∗β.
(2.1)

Upon comparing with (1.3), we may take
{
C0 = α+β

2

C1 = α−β
2 ,

(2.2)
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onceα, β are determined. The resultingC0 andC1 in (2.2) must satisfy the conditions specified in (1.5). It is
easy to check by substitution that for any factorization in (2.1), the first constraintQ = C∗

0C0 +C∗
1C1 in (1.5)

is always satisfied. It remains to require that the factorsα, β must be such that

β∗α− α∗β = 2(A−A∗). (2.3)

Being skew hermitian, the condition (2.3) entailsn2 real-valued equations which will be further detailed below.
Our first goal for now is to find these suitable factorsα andβ.

2.1. Sylvester equation subject to unitary constraint.There also exist unitary matricesU1, U2 ∈
U (n), and positive diagonal matricesΣ1,Σ2 ∈ Rn×n such that

{
Q+A+A∗ = U1Σ1U

∗
1

Q−A−A∗ = U2Σ2U
∗
2 .

(2.4)

Define




α̂ := U∗
1αU1Σ

− 1
2

1

β̂ := U∗
2βU2Σ

− 1
2

2 .

(2.5)

It can be seen trivially that̂α, β̂ ∈ U (n). We may rewrite the constraint (2.3) in terms ofα̂, β̂, which becomes

U∗
1U2Σ

1
2
2 β̂

∗U∗
2U1α̂Σ

1
2
1 − Σ

1
2
1 α̂

∗U∗
1U2β̂Σ

1
2
2 U

∗
2U1 = U∗

1 (A−A∗)U1. (2.6)

As the spectral decompositions in (2.4) are readily available, the matrices




Θ := U∗
1U2

S := ΘΣ
1
2
2

K := U∗
1 (A−A∗)U1

(2.7)

are known andK is skew-hermitian. We may conveniently condense the two unknown factorŝα, β̂ ∈ U (n)
into a single unknown matrixΓ ∈ U (n) defined by

Γ := β̂∗Θ∗α̂ (2.8)

which must satisfy the linear Sylvester equation

SΓΣ
1
2
1 − Σ

1
2
1 Γ

∗S∗ = K. (2.9)

Solving the linear equation (2.9) is relatively simpler than solving the quadratic equation (2.3), except that the
solutionΓ must be a unitary matrix by the definition (2.8). We shall discuss two simple numerical schemes to
accomplish this goal in Section 3.

2.2. Parametrization of solutions. Thus far, all the steps are reversible. No inversion is needed except
for the inverses of diagonal matricesΣ1 andΣ2, which are trivial. Once a solutionΓ is found, we may take

α̂ := Θβ̂Γ, (2.10)

whereβ̂ ∈ U (n) can be arbitrary and can be used as a parameter. Using (2.5), we may recover the desirable
α, β





α := U2β̂ΓΣ
1
2
1 U

∗
1

β := U2β̂Σ
1
2
2 U

∗
2 .

(2.11)
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In particular, the set of positive definite solutions to (1.1) can be characterized via the set of intersection of the
manifoldU (n) and the affine subspace of solutions to (2.9) as follows.

THEOREM 2.1. Every positive definite solution to (1.1) is of the form

X =
1

2
(Q+ s(Γ)) , (2.12)

where

s(Γ) :=
1

2

(
U2Σ

1
2
2 ΓΣ

1
2
1 U

∗
1 + U1Σ

1
2
1 Γ

∗Σ
1
2
2 U

∗
2

)
(2.13)

andΓ is a unitary solution to the Sylvester equation (2.9).
Proof. Using the relationship (2.2), we may rewriteC0, C1 in terms of (2.11). By (1.4), we see further that

X =
1

4

(
U2Σ

1
2
2 + U1Σ

1
2
1 Γ

∗
)(

ΓΣ
1
2
1 U

∗
1 +Σ

1
2
2 U

∗
2

)

which may be simplified to (2.12) by using (2.1).
Observe in (2.12) that only the unitary solutionΓ is needed. The reference tôβ as is required in (2.11) is

immaterial. Observer also thatX is related toΓ in a linear way, the difference being thatX satisfies a nonlinear
equation (1.1) whileΓ satisfies a linear equation (2.9) and is unitary. After introducing more detailed notations,
we shall argue further in Section 4 that such a correspondence is one-to-one. We think that such a natural
parametrization throughΓ ∈ U (n) satisfying (2.9) for each positive definite solutionX of (1.1) is simple and
interesting. We now characterize the parameterΓ.

3. Solving forΓ. The Sylvester equation (2.9) is under-determined due to theskew-hermitian structure.
A general solution to the equation can be expressed as

Γ = Γ0 +
∑

γiΩi, (3.1)

whereΓ0 is a particular solution and the set{Ωi} forms a basis for the solution subspace of the homogeneous
problem

SΓΣ
1
2
1 − Σ

1
2
1 Γ

∗S∗ = 0. (3.2)

We need to clarify the meaning of summation in (3.1).
First, cares must be given when counting the dimensionalityof the null space of (3.2). For a generic

Γ ∈ Cn×n, there are2n2 real-valued unknown entries. The skew hermitian structure, however, gives rise to
onlyn2 real-valued equations. The null space therefore should have real dimensionalityn2 for complex-valued
solutions.

More specifically, let the real and the imaginary parts of a matrix M be expressed as

M = ℜ(M) + ıℑ(M). (3.3)

We can rewrite the Sylvester equation as a system of equations for the pair(ℜ(Γ),ℑ(Γ)) ∈ Rn×n × Rn×n





(ℜ(S)ℜ(Γ) −ℑ(S)ℑ(Γ))Σ
1
2
1 − Σ

1
2 (ℜ(Γ)⊤ℜ(S)⊤ −ℑ(Γ)⊤ℑ(S)⊤) = ℜ(K)

(ℑ(S)ℜ(Γ) + ℜ(S)ℑ(Γ))Σ
1
2
1 +Σ

1
2 (ℑ(Γ)⊤ℜ(S)⊤ + ℜ(Γ)⊤ℑ(S)⊤) = ℑ(K).

(3.4)

Denote 



A := Σ
1
2
1 ⊗ℜ(S)

B := ℜ(S)⊗ Σ
1
2
1

C := Σ
1
2
1 ⊗ℑ(S)

D := ℑ(S)⊗ Σ
1
2
1

(3.5)
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and letP denote the permutation matrix of indices that enumerates entries of a matrix row-wise. Then (3.4) is
equivalent to

[
A− BP −C +DP
C +DP A+ BP

] [
vec(ℜ(Γ))
vec(ℑ(Γ))

]
=

[
vec(ℜ(K))
vec(ℑ(K))

]
. (3.6)

This square system (3.6) is rank deficient because, in truth,the first equation in (3.4) is skew-symmetric and
the second equation is symmetric. Taking this structure into account, there are genericallyn2 independent
equations. It is in this context that we define the basis{Ωi} and write (3.1) whereγi are real-valued.

It is worth mentioning the special case whenA,Q ∈ Rn×n andQ is symmetric positive definite (SPD).
The question of existence for this real-valued problem has been studied in [6, Section 8] and more detailed in
[5]. In this case, the above discussion can be carried over, except that (skew-)hermitian matrices are replaced
by (skew-)symmetric matrices and unitary matrices by orthogonal matrices. In particular, the system (3.6) is
reduced to

(A− BP)vec(Γ) = vec(K), (3.7)

whose coefficient matrixA−BP is of rankn(n−1)
2 generically and, hence,Γ is characterized byn(n+1)

2 basis
solutions{Ωi} to the real-valued homogeneous problem (3.2). Other than these modifications, the theory and
algorithm described below can be applied without trouble.

Returning to the general problem of complex-valued problem, the representation ofΓ in the form (3.1)
provides a parametrization of solutions to (2.9). Our theory requires thatΓ also be unitary. This will require
{γi} to satisfy the nonlinear system

[
I

0

]
=

[
ℜ(Γ∗

0Γ0)
ℑ(Γ∗

0Γ0)

]
+

n2∑

i=1

γi

[
ℜ(Ω∗

iΓ0 + Γ∗
0Ωi)

ℑ(Ω∗
iΓ0 + Γ∗

0Ωi)

]
+

∑

1≤i≤j≤n2

γiγj

[
ℜ(Ω∗

iΩj +Ω∗
jΩi)

ℑ(Ω∗
iΩj +Ω∗

jΩi)

]
. (3.8)

The topn2 equations in (3.8) are from entries of symmetric matrices, while the bottomn2 equations are from
skew-symmetric matrices. So, in total this is a square polynomial system withn2 unknowns inn2 equations.
RegardingΓ0,Ωi and, correspondingly, the problem dataA andQ, as the parameters of the polynomial system,
the follow result is known from the theory of parameter continuation [17, Theorem 7.1.1].

THEOREM 3.1. LetN (A,Q) denote the number of geometrically isolated solutions to the corresponding
(3.8) over the algebraically closed complex space. Then

1. N (A,Q) is the same, sayN , for almost allA,Q ∈ Cn×n andQ is HPD.
2. For allA,Q ∈ C

n×n,Q is HPD,N (A,Q) ≤ N .
3. The subset ofA,QwhereN (A,Q) = N is a Zariski open set, that is, the exceptional subset of tensors
A,Q ∈ Cn×n whereN (A,Q) < N is an affine algebraic set1 contained within an algebraic set of
codimension one.

Since the real space is Zariski dense in the complex space, the above statements hold for almost allA,Q ∈
Rn×n,Q is SPD, except that the number of real-valued isolated solutions varies as a function ofA,Q and is no
longer a constant. The latter is an interesting topic in the active and ongoing research area called real algebraic
geometry. For our application, we only need the fact that generically solutions to (1.1) are geometrically
isolated. See also [6, Corollary 6.6 and Theorem 8.2]. We portray the isolated intersection points of the surface
U (n) of unitary matrices and the affine subspaceA containing allΓ’s in the form (3.1) in the drawings of
Figure 3.1 and Figure 3.3.

We now describe two new methods to findΓ and, hence, a solutionX to (1.1). The first approach alternates
between the surfaceU (n) and the affine subspaceA . The computation involves a sequence of polar decom-
positions. No matrix inversion is needed. This alternatingprojection approach offers global convergence, but

1A subset of affinen-spaceAn over an algebraically closed fieldk is called an affine algebraic set if it can be written as the zero locus
of a set of polynomials. By the Hilbert basis theorem, this set of polynomials can be assumed to be finite. The Zariski topology onAn is
simply a topology where the closed sets are precisely the algebraic sets inAn.
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U (n)

A

V (ν)

V (ν+1)

Γ(ν)

possible isolated intersection ofU (n) andA

FIGURE 3.1.Alternating projection betweenU (n) andU (n).

at linear rate. The second approach is a convenient Newton-type procedure that adjusts the parameters{γi}
with the aim at moving the correspondingΓ toward the setU (n). As is typical, it offers local convergence, but
at quadratic rate. Notably this Newton approach involves only geometric interpretation without referring to the
nonlinear system (3.8).

3.1. Alternating projection method. The notion of alternating projections has been used in many dis-
ciplines. The mechanism of projections betweenU (n) andA is particularly easy. The idea is sketched in
Figure 3.1. Specifically, by identifying a complex-valued matrixM as(ℜ(M),ℑ(M)), the bilinear functional

〈M,N〉 := 〈ℜ(M),ℜ(N)〉F + 〈ℑ(M),ℑ(N)〉F (3.9)

defines an inner product overCn×n. In this sense, we may assume that the basis{Ωi} for the solution subspace
of the homogeneous problem (3.2) are chosen to be mutually orthonormal to begin with2. Starting withV (µ) ∈

U (n), the matrixΓ(ν) associated with the vectorγ(ν) ∈ R
n2

defined by

γ
(ν) :=

[
〈V (ν) − Γ0,Ωi〉

]
, (3.10)

is the projection ofV (ν) onto to the affine subspaceA . In the meantime, the nearest point3 on the manifold
U (n) to a specifiedΓ(ν) is given by the unitary matrix which occurs in the polar decomposition ofΓ(ν) [13].
Polar decomposition can be computed easily via the singularvalue decomposition [11].

By construction, the distance betweenV (ν) andΓ(ν) is being reduced per iteration. The sequence of values
‖V (ν) − Γ(ν)‖F converges globally at linear rate. However, the setU (n) being non-convex, it is possible that
the iterates will get stagnated at a local solution. If the stagnation does not occur, then the iterations should
converge globally to an intersection ofU (n) andA at linear rate.

Example 1.Consider the problem (1.1) withn = 6 and

A =




−1.7043 0.6249 −1.4613 −0.0089 −0.9208 −0.2915
0.6892 0.8939 1.3194 0.8582 0.8131 1.6303

−1.2885 −1.0669 0.2346 −0.4312 0.3086 −0.7185
−1.7242 0.3818 0.6473 1.6436 0.0197 −1.3301
0.0695 −0.0223 2.0685 0.1987 −0.7067 −1.5836
0.7089 0.0048 −3.1480 −0.4098 0.8164 −0.9869


 ,

2That is, we identifyΩi = (ℜ(Ωi),ℑ(Ωi)) ∈ Rn
2
× Rn

2
and consider the corresponding linear system (3.16).

3Under the usual Euclidean norm overCn×n, which is defined by‖M‖F :=
√

tr(MM∗) and is equivalent to the induced norm by
the induced inner product (3.9).
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FIGURE 3.2.Distribution of hit frequencies on solutions by random testof the alternating projection method.

Q =




7.1618 1.8363 −0.9226 −3.3863 −0.2137 −1.3190
1.8363 12.1889 3.4528 −4.8090 3.8368 0.9035

−0.9226 3.4528 16.7803 3.3950 3.6227 1.0194
−3.3863 −4.8090 3.3950 10.0691 −4.3373 0.9658
−0.2137 3.8368 3.6227 −4.3373 10.7882 4.6472
−1.3190 0.9035 1.0194 0.9658 4.6472 9.3834


 .

For simplicity, we limit ourselves only to real-valued computation. So, in our theory, we replace unitary
matrices by orthogonal matrices, HSD solutions by SPD solutions, adjoint operation by transpose operation,
and so on. In particular, there are only21 basis solutions{Ωi} ∈ R

6×6 for Γ.
Out of 250 runs with randomly selected starting points, 144 runs converge respectively to a total of 16

distinct real-valued solutions. This count is agreeable with that estimated in [6, Proposition 8.2]. If we label
these solutions based on the size their(1, 1) entries, then plotted in Figure 3.2 is the frequency of each solution
reached by the alternating projection method through this random test. We shall comment on the significance
of“ordering" these solutions in Section 4. For now we only point out that there is a good probability that the
alternating projection method with a random starting pointwill converge to a solution that is neither maximal
nor minimal.

We point out in passing that the above projection mechanismsare so easy to perform that they can be
readily extended to the more sophisticated schemes, such asDykstra’s projection algorithm [2]. While the
unmodified alternating projection method described above leads to some arbitrary point in the intersection,
Dykstra’s algorithm is generally capable of relating the starting point to the nearest limit point through a few
easily manageable intermediate steps. The only possible concern is that Dykstra’s algorithm works best for
finding the intersection of convex sets, whereas in our case the setU (n) is not convex. So, even though the
projections can be performed at every step, the resulting iteration may not converge globally anymore. We
choose not to implement Dykstra’s algorithm in this study.

Another application of the alternating projection method is to perform the iteration only a few times with
the hope thatV (ν) is brought close enough to the intersection for the Newton iteration to kicks in for faster
convergence and better precision. Such a tactic is implemented in the coordinate-free Newton method which
we now describe below.

3.2. Coordinate-free Newton iteration. Recall that a classical Newton step for a functionf : R −→ R

is composed of two components: First, compute the iterate

x(ν+1) = x(ν) − (f ′(x(ν)))−1f(x(ν)) (3.11)

which is precisely thex-intercept of the tangent line to the graph off at the point(x(ν), f(x(ν))). Second, lift
x(ν+1) to the new point(x(ν+1), f(x(ν+1))) on the graph off along the y-axis and repeat the iteration. The
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U (n)

A

U (ν)

U (ν+1)

eK
(ν)

R(ν)e−K(ν)

R(ν)

Γ(ν+1)

possible isolated intersection ofU (n) andA

FIGURE 3.3.One Newton step completed by finding anA -intercept through a tangent vector and a lift back toU (n).

setU (n) can be thought of as a smooth manifold4 of real dimensionn2. If we think of the surfaceU (n) as
playing the role of the graph off and the affine subspaceA containing allΓ’s in the form (3.1) as playing the
role of thex-axis, then an iterative process analogous to the Newton method might be developed. The idea is
sketched in the drawing of Figure 3.3. The challenge is to formulate such an iteration without referring to any
coordinate frames.

The setU (n) is a special Lie group with well understood Lie algebra structure. In particular, any tangent
vectorT (U) to U (n) at a given pointU ∈ U is of the form

T (U) = UK (3.12)

for some skew-hermitian matrixK ∈ Cn×n. GivenU (ν) ∈ U (n), the “array"U (ν) + U (ν)K with any skew-
hermitian matrixK represents a tangent line toU (n) emanating from the pointU (ν). Mimicking the tangent
step in the classical Newton method, we thus seek anA -intercept of such an array with the affine subspaceA .
In other words, the task demands to find both a skew-hermitianmatrixK(ν) and parameters{γ(ν+1)

i } such that
the equation

U (ν) + U (ν)K(ν) = Γ0 +

n2∑

i=1

γ
(ν+1)
i Ωi (3.13)

is satisfied. Equivalently, we work on solving the equation

K(ν) = U (ν)∗Γ0 − I +
n2∑

i=1

γ
(ν+1)
i U (ν)∗Ωi, (3.14)

where bothK(ν) and{γ(ν+1)
i } are unknowns.

We may first solve for real-valued{γ(ν+1)
i } independent ofK(ν) as follows. Denote





Φ
(ν)
0 := I − U (ν)∗Γ0

Φ
(ν)
i := U (ν)∗Ωi, i = 1, . . . , n2.

(3.15)

4The Lie theory asserts that a unitary matrixU can be parameterized by a skew-hermitian matrixK through the exponential map,
whereasK is skew-hermitian if and only ifℜ(K) is skew-symmetric andℑ(U) is symmetric. The subspace of real symmetric matrices

is of dimensionn(n+1)
2

and that of real skew-symmetric matrices is of dimensionn(n−1)
2

.
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For convenience, adopt also notations thatMD stands for the column vector of diagonal entries ofM , MU

for column vector formed by vectorizing the strictly upper triangular part ofM row-wise, andML the column
vectors by vectorizing the strictly lower part matrix ofM column-wise. Then, using the fact thatK(ν) is
skew-hermitian,{γ(ν+1)

i } must satisfy the linear equation




ℜ(Φ
(ν)
1 )D . . . ℜ(Φ

(ν)
n2 )D

ℜ(Φ
(ν)
1 )U + ℜ(Φ

(ν)
1 )L . . . ℜ(Φ

(ν)
n2 )

U + ℜ(Φ
(ν)
n2 )

L

ℑ(Φ
(ν)
1 )U −ℑ(Φ

(ν)
1 )L . . . ℑ(Φ

(ν)
n2 )

U −ℑ(Φ
(ν)
n2 )

L







γ
(ν+1)
1

...

γ
(ν+1)
n2


=




ℜ(Φ
(ν)
0 )D

ℜ(Φ
(ν)
0 )U + ℜ(Φ

(ν)
0 )L

ℑ(Φ
(ν)
0 )U −ℑ(Φ

(ν)
0 )L


 . (3.16)

Note that the actual value ofK(ν) does not play any role at all in the linear system (3.16). Oncethe set{γ(ν+1)
i }

is determined,K(ν) follows from (3.14) which is guaranteed to be skew-hermitian.
The above procedure amounts to only the tangent step in the classical Newton method. We now need a

way to "lift up" the pointΓ(ν+1) ∈ A back to a pointU (ν+1) ∈ U (n). The challenge here is that, unlike
the conventional Newton method in the Euclidean space, there is no obvious coordinate axis to follow. One
possible way of this lifting can be motivated as follows. Since our goal is to find an intersection of the two sets
U (n) andA , we hope that all the iterations eventually cluster near a point of intersection. Thus we should
expect

U (ν+1) ≈ Γ(ν+1). (3.17)

On the other hand, the tangent equation (3.13) is merely a linearization of a nonlinear relationship in the sense
that

Γ(ν+1)) ≈ U (ν)eK
(ν)

. (3.18)

To evaluate the exponential matrixeK
(ν)

in (3.18) is not needed and is expensive. Instead, we define the Cayley
transform

R(ν) :=

(
I +

K(ν)

2

)(
I −

K(ν)

2

)−1

(3.19)

which happens to be the(1, 1) Padé approximation of the matrixeK
(ν)

. It is well known thatR(ν) ∈ U (n)
and that

R(ν) ≈ eK
(ν)

(3.20)

if ‖K(ν)‖ is small. Combining (3.17) and (3.18), we now define

U (ν+1) := U (ν)R(ν) (3.21)

and the next iteration is ready to begin. In this way, we have completed the lifting of the matrixΓ(ν+1) from
the affine subspaceA to the surfaceU (n).

We shall not be bothered to provide a convergence proof of theiteration described above, because an
argument following step by step of that given in [3, Theorem 4.2] can easily be laid out. We simply point
out that since the scheme follows the geometry so closely comparable to the conventional Newton method,
a rate of quadratic convergence is expected, as is evidencedin Figure 3.4 which represents merely one of
our many numerical experiments. In this experiment, we start with the alternating projection method to until
‖U (ν+1)−U (ν)‖F ≤ 10−2 (which takes 19 iterations in this particular instance) andthen let the coordinate-free
Newton method described in Section 3.2 kick in (which takes only 4 iterations to reach the machine precision).
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FIGURE 3.4. Linear convergence of the alternating projection method (iterations 1 to 19) and quadratic convergence of the Newton
method (iterations 20 to 23).

4. Ordered solutions. LetX [1] andX [2] denote two distinct solutions to (1.1). We sometimes preferto
compare the solutions by the partial ordering in the sense thatX [1] � X [2] if X [1] − X [2] is positive semi-
definite. Most of the algorithms proposed in the literature have the feature of computing the maximal solution
X+, that is,X+ � X for any other HSD solutionX of (1.1). See [1, 6, 9, 12, 14] for some specific schemes
and the proofs of their convergence. A common feature of these methods is that the iterates{Xk} generated
are inherently monotone. Even when the conventional Newton’s method is applied to (1.1), which can be
characterized as simply solving the Stein’s equation

Xk − L∗
kXkLk = Q− 2L∗

kA, k = 1, . . . (4.1)

per step, whereX0 = Q andLk := X−1
k−1A, it is still the case thatX0 � X1 � . . . � X+ [9, Theorem 5.3].

Our method described in Section 3.2, in contrast, can be usedto find other solutions.
An analytic way for checking whetherX [1] � X [2] is as follows [6, Theorem 2.2].

LEMMA 4.1. Corresponding toX [k], k = 1, 2, let C [k]
0 := X [k]

1
2 andC [k]

1 := X [k]
1
2A. Form the

Fejér-Riesz factorC [k]
0 + λC

[k]
1 as is described in Theorem 1.1.

1. If the matrix-valued function
(
C

[2]
0 + λC

[2]
1

)(
C

[1]
0 + λC

[1]
1

)−1

is analytic in the open unit disk for

λ, thenX [1] � X [2].

2. In particular,X [1] is a maximal solution ifdet
(
C

[1]
0 + λC

[1]
1

)
6= 0 for |λ| < 1.

In contrast, we offer the following criterion which might becomputationally more feasible.
LEMMA 4.2. With respect toX [k], k = 1, 2, let Γ[k] be the corresponding unitary solutions to (2.9) and

{γ
[k]
i } be the set of associated real-valued coefficients accordingto (3.1). Then

1. X [1] � X [2] if and only ifs(Γ[1]) � s(Γ[2]).
2. X [1] � X [2] if and only if5

n2∑

i=1

(
γ
[1]
i − γ

[2]
i

)
SΩiΣ

1
2
1 � 0. (4.2)

5As a by-product of this proof, we also see that the correspondence (2.12) betweenX andΓ is one-to-one. The reason is as follows. By

definition,{Ωi} and, consequently,{SΩiΣ
1
2
1 } are linearly independent. It follows from (4.2) thatX[1] = X[2] if and only if γ[1]

i
= γ

[2]
i

for all 1 ≤ i ≤ n2.
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FIGURE 4.1.Diagonal entries of 16 real-valued solutions to Example 1.

Proof. The first claim follows from (2.12). Observe next that the difference

δΓ := Γ[1] − Γ[2].

satisfies the homogeneous problem (3.2), implying that the matrix SδΓΣ
1
2
1 must be hermitian. It follows that

U∗
1 s(δΓ)U1 =

1

2
U∗
1

(
U2Σ

1
2
2 δΓΣ

1
2
1 U

∗
1 + U1Σ

1
2
1 δΓ

∗Σ
1
2
2 U

∗
2

)
U1 = SδΓΣ

1
2
1 .

The second claim follows from the fact thatSδΓΣ
1
2
1 =

∑n2

i=1

(
γ
[1]
i − γ

[2]
i

)
SΩiΣ

1
2
1 .

Note thatSΩiΣ
1
2
1 , i = 1, . . . , n2, are fixed hermitian matrices. What is interesting in the expression (4.2)

is that it means a linear combination of these fixed matrices via coefficientsδγi := γ
[1]
i − γ

[2]
i , i = 1, . . . , n2,

should be in the cone of positive semi-definite matrices. Obviously, {δγi} are restricted as there are only
finitely many solutions{γi} to (2.9).

By now, it should be clear on how to characterize the extreme solutions in terms of its corresponding
{γi}. For the maximal solution in the complex problem, for example, we seek to solve this multi-objective
optimization problem:

max
{γi}

n2∑

i=1

γi

(
SΩiΣ

1
2
1

)D

, (4.3)

where recall that
(
SΩiΣ

1
2
1

)D

denotes the column vector of diagonal entries of the fixed hermitian matrix

SΩiΣ
1
2
1 and, therefore, is real-valued, subject to the equality constraint that{γi} satisfies the system (3.8). We

stress that, based on Theorem 3.1, there are only finitely many feasible solutions.
Example 2. Consider the problem (1.1) with data given in Example 1. We have mentioned that the

alternating projection method can find a total of 16 real-valued solutions. With the Newton method, we gain
precision and speed. It is not feasible to list all 16 solutions, so we simply plot their diagonals in Figure 4.1. The
point to make is that the maximal (minimal) solution must be such that its diagonal entries are larger (smaller)
than any other solution. The graph also clearly indicates that not all solutions can be partially ordered.
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5. Conclusion. The linear matrix equation (1.1) has been studied extensively in the literature. This work
revisits this problem from the Fejér-Riesz factorization point of view. The original Fejér-Riesz factorization
theorem concerns an abstract factorization of a rational matrix-valued function over the unit disk. This approach
offers a numerical procedure to realize such a factorization and makes it possible to find all solutions to the
equation (1.1).

Specifically, it is shown that every HPD solutionX to the nonlinear matrix equation can be expressed in
a unique way as in (2.12) whereΓ is a unitary solution to the linear Sylvester equation (2.9). The Sylvester
equation might be easier to solve where the unitary constraint can be enforced via simple notion of projections.
Two projection mechanisms are discussed — one is the usual Euclidean projection which gives rise to a minimal
distance and the other is the Newton-type projection which does not refer to any coordinate frame.

REFERENCES

[1] W. N. ANDERSON, JR., T. D. MORLEY, AND G. E. TRAPP, Positive solutions toX = A − BX−1B∗, Linear Algebra Appl.,
134 (1990), pp. 53–62.

[2] J. P. BOYLE AND R. L. DYKSTRA, A method for finding projections onto the intersection of convex sets in Hilbert spaces, in
Advances in order restricted statistical inference (Iowa City, Iowa, 1985), vol. 37 of Lecture Notes in Statist., Springer, Berlin,
1986, pp. 28–47.

[3] M. T. CHU, Numerical methods for inverse singular value problems, SIAM J. Numer. Anal., 29 (1992), pp. 885–903.
[4] M. A. D RITSCHEL AND J. ROVNYAK , The operator Fejér-Riesz theorem, in A glimpse at Hilbert space operators, vol. 207 of Oper.

Theory Adv. Appl., Birkhäuser Verlag, Basel, 2010, pp. 223–254.
[5] J. C. ENGWERDA, On the existence of a positive definite solution of the matrixequationX + ATX−1A = I, Linear Algebra

Appl., 194 (1993), pp. 91–108.
[6] J. C. ENGWERDA, A. C. M. RAN , AND A. L. RIJKEBOER, Necessary and sufficient conditions for the existence of a positive

definite solution of the matrix equationX + A∗X−1A = Q, Linear Algebra Appl., 186 (1993), pp. 255–275.
[7] L. EPHREMIDZE, G. JANASHIA , AND E. LAGVILAVA , A simple proof of the matrix-valued Fejér-Riesz theorem, J. Fourier Anal.

Appl., 15 (2009), pp. 124–127.
[8] A. FERRANTE AND B. C. LEVY, Hermitian solutions of the equationX = Q + NX−1N∗, Linear Algebra Appl., 247 (1996),

pp. 359–373.
[9] C.-H. GUO AND P. LANCASTER, Iterative solution of two matrix equations, Math. Comp., 68 (1999), pp. 1589–1603.

[10] V. I. HASANOV AND S. M. EL-SAYED, On the positive definite solutions of nonlinear matrix equation X + A⋆X−δA = Q,
Linear Algebra Appl., 412 (2006), pp. 154–160.

[11] N. J. HIGHAM , Computing the polar decomposition—with applications, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 1160–1174.
[12] I. G. IVANOV, V. I. HASANOV, AND F. UHLIG, Improved methods and starting values to solve the matrix equations X ±

A∗X−1A = I iteratively, Math. Comp., 74 (2005), pp. 263–278.
[13] J. B. KELLER, Closest unitary, orthogonal and Hermitian operators to a given operator, Math. Mag., 48 (1975), pp. 192–197.
[14] B. MEINI, Efficient computation of the extreme solutions ofX + A∗X−1A = Q andX − A∗X−1A = Q, Math. Comp., 71

(2002), pp. 1189–1204.
[15] A. C. M. RAN AND M. C. B. REURINGS, On the nonlinear matrix equationX + A∗F (X)A = Q: solutions and perturbation

theory, Linear Algebra Appl., 346 (2002), pp. 15–26.
[16] M. ROSENBLUM AND J. ROVNYAK , Hardy classes and operator theory, Dover Publications, Inc., Mineola, NY, 1997. Corrected

reprint of the 1985 original.
[17] A. J. SOMMESE AND C. W. WAMPLER, II, The numerical solution of systems of polynomials arising inengineering and science,

World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
[18] X. ZHAN, Computing the extremal positive definite solutions of a matrix equation, SIAM J. Sci. Comput., 17 (1996), pp. 1167–1174.

12


