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Abstract. The nonlinear matrix equatioR + A* X ~1 A = Q can be cast as a linear Sylvester equation subject to umitastraint.
The Sylvester equation can be obtained by means of herneitigmvalue computation. The unitary constraint can befgadiby means of
either a straightforward alternating projection methotypr coordinate-free Newton iteration. The idea proposehigpaper originates
from the operator-valued Fejér-Riesz theorem on an ab$aetorization of some rational matrix-valued functioreothe unit disk. The
work now makes the factorization realizable by numericahpotation.
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1. Introduction. The nonlinear matrix equation
X+ A X 1A=0Q, (1.1)

whereA, € C™*™ are given and) is hermitian positive definite (HPD), has been extensiveldied in the
literature. Far from being complete, we mentibh([1,16, 8 /14],as a few general references on the subject of
existence theory. A variety of numerical methods for adyuadmputing the HPD solution has been proposed
in [9[12,[14)18]. The majority of currently available al@gbms takes on notions from fixed-point iteration,
Newton-type iteration, or cyclic reduction. Often theseimoels are effective only for computing the so called
extreme solutions, though the problem generally has melsiplutions.

With regard to the solvability of(1l1), perhaps the most pé@te analysis is developed inl [6] by using
an analytic factorization argument. The following resintparticular, characterizes a sufficient and necessary
condition for the existence of an HPD solution [6, Theoref] 2.

THEOREM 1.1. Corresponding to[(1]1), define a rational matrix-valueddtion via

A*
PYA) =AA+Q+ N (1.2)
Then, [[1.11) has an HPD solution if and onlydit(¢())) is not identically zero and)(\) = 0 for all A on the
unit circle. In this case,
a. The function)()\) can be factorized as

YO = (G5 + SH)Co +2C), 13

with det(C()> 7& 0, and
X =CiCo (1.4)

is a solution of[(T.1).
b. Every positive definite solution @f(1L.1) is obtained iis thiay.

The factorization[(1]3) in Theorem 1.1 is a special case@fitlore comprehensive operator-valued Fejér-
Riesz theorem [16, Theorem 6.6] which is a generalizatiercthssical Fejér-Riesz theorem for nonnegative
trigonometric Laurent polynomials on the unit circle. ltiideresting to note that the proof of the operator-
valued Fejér-Riesz theorem in the monograph [16] itself &atly a one-line statement calling on another
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result concerning the factorization of pseudo-meromarfhictions. Over all, the disquisition in [16] employs
machineries built upon the notion of Nevanlinna and Hardgsés. A more direct proof of the matrix-valued
Fejér-Riesz factorization is given inl[7]. See alsb [4] farexcellent survey of this topic.

While a factorization such als (1.3) might be obvious fromrap theory point of view, the needed simul-
taneous decomposition

Q = C:Cy+CrC
oro T (1.5)
A = CiCy

for a given pair of matricesl, Q € C"*™ is not obvious. Motivated by (1.4) and the fact that everyitpas
definite solution is obtained in this way, we are curious toklthat it might be reasonable to propose a feasible
numerical procedure that does the factorization (1.5).uBaneous decomposition of multiple matrices should
be an interesting mathematical problem in itself.

In this paper, we offer a framework to tackle this particudecomposition probleni.(1.5). In turns, the
decomposition can be adapted to formulate two new numaeregthods for solving(111). The advantages of
our approach are multi-fold:

1. It effectively reduced the problem via spectral decontmrsto the problem of finding the intersection
of the manifold? (n) of unitary matrices with a specific affine subspace.

2. Projections ontd” (n) and the affine subspace can easily be done. Hence, a corydnieglobal
convergent alternating projection method is readily adé.

3. Using merely the geometry, a coordinate-free Newtomr-figration can also be developed to gain
high precision and quadratic rate of convergence.

4. All positive solutions can be parameterized by mean® ¢f.) and, hence, all positive solutions are
taken into account.

This paper is organized as follows. We begin in Sediion 2 lypdimg the rational function)(\) at two
points on the unit disk. Using spectral information of thenpées, we rewrite the nonlinear equatibn{1.1) into a
Sylvester equation which is linear. The cost for clearingtbe nonlinearity by such a transformation is that the
solution to the Sylvester equation must remain unitary. f@sirmain result is a one-to-one correspondence in
representing the solution to the nonlinear problem by aamp#olution to the linear problem. In Sect{dn 3 we
argue by using the theory of parameter continuation thag¢igeally there are only finitely many geometrically
isolated solutions. More importantly, the geometry of anjitmatrices is so well structured that we propose
two simple numerical procedures by using projections. IotiSe[3.1 we employ the standard Euclidean
projection, including the polar decomposition, to formalan alternative projection algorithm. The method
converges linearly, but globally. In Sectibn13.2 we emplgyrajection along the tangent direction which thus
constitutes a Newton-type iteration. A nice feature of thisdratically convergent method is that it refers to
no particular coordinate frame. In our actual implementafor numerical test, we combine both methods
into a hybrid algorithm that starts with several steps ddralating projection to drive the iterates closer to a
true solution before the Newton projection is activatedféster convergence and better precision. Finally, in
Sectior[ 4, we present a new way to characterize the partiating among solutions.

2. Discrete Fejér-Riesz factorizations.As det(#(\)) is itself a rational (scalar) function, there are only
a finite number of points for whiciet(y/(A)) = 0. Using different values ok on the unit circle if necessary,
we may assume without loss of generality that the two diecsatmpleg)(1) andy(—1) are positive definite.
Thus, there exist matrices 8 € C™*" such that

Q+A+A* = <a*a
(2.1)
Q-A-A" = p*B.
Upon comparing with[{1]3), we may take
G = =
(2.2)
o = =



onceq, (3 are determined. The resultigy andC in (2.2) must satisfy the conditions specified[in {1.5). It is
easy to check by substitution that for any factorizatiofidl), the first constrairn = C3Cy + C;Cy in (1.8)
is always satisfied. It remains to require that the factgrs must be such that

Bfa— a8 =2(A— A"). (2.3)

Being skew hermitian, the conditidn_(2.3) entaifsreal-valued equations which will be further detailed below
Ouir first goal for now is to find these suitable factarands.

2.1. Sylvester equation subject to unitary constraint. There also exist unitary matricd$,, Uy €
%« (n), and positive diagonal matricéy , X € R™*"™ such that

Q+A+A = UX U
(2.4)
Q-—A—A* = US,Us.
Define
& = UralUis;?
N 1 (2.5)
B = U;BU.S, 2.

It can be seen trivially that, 3 € % (n). We may rewrite the constraiii(2.3) in termscof3, which becomes
UiUsS3 B ULULGE? — SEa U UsBSIULU, = U (A — AU (2.6)

As the spectral decompositions [0 (2.4) are readily avhlahe matrices

0 = U,
S = ox} 2.7)
K = Ui (A— A9,

are known ands is skew-hermitian. We may conveniently condense the twaawk factorsa, 3 € U (n)
into a single unknown matrik € % (n) defined by

o~

I :=j3*0*a (2.8)
which must satisfy the linear Sylvester equation
STS? — TIT*S* = K. (2.9)

Solving the linear equatiof (2.9) is relatively simplerritslving the quadratic equatidn (R.3), except that the
solutionI” must be a unitary matrix by the definitidn_(2.8). We shall dssctwo simple numerical schemes to
accomplish this goal in Sectign 3.

2.2. Parametrization of solutions. Thus far, all the steps are reversible. No inversion is neéedeept
for the inverses of diagonal matricEs andX,, which are trivial. Once a solutioh is found, we may take
& = O, (2.10)

WhereB € 7 (n) can be arbitrary and can be used as a parameter. Using (& 5haw recover the desirable
o, 3
a = UnBTSiUs
B (2.11)
B = UB%3Us.
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In particular, the set of positive definite solutions[foJjlcdn be characterized via the set of intersection of the
manifold% (n) and the affine subspace of solutions[fa}(2.9) as follows.
THEOREM 2.1. Every positive definite solution o (1.1) is of the form

1
X =3(Q+s(I), (2.12)
where
1 1 1 1 1
s(D) =3 (UQZ; IS2UF + Uy 57052 U2*) (2.13)

andT is a unitary solution to the Sylvester equatibn{2.9).
Proof. Using the relationshifi.(2.2), we may rewritg, C; in terms of [Z.111). Byl(1]4), we see further that

1 1 1 1 1
X=7 <U2222 + UlEfF*) (rszf %2 U;)

which may be simplified td(2.12) by usinig (2.0).

Observe in[[Z212) that only the unitary solutibris needed. The reference fioas is required in(2.11) is
immaterial. Observer also that is related td” in a linear way, the difference being th#tsatisfies a nonlinear
equation[(T.11) whil@ satisfies a linear equatidn (2.9) and is unitary. After idtrcing more detailed notations,
we shall argue further in Sectidfh 4 that such a correspordisnone-to-one. We think that such a natural
parametrization through € % (n) satisfying [2.9) for each positive definite solutiéhof (L.1) is simple and
interesting. We now characterize the paramgter

3. Solving forT". The Sylvester equatiofi (2.9) is under-determined due tgkbe-hermitian structure.
A general solution to the equation can be expressed as

I'=Ty +Z%‘Qi7 (3.1)

whereT', is a particular solution and the sg®,} forms a basis for the solution subspace of the homogeneous
problem

1 1
STE? —32T*8* = 0. 3.2)
We need to clarify the meaning of summationin13.1).
First, cares must be given when counting the dimensionafitthe null space of_(3]12). For a generic
I' € C™*", there are2n? real-valued unknown entries. The skew hermitian structuogvever, gives rise to
only n? real-valued equations. The null space therefore should teal dimensionality.? for complex-valued

solutions.
More specifically, let the real and the imaginary parts of &rixad/ be expressed as

M = R(M) 4+ 13(M). (3.3)
We can rewrite the Sylvester equation as a system of eqsdtiothe pair(®(T"), (I')) € R™*™ x R**"

1

(R(SIR(T) — S(S)3(I) Bf ~ SHRI)TR(ST - IO)TI(S)T) = R(K)

1 (3.4)
(S(S)R(T) + R(S)STNTE + £HSMTRES)T + RO)TS(S)T) = I(K).
Denote
A = 22RO
B = RS)®:
1 (3.5)
C = $Fe3(S)
D = S ®L:
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and letP denote the permutation matrix of indices that enumerate®smof a matrix row-wise. Thefi.(3.4) is
equivalent to

(3.6)

A—BP —C+DP [ vec®I)) ] [ vec(R(K))
C+DP A+BP } [ vec(3(I)) ] = { vec(S(K)) }

This square system (3.6) is rank deficient because, in tlghfirst equation in((3]4) is skew-symmetric and
the second equation is symmetric. Taking this structure amtcount, there are generically independent
equations. It is in this context that we define the b&Sis} and write [3.1) where; are real-valued.

It is worth mentioning the special case whdn@ € R™*™ and@ is symmetric positive definite (SPD).
The question of existence for this real-valued problem fgsnistudied in [6, Section 8] and more detailed in
[5]. In this case, the above discussion can be carried oxeept that (skew-)hermitian matrices are replaced
by (skew-)symmetric matrices and unitary matrices by aytmal matrices. In particular, the systdm [3.6) is
reduced to

(A — BP)vec(T') = vec(K), (3.7)

whose coefficient matrixd — BP is of rank =) generically and, henc#,is characterized b"s"1) basis
solutions{;} to the real-valued homogeneous problém](3.2). Other thesetmodifications, the theory and
algorithm described below can be applied without trouble.

Returning to the general problem of complex-valued probléra representation df in the form [3.1)
provides a parametrization of solutionsfo {2.9). Our thgequires thatl® also be unitary. This will require
{~:} to satisfy the nonlinear system

1 (T'§T0) (T + I'Y,) R(QUQ,; + Q1 Q)
[ 0 ] [ 3(I'Ty) } + Z% { S(QTy + i) ] > [ s, + 0ty |- Y
1<i<j<n?
The topn? equations in[(318) are from entries of symmetric matricdslerthe bottorm? equations are from
skew-symmetric matrices. So, in total this is a square gmtyial system witm? unknowns inm? equations.
Regardind’y, 2; and, correspondingly, the problem datand(@), as the parameters of the polynomial system,
the follow result is known from the theory of parameter conétion [17, Theorem 7.1.1].
THEOREM3.1. Let (A, Q) denote the number of geometrically isolated solutions éccttrresponding
(3:8) over the algebraically closed complex space. Then
1. N(A, Q) is the same, say/, for almost allA, @ € C**™ and( is HPD.
2. Forall A,Q € C"*", QisHPD,N(A4,Q) < N .
3. The subsetod, Q whereN (4, Q) = N is a Zariski open set, that is, the exceptional subset obisns
A,Q € C™™ whereN (4, Q) < N is an affine algebraic dBtcontained within an algebraic set of
codimension one.

Since the real space is Zariski dense in the complex spaeaptive statements hold for almostallQ €
R™*" () is SPD, except that the number of real-valued isolatedisoisivaries as a function of, Q and is no
longer a constant. The latter is an interesting topic in tiz’@and ongoing research area called real algebraic
geometry. For our application, we only need the fact thategeally solutions to[(1]1) are geometrically
isolated. See also][6, Corollary 6.6 and Theorem 8.2]. Waapthe isolated intersection points of the surface
% (n) of unitary matrices and the affine subspagecontaining alll’s in the form [3.1) in the drawings of
Figure[3.1 and Figuife 3.3.

We now describe two new methods to fiidind, hence, a solutiak to (I.1). The first approach alternates
between the surfac# (n) and the affine subspae#. The computation involves a sequence of polar decom-
positions. No matrix inversion is needed. This alternapingjection approach offers global convergence, but

1A subset of affinex-spaceA ™ over an algebraically closed fiekdis called an affine algebraic set if it can be written as the kerus
of a set of polynomials. By the Hilbert basis theorem, thissd@olynomials can be assumed to be finite. The Zariski @ppbnA™ is
simply a topology where the closed sets are precisely thebedic sets if\™.
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possible isolated intersection @f (n) and.</

FIGURE 3.1. Alternating projection betwee® (n) and% (n).

at linear rate. The second approach is a convenient Newfmngrocedure that adjusts the paramefer$
with the aim at moving the correspondifigoward the se? (n). As is typical, it offers local convergence, but
at quadratic rate. Notably this Newton approach involvdg gaometric interpretation without referring to the
nonlinear systeni(3.8).

3.1. Alternating projection method. The notion of alternating projections has been used in mésty d
ciplines. The mechanism of projections betweiin) and.«/ is particularly easy. The idea is sketched in
Figure[3.1. Specifically, by identifying a complex-valuedtnix M as(R(M), 3(M)), the bilinear functional

(M, N) := (R(M),R(N))r + (3(M), 3(N)) (3.9)

defines an inner product ov&f*™. In this sense, we may assume that the bgig for the solution subspace
of the homogeneous problem(3.2) are chosen to be mutudigrormal to begin with Starting withV (#) ¢
% (n), the matrixi'*) associated with the vectgr”) € R™” defined by

Ny {<V<v> ~ T, ), (3.10)

is the projection of () onto to the affine subspacé. In the meantime, the nearest pEin’n the manifold
% (n) to a specified’(*) is given by the unitary matrix which occurs in the polar depasition of'*) [13].
Polar decomposition can be computed easily via the singalae decomposition [11].

By construction, the distance betweléft) andI'(*) is being reduced per iteration. The sequence of values
|[V®) —T)| - converges globally at linear rate. However, the®€t) being non-convex, it is possible that
the iterates will get stagnated at a local solution. If treggeaition does not occur, then the iterations should
converge globally to an intersection@f(n) and.< at linear rate.

Example 1.Consider the probleni.(1.1) with = 6 and

—1.7043  0.6249 —1.4613 —0.0089 —0.9208 —0.2915

0.6892 0.8939 1.3194 0.8582 0.8131 1.6303

A= —1.2885 —1.0669 0.2346 —0.4312 0.3086 —0.7185
- —1.7242 0.3818 0.6473 1.6436 0.0197 —1.3301 ’

0.0695 —0.0223 2.0685 0.1987 —0.7067 —1.5836
0.7089 0.0048 —3.1480 —0.4098 0.8164 —0.9869

2That is, we identifyQ; = (R(Q:), () € R™ x R"* and consider the corresponding linear sysfem (3.16).
3Under the usual Euclidean norm ov@t <™, which is defined by| M ||z := +/tr(M M*) and is equivalent to the induced norm by
the induced inner produdi(3.9).

6



Histogram of Limit Points Reached by Alternating Projection

Frequencey of Hits

12 14 16 18

4 6 8 10
ID of Solutions Based on the First Entries

FIGURE 3.2. Distribution of hit frequencies on solutions by random tfghe alternating projection method.

7.1618 1.8363 —0.9226 —3.3863 —0.2137 —1.3190

1.8363 12.1889 3.4528 —4.8090 3.8368 0.9035

Q _ —0.9226 3.4528 16.7803 3.3950 3.6227 1.0194
- —3.3863 —4.8090 3.3950 10.0691 —4.3373 0.9658
—0.2137 3.8368 3.6227 —4.3373 10.7882 4.6472

—1.3190 0.9035 1.0194 0.9658 4.6472 9.3834

For simplicity, we limit ourselves only to real-valued couatation. So, in our theory, we replace unitary
matrices by orthogonal matrices, HSD solutions by SPD &miat adjoint operation by transpose operation,
and so on. In particular, there are oalybasis solutiong(2;} € R®*6 for I

Out of 250 runs with randomly selected starting points, l4didsrconverge respectively to a total of 16
distinct real-valued solutions. This count is agreeabll Wiat estimated iri_[6, Proposition 8.2]. If we label
these solutions based on the size tligjn ) entries, then plotted in Figuke 3.2 is the frequency of eadltion
reached by the alternating projection method through imisiom test. We shall comment on the significance
of‘ordering” these solutions in Sectigh 4. For now we onlynpout that there is a good probability that the
alternating projection method with a random starting puiiitconverge to a solution that is neither maximal
nor minimal.

We point out in passing that the above projection mechan@mso easy to perform that they can be
readily extended to the more sophisticated schemes, sublylestra’s projection algorithm_[2]. While the
unmodified alternating projection method described abeaeld to some arbitrary point in the intersection,
Dykstra’s algorithm is generally capable of relating thertéhg point to the nearest limit point through a few
easily manageable intermediate steps. The only possibieeco is that Dykstra’s algorithm works best for
finding the intersection of convex sets, whereas in our deseetZ (n) is not convex. So, even though the
projections can be performed at every step, the resultargtibn may not converge globally anymore. We
choose not to implement Dykstra’s algorithm in this study.

Another application of the alternating projection methsdoi perform the iteration only a few times with
the hope that’(*) is brought close enough to the intersection for the Newteraiton to kicks in for faster
convergence and better precision. Such a tactic is impleeden the coordinate-free Newton method which
we now describe below.

3.2. Coordinate-free Newton iteration. Recall that a classical Newton step for a functjpnR — R
is composed of two components: First, compute the iterate

2D — ) (f’(m(”)))_lf(m(”)) (3.11)

which is precisely the-intercept of the tangent line to the graphjoét the point(z*), f(x(*))). Second, lift
(Y to the new poin(z**+1, f(z(»+1))) on the graph off along the y-axis and repeat the iteration. The
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possible isolated intersection @f (n) and.«/

rw+1

FIGURE 3.3.0ne Newton step completed by finding@rintercept through a tangent vector and a lift back#o(n).

set% (n) can be thought of as a smooth manifbaf real dimensiom?. If we think of the surface? (n) as
playing the role of the graph gf and the affine subspac# containing alll’s in the form [3.1) as playing the
role of thex-axis, then an iterative process analogous to the Newtohadahight be developed. The idea is
sketched in the drawing of Figule 8.3. The challenge is tmfdate such an iteration without referring to any
coordinate frames.

The setZ (n) is a special Lie group with well understood Lie algebra dtrees In particular, any tangent
vectorT (U) to % (n) at a given poinUU € % is of the form

T(U)=UK (3.12)

for some skew-hermitian matrix € C™*". GivenU ™) € % (n), the “array"U ") 4+ U*) K with any skew-
hermitian matrixk represents a tangent line #(n) emanating from the poirit ). Mimicking the tangent
step in the classical Newton method, we thus seel/aimtercept of such an array with the affine subspate

In other words, the task demands to find both a skew-hernmititnix i ) and parameterﬁg”“)} such that
the equation

7L2
U+ UMK =T+ Y 4, (3.13)
=1

is satisfied. Equivalently, we work on solving the equation

n2
K@ =0 — 143 4 U, (3.14)
i=1
where bothi ) and{»* "} are unknowns.
We may first solve for real—value@f”“’} independent ofC ) as follows. Denote
o) = 1-UW'T,

3.15
(I)Ey) = U(V)*Qu 1= 1,...,7’12. ( )

4The Lie theory asserts that a unitary matkixcan be parameterized by a skew-hermitian malfixhrough the exponential map,
whereaskK is skew-hermitian if and only if*(K) is skew-symmetric ané (U) is symmetric. The subspace of real symmetric matrices

is of dimension"(";l) and that of real skew-symmetric matrices is of dimenﬁéﬁ;—l).
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For convenience, adopt also notations thaf stands for the column vector of diagonal entries\df MV

for column vector formed by vectorizing the strictly uppeangular part of\/ row-wise, and\V/" the column
vectors by vectorizing the strictly lower part matrix 8f column-wise. Then, using the fact that*) is

skew-hermitian{%.(”“)} must satisfy the linear equation

R(@))P . R(@))P 4D R(@§)P
R@) 4+ R@IE L R@I)Y + R(@Y)E L =] RE@W)Y L R@)E | . (3.16)
(v+1)
S@) - s@) L@ - @)t L e (@)Y - (@)

Note that the actual value & ) does not play any role at all in the linear systém (B.16). Cbheeset{fy(”“)}

is determined ) follows from (3.12) which is guaranteed to be skew-hermitia

The above procedure amounts to only the tangent step in éissichl Newton method. We now need a
way to "lift up" the pointl' ¥+ ¢ o7 back to a point/**Y) € % (n). The challenge here is that, unlike
the conventional Newton method in the Euclidean spacegetiseno obvious coordinate axis to follow. One
possible way of this lifting can be motivated as follows. &imour goal is to find an intersection of the two sets
% (n) and.«Z, we hope that all the iterations eventually cluster neariatfd intersection. Thus we should
expect

U+ & 74, (3.17)

On the other hand, the tangent equatfon {83.13) is merelyealimation of a nonlinear relationship in the sense
that

D) & UMK, (3.18)
To evaluate the exponential mateik " in (3.18) is not needed and is expensive. Instead, we defin€dkiley
transform
K® K»\ !
RW) .= <I+ 5 ) (I - ) (3.19)

which happens to be th@, 1) Padé approximation of the matr&™ . It is well known thatR(*) € U (n)
and that

R™) m K (3.20)
if ||K™)|| is small. Combining{3.17) an@{3]18), we now define
gt .= g R (3.21)

and the next iteration is ready to begin. In this way, we hawameted the lifting of the matrix(**+1) from
the affine subspace’ to the surface” (n).

We shall not be bothered to provide a convergence proof ofténation described above, because an
argument following step by step of that given in [3, Theore2] 4an easily be laid out. We simply point
out that since the scheme follows the geometry so closelypeoatble to the conventional Newton method,
a rate of quadratic convergence is expected, as is evidandéidure[3.4 which represents merely one of
our many numerical experiments. In this experiment, we stéh the alternating projection method to until
U+ U™ < 10~2 (which takes 19 iterations in this particular instance) teh let the coordinate-free
Newton method described in Secton]3.2 kick in (which takey @ iterations to reach the machine precision).
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Evidence of Convergence Rate
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FIGURE 3.4. Linear convergence of the alternating projection methaeergitions 1 to 19) and quadratic convergence of the Newton
method (iterations 20 to 23).

4. Ordered solutions. Let X" and X[ denote two distinct solutions tb{1.1). We sometimes prifer
compare the solutions by the partial ordering in the senseXt!! = X2 if X!l — X2 is positive semi-
definite. Most of the algorithms proposed in the literatuseehthe feature of computing the maximal solution
X, thatis, X, = X for any other HSD solutioiX of (L.1). Seel[l], 6,]9, 12, 14] for some specific schemes
and the proofs of their convergence. A common feature ofetinesthods is that the iterat¢X . } generated
are inherently monotone. Even when the conventional Newtmethod is applied td(1l.1), which can be
characterized as simply solving the Stein’s equation

Xp—LiXyLp=Q—2L1A, k=1,... (4.1)

per step, wher&Xy = Q andLj, := X,;_llA, it is still the case thakKy > X; = ... = X, [9, Theorem 5.3].
Our method described in Section13.2, in contrast, can betosatd other solutions.
An analytic way for checking whethe¥!] = X 2! is as follows[[6, Theorem 2.2].
1 1
LEMMA 4.1. Corresponding taX ™™, k = 1,2, let ¢! := X2 and ¥ .= x? 4. Form the
Fejér-Riesz factoCék] + )\C{k] asis described in Theordm 1.1.
—1
1. If the matrix-valued functiofC{” + A" ) (! +xcf) " is analytic in the open unit disk for
A, thenX ' = X121,
2. In particular, X" is a maximal solution iflet (Cé” + )\C{”) #0for |\ < 1.
In contrast, we offer the following criterion which might bemputationally more feasible.
LEMMA 4.2. With respect taX ¥, k = 1,2, letT'[*] be the corresponding unitary solutions [5(2.9) and
{%U“]} be the set of associated real-valued coefficients accotoifg.1). Then
1. XM = X2 if and only ifs(T'[) = s(T'12]).
2. X[ = X2 if and only ifl

n 2

S (7 =aP) saist o (4.2)

i=1

5As a by-product of this proof, we also see that the corresporel[Z.1R) betweeR andI' is one-to-one. The reason is as follows. By

1
definition, {;} and, consequently,5©2; %2 } are linearly independent. It follows frofi(#.2) that'] = X2 if and only if 72[1] = 72[2]
forall1 < i< n2
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Plot of Diagonals of 16 Solutions

12
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1 15 2 25 3 35 4 45 5 55 6
Diagonal Entries of X

FIGURE4.1.Diagonal entries of 16 real-valued solutions to Example 1.

Proof. The first claim follows from[(Z.12). Observe next that thifedence
or := i — i,
satisfies the homogeneous probl€m](3.2), implying that t&mim%rzf must be hermitian. It follows that

1 1 1 1 1 1
Uts(ar)Uy = SU; (U2222 STSZ U + UR2 6052 Ug) Uy, = S6TS3.

The second claim follows from the fact th&I's? = 37 (’ym - 7}2]) SQ;97.0

Note thatSQiE%, i=1,...,n2, are fixed hermitian matrices. What is interesting in thereggion[(4.P)
is that it means a linear combination of these fixed matrig@seefficients)y; := %[1] — %[2], i=1,...,n%
should be in the cone of positive semi-definite matrices. iQisly, {6~;} are restricted as there are only
finitely many solutiong~; } to (2.9).

By now, it should be clear on how to characterize the extreahations in terms of its corresponding
{7:}. For the maximal solution in the complex problem, for exaenpVe seek to solve this multi-objective
optimization problem:

n? 1\ D
max 27 (Sﬂizf) : (4.3)

\D . . . ; .
where recall thal SQiEf) denotes the column vector of diagonal entries of the fixeaniiem matrix

SQiE% and, therefore, is real-valued, subject to the equalitstraint that{~; } satisfies the systern (3.8). We
stress that, based on Theorem 3.1, there are only finitely fieaisible solutions.

Example 2. Consider the probleni(1.1) with data given in Example 1. Weehaentioned that the
alternating projection method can find a total of 16 realsgdl solutions. With the Newton method, we gain
precision and speed. Itis not feasible to list all 16 sohaico we simply plot their diagonals in Figlrel4.1. The
point to make is that the maximal (minimal) solution must belsthat its diagonal entries are larger (smaller)
than any other solution. The graph also clearly indicatasribt all solutions can be partially ordered.
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5. Conclusion. The linear matrix equatiof (1.1) has been studied extelysivehe literature. This work
revisits this problem from the Fejér-Riesz factorizatiainp of view. The original Fejér-Riesz factorization
theorem concerns an abstract factorization of a rationaixaealued function over the unit disk. This approach
offers a numerical procedure to realize such a factorinadiod makes it possible to find all solutions to the
equation[(T.1).

Specifically, it is shown that every HPD solutida to the nonlinear matrix equation can be expressed in
a unique way as iri(Z2.12) whefeis a unitary solution to the linear Sylvester equation](2B)e Sylvester
equation might be easier to solve where the unitary comsttan be enforced via simple notion of projections.
Two projection mechanisms are discussed — one is the usahélEan projection which gives rise to a minimal
distance and the other is the Newton-type projection whagsdot refer to any coordinate frame.
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