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Abstract. Updating a model framed as a real symmetric quadratic eigenvalue problem to match observed
spectral information has been a powerful tool for practitioners in different discipline areas. It is often desirable in
updating to match only the part of newly measured data without tampering with the other part of unmeasured and
often unknown eigenstructure inhering in the original model. Such an updating, known as no spill-over, has been
a critical yet challenging task in practice. Only recently, a mathematical theory on updating with no spill-over has
begun to be understood. In applications, however, often there is the additional requisite of maintaining positive
definiteness in the coefficient matrices. Toward that need, this paper advances one step forward by preserving
both no spill-over and positive definiteness of the mass and the stiffness matrices. This investigation establishes
some necessary and sufficient solvability conditions for this open problem.
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1. Introduction. By a real symmetric quadratic model, we refer to in this paper any system
that leads to a quadratic λ-matrix of the form,

Q(λ) = λ2M + λC + K, (1.1)

where M , D and K are n × n real symmetric matrices and, additionally, both M and K are
positive definite. Real symmetric quadratic models arise frequently in areas such as applied
mechanics, electrical oscillation, vibro-acoustics, fluid dynamics, signal processing, and finite
element model of some critical PDEs [15, 35]. The specifications of the underlying physical system
are embedded (in certain structural ways) in the matrix coefficients (M,C,K). For example, in
a vibrating system, M , C, and K often represent the mass, damping, and stiffness, respectively.
A typical forward analysis involves, given (M,C,K), finding scalars λ ∈ C and nonzero vectors
x ∈ Cn, called the eigenvalues and eigenvectors of the system, respectively, to satisfy the algebraic
equation Q(λ)x = 0. The spectral information is essential for deducing the dynamical behavior
of the underlying physical system. The theoretical framework for matrix polynomials in general
and quadratic eigenvalue problems (QEP) in particular can be found in the seminal books by
Lancaster [35] and by Gohberg, Lancaster and Rodman [31, 32]. A good survey of applications,
mathematical properties, and a variety of numerical algorithms for the QEP can be found in the
treatise by Tisseur and Meerbergen [15].

While the forward problem characterizes the dynamical behavior of a system in terms of its
physical parameters, an equivalently important topic is the inverse problem of expressing the
physical parameters in terms of the dynamical behavior. A quadratic inverse eigenvalue problem
(QIEP) is concerned about determining coefficients M , C and K of the system (1.1) from its
observed or expected eigeninformation.

Depending on the type of eigeninformation available and the properties to be imposed on
the matrix coefficients, there are different ways of formulating a QIEP. We mention, for instance,
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the QIEP where only partial eigenstructure has been prescribed [3, 5] and the QIEP where the
complete spectral information is given but M and K are positive definite [6, 7, 11, 12]. Updating
the coefficient matrices of an existent model is another class of QIEPs where the idea is to correct
errors in the model specifications so that the updated model will have a behavior closely matching
the experimental data [21, 23, 25].

The notion of model updating has emerged in the 90’s as an important tool for the design,
construction, and maintenance of mechanical systems. It has attracted extensive research interests
ever since. A real symmetric quadratic model updating problem can be formulated as follows:

(MUP) Given a real symmetric quadratic model (M0, C0,K0) and a few of its associated
eigenpairs {(λj ,xj)}k

j=1, k ≤ n, where λj’s are distinct simple eigenvalues, assume that
new eigenpairs {(σj ,yj)}k

j=1 have been measured, where σj’s are distinct and have the
same type of number (real or complex) as the corresponding λj’s. Update the quadratic
model (M0, C0,K0) to a new real symmetric quadratic model (M,C,K) such that

(i) The newly measured {(σj ,yj)}k
j=1 form k eigenpairs of the new model (M,C,K).

(ii) The remaining 2n − k eigenpairs of (M,C,K) are kept the same as those of the
original (M0, C0,K0).

Note that M and K being positive definite is a requirement inhering in the real symmetric
quadratic model by our definition. The second condition above is known as the no spill-over
phenomenon [2] to the unmeasured or unknown eigenstructure. No spill-over is required in the
updating process either because these vibrating parameters are proven to be acceptable in the
original model Q0(λ) = λ2M0+λC0+K0 and engineers do not wish to introduce new excitements
via updating or, more realistically, because engineers simply do not know of any information about
these parameters.

Far from being complete, we mention references [17, 26, 27, 29, 30, 34, 33] for the undamped
case C = C0 = 0, [1, 9, 17, 18] for the damped problem, and [10, 13, 23, 24, 28] for the low-
rank updating on C and K. Needless to say, the theory developed thus far is still fragmentary
and the techniques are certainly inadequate. One major difficulty is that all these methods can
maintain the symmetry and reproduce measured data, but cannot guarantee no spill-over after
the update. Neither can these methods warrant positive definiteness of the mass matrix M and
stiffness matrix K which often is critical in applications. A mathematical theory for the modified
MUP without the requirement of positive definiteness has been developed in two recent papers
[2, 4]. This paper is another step of advance that generalizes the theory to include the important
condition of maintaining positive definiteness of M and K. The main thrust in this study is to
develop some necessary and sufficient conditions for the solvability of the MUP. We believe that
our results are innovative in the field.

To set the notation for later discussion, let

λ1, · · · , λs, λs+1, · · · , λt, λs+1, · · · , λt

denote the portion (k = 2t − s) of the spectrum to be replaced, where λ1, · · · , λs ∈ R are the
distinct real eigenvalues and λs+1, · · · , λt ∈ C are the distinct complex eigenvalues. Let the
corresponding eigenvectors be denoted by

x1, · · · ,xs, xs+1, · · · ,xt, xs+1, · · · ,xt.

For j = s + 1, . . . , t, write λj = αj + ıβj and xj = xjR + ıxjI with αj , βj ∈ R and xjR, xjI ∈ Rn.
Upon introducing

Λi :=

 λi, i = 1, . . . , s[
αi βi

−βi αi

]
, i = s + 1, . . . , t,
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and

Xi :=
{

xi, i = 1, . . . , s[
xiR xiI

]
, i = s + 1, · · · , t,

we see that the equation

M0XΛ2 + C0XΛ + K0X = 0 (1.2)

is satisfied by the matrices

Λ = diag{Λ1, · · · ,Λs,Λs+1, · · · ,Λt} ∈ Rk×k, (1.3)
X = [X1, · · · , Xs, Xs+1, · · · , Xt] ∈ Rn×k. (1.4)

Without loss of generality, we shall say that the pair of matrices (Λ, X) represents k eigenpairs of
Q(λ). In a similar way, let (Σ, Y ) ∈ Rk×k×Rn×k and (Υ, Z) ∈ R(2n−k)×(2n−k)×Rn×(2n−k) denote
the newly measured k eigenpairs and the remaining 2n− k eigenpairs of Q0(λ), respectively. The
MUP is equivalent to finding n× n real symmetric matrices (∆M,∆C,∆K) such that

(M0 + ∆M)Y Σ2 + (C0 + ∆C)Y Σ + (K0 + ∆K)Y = 0, (1.5)
(M0 + ∆M)ZΥ2 + (C0 + ∆C)ZΥ + (K0 + ∆K)Z = 0, (1.6)

and that M0 + ∆M and K0 + ∆K are positive definite.
It has been shown in [4, Theorem 4.1] that a necessary condition for the equation (1.5) to

hold is that

Y = XT (1.7)

for some T ∈ Rk×k. Furthermore, if Y is of full rank as is assumed hereafter, then T is nonsingular.
In the subsequent discussion, we shall always assume that (1.7) is satisfied.

2. Solvability under a general structure. It is easy to see that the incremental matrices
(∆M,∆C,∆K) of the form, ∆M := M0XΦX>M0,

∆C := −M0XΦΛ−>X>K0 −K0XΛ−1ΦX>M0,
∆K := K0XΛ−1ΦΛ−>X>K0,

(2.1)

where Φ ∈ Rk×k is an arbitrary symmetric matrix, are sufficient for solving the equation (1.6).
The theory established in [4] also shows that, under some very mild conditions on (Υ, Z) which
generally are true, this form is also necessary for solving (1.6). We shall assume this parametric
form on (∆M,∆C,∆K) in the discussion of this section. The case of (∆M,∆C,∆K) not in this
generic form will be considered in the next section.

We derive a necessary and sufficient condition for the solvability of the MUP in this section.
The following three lemmas have already been established in the literature. We list them here as
preparatory results for bringing forth our main discussion.

Lemma 2.1. [22] Given A ∈ Rn×n and B ∈ Rm×m, the equation

AH −HB = 0

has only the trivial solution H = 0 if and only if A and B have no common eigenvalues.
Lemma 2.2. [5] Suppose that A, B, and C ∈ Rk×k are symmetric and that all eigenvalues of

Ω ∈ Rk×k are distinct. Then the equation

AΩ2 + BΩ + C = 0
3



holds if and only if

B = Π−AΩ− Ω>A,

C = Ω>AΩ−ΠΩ,

for some symmetric matrix Π ∈ Rk×k satisfying Ω>Π = ΠΩ. Moreover, if the matrix Ω is
block diagonal with the same structure as that of Λ described in (1.3), then the matrix Π is also
block diagonal of the same structure except that its 2× 2 diagonal blocks are of this special form[

µ ν
ν −µ

]
.

Lemma 2.3. [14] Suppose that A, B, and C ∈ Rn×n, E = [E1, E2] and Ω = diag{Ω1,Ω2}
satisfy the equation

AEΩ2 + BEΩ + CE = 0,

where E1 ∈ Rn×m, E2 ∈ Rn×(2n−m), Ω1 ∈ Rm×m, and Ω2 ∈ R(2n−m)×(2n−m) with m ≤ n. If the
two matrices Ω1 and Ω2 have no common eigenvalues, then it is true that

(E1Ω1)>AE2Ω2 − E>1 CE2 = 0.

Obviously if Φ is positive definite, then we will have the desired positive definiteness for
M0 + ∆M and K0 + ∆K, albeit that (1.5) is yet to be satisfied. Our goal is to characterize the
more general symmetric matrix Φ for the MUP. Toward that end, let

X = [Q1, Q2]
[

R1

0

]
be the QR factorization of X, where [Q1, Q2] ∈ Rn×n is orthogonal, Q1 ∈ Rn×k, and R1 ∈ Rk×k

is nonsingular. We shall use the congruence transformation by the nonsingular matrix [Q1R1, Q2]
to examine the three equations (1.2), (1.5) and (1.6). This would provide us with a handle to
grasp the conditions that Φ must satisfy in order to solve the MUP.

First, write [
M1 M2

M>
2 M3

]
:=

[
Q1R1, Q2

]>
M0

[
Q1R1, Q2

]
,[

C1 C2

C>2 C3

]
:=

[
Q1R1, Q2

]>
C0

[
Q1R1, Q2

]
,[

K1 K2

K>
2 K3

]
:=

[
Q1R1, Q2

]>
K0

[
Q1R1, Q2

]
,

(2.2)

where the partitioning is such that the symmetric matrices M1, C1 and K1 are all of size k × k.
Then the equation (1.2) is equivalent to[

M1

M>
2

]
Λ2 +

[
C1

C>2

]
Λ +

[
K1

K>
2

]
= 0.

By Lemma 2.2, if we define

Γ := C1 + M1Λ + Λ>M1, (2.3)

then Γ is symmetric, satisfies

Λ>Γ = ΓΛ, (2.4)
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and is block diagonal with similar (but symmetric) structure as that of Λ. Note the relationships
that  C1 = Γ−M1Λ− Λ>M1,

K1 = Λ>M1Λ− ΓΛ,
K2 = −(Λ>)2M2 − Λ>C2.

(2.5)

Likewise, apply the same congruence transformation to (∆M,∆C,∆K) and write[
∆M1 ∆M2

(∆M2)> ∆M3

]
:=

[
Q1R1, Q2

]>∆M
[

Q1R1, Q2

]
,[

∆C1 ∆C2

(∆C2)> ∆C3

]
:=

[
Q1R1, Q2

]>∆C
[

Q1R1, Q2

]
,[

∆K1 ∆K2

(∆K2)> ∆K3

]
:=

[
Q1R1, Q2

]>∆K
[

Q1R1, Q2

]
.

(2.6)

By construction, it follows from (2.1) that ∆M1 = M1ΦM1,
∆M2 = M1ΦM2,
∆K1 = K1Λ−1ΦΛ−>K1.

(2.7)

We next turn our attention to the equation (1.5) which pertains to the updated eigeninfor-
mation. Upon substituting (1.7) into (1.5) and defining

Σ̃ = TΣT−1,

we see that

(M0 + ∆M)XΣ̃2 + (C0 + ∆C)XΣ̃ + (K0 + ∆K)X = 0,

which is equivalent to[
M1 + M1ΦM1

(M2 + M1ΦM2)>

]
Σ̃2 +

[
C1 + ∆C1

(C2 + ∆C2)>

]
Σ̃ +

[
K1 + ∆K1

(K2 + ∆K2)>

]
= 0.

By Lemma 2.2 again, there exists a symmetric matrix Ξ satisfying

Σ̃>Ξ = ΞΣ̃, (2.8)

and such that
C1 + ∆C1 = Ξ− (M1 + M1ΦM1)Σ̃− Σ̃>(M1 + M1ΦM1),
K1 + ∆K1 = Σ̃>(M1 + M1ΦM1)Σ̃− ΞΣ̃ = Σ̃>(M1 + M1ΦM1)Σ̃− Σ̃>Ξ,

K2 + ∆K2 = −(Σ̃>)2(M2 + M1ΦM2)− Σ̃>(C2 + ∆C2).
(2.9)

Combining (2.5) and (2.9), we conclude that
∆C1 = Ξ−M1Σ̃− Σ̃>M1 −M1ΦM1Σ̃− Σ̃>M1ΦM1 − Γ + M1Λ + Λ>M1,

∆K1 = Σ̃>M1Σ̃ + Σ̃>M1ΦM1Σ̃− Σ̃>Ξ− Λ>M1Λ + Λ>Γ,

∆K2 = −(Σ̃>)2M2 − Σ̃>C2 − (Σ̃>)2M1ΦM2 − Σ̃>∆C2 + (Λ>)2M2 + Λ>C2.

(2.10)
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We summarize the needed updates in the following way for later reference,[
∆M1, ∆M2

]
= M1Φ

[
M1, M2

]
,[

∆C1, ∆C2

]
= M1Φ

[
Γ−M1Λ, Λ>M2 + C2

]
+(Λ> − Σ̃> − Σ̃>M1Φ)

[
M1, M2

]
+

[
(M1 + M1ΦM1)(Λ− Σ̃) + Ξ− Γ−M1ΦΓ, ∆W

]
,[

∆K1, ∆K2

]
= (Λ> − Σ̃> − Σ̃>M1Φ)

[
Γ−M1Λ, Λ>M2 + C2

]
−Σ̃>

[
(M1 + M1ΦM1)(Λ− Σ̃) + Ξ− Γ−M1ΦΓ, ∆W

]
,

(2.11)

with

∆W := ∆C2 − [M1Φ(Λ>M2 + C2) + (Λ> − Σ̃> − Σ̃>M1Φ)M2].

Finally, we look into the equation (1.6) which is needed for the no spill-over to the unmeasured
or unknown eigeninformation. By defining

Z =
[

Q1R1 Q2

]−1
Z,

then the equation

M0

[
X Z

] [
Λ

Υ

]2

+ C0

[
X Z

] [
Λ

Υ

]
+ K0

[
X Z

]
= 0

is reduced to[
M1 M2

M>
2 M3

] [ [
I
0

]
, Z

] [
Λ

Υ

]2

+
[

C1 C2

C>2 C3

] [ [
I
0

]
, Z

] [
Λ

Υ

]
+

[
K1 K2

K>
2 K3

] [ [
I
0

]
, Z

]
= 0.

By Lemma 2.3 and (2.5), we obtain the relationship

Λ>
{[

M1, M2

]
ZΥ +

[
Γ−M1Λ, Λ>M2 + C2

]
Z

}
= 0,

which implies that [
M1, M2

]
ZΥ +

[
Γ−M1Λ, Λ>M2 + C2

]
Z = 0. (2.12)

As far as the equation (1.6) is concerned, an algebraic manipulation by using (2.11) and (2.12)
yields the following facts,

(M0 + ∆M)ZΥ2 + (C0 + ∆D)ZΥ + (K0 + ∆K)Z = 0
⇒

[
M1 + ∆M1, M2 + ∆M2

]
ZΥ2 +

[
C1 + ∆C1, C2 + ∆C2

]
ZΥ

+
[

K1 + ∆K1, K2 + ∆K2

]
Z = 0

⇔
[

(M1 + M1ΦM1)(Λ− Σ̃) + Ξ− Γ−M1ΦΓ, ∆W
]
ZΥ

−Σ̃>
[

(M1 + M1ΦM1)(Λ− Σ̃) + Ξ− Γ−M1ΦΓ, ∆W
]
Z = 0. (2.13)

We now have all the tools needed to characterize the parameter matrix Φ. As (Λ, X) is being
replaced by (Σ, Y ) and Y = XT , we claim that the two matrices Γ and Ξ employed in (2.5) and
(2.9) are also related, indeed, in a special way.
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Lemma 2.4. Assume that the unmeasured eigenvectors Z is of full row rank and that the
unmeasured eigenvalues Υ and the newly measured eigenvalues Σ are disjoint. Then it is true
that Ξ = Γ.

Proof. By assumption, Υ and Σ̃ = TΣT−1 have no common eigenvalues. By Lemma 2.1 we
see from (2.13) [

(M1 + M1ΦM1)(Λ− Σ̃) + Ξ− Γ−M1ΦΓ, ∆W
]
Z = 0.

Since Z is of full row rank, we see that

∆C2 = M1Φ(Λ>M2 + C2) + (Λ> − Σ̃> − Σ̃>M1Φ)M2, (2.14)

Ξ = (I + M1Φ)[M1(Σ̃− Λ) + Γ]. (2.15)

Recall that the matrix ∆K1 can be expressed by two different ways (2.7) and (2.11), where
the latter can further be simplified by (2.15) so that

∆K1 = K1Λ−1ΦΛ−>K1 = (Λ> − Σ̃> − Σ̃>M1Φ)(Γ−M1Λ).

On the other hand, we can write the middle equation in (2.5) as Γ = M1Λ− Λ−>K1, therefore

K1Λ−1ΦΛ−>K1 = (Λ> − Σ̃> − Σ̃>M1Φ)(−Λ−T K1).

It follows that

Σ̃− Λ = ΦΛ−>(K1 − Λ>M1Σ̃) = Φ[M1(Λ− Σ̃)− Γ]. (2.16)

Simplifying (2.15) by using (2.16) in the following way,

Ξ = (I + M1Φ)[M1(Σ̃− Λ) + Γ] = M1(Σ̃− Λ) + Γ + M1(Λ− Σ̃) = Γ,

we see that the two matrices Ξ and Γ are identical.
Lemma 2.5. Assume that Σ̃ − Λ = TΣT−1 − Λ is nonsingular. Then the parameter matrix

Φ is uniquely determined by the formula

Φ = [ΓT (ΛT − TΣ)−1 −M1]−1. (2.17)

Proof. By (2.16), K1 − Λ>M1Σ̃ is invertible and

Φ = (Σ̃− Λ)(K1 − Λ>M1Σ̃)−1Λ> = (TΣ− ΛT )(K1T − Λ>M1TΣ)−1Λ> (2.18)

Since Λ−>K1T −M1TΣ = M1(ΛT − TΣ)− ΓT , the assertion is proved.
Note that by Lemma 2.4, the equation (2.8) is equivalent to

Σ>T>ΓT = T>ΓTΣ. (2.19)

Together with the property (2.4), it is clear that the Φ specified in (2.17) is symmetric. In this
course of discussion, we have developed several necessary conditions which we now summarize in
the following theorem.

Theorem 2.6. Suppose that the triplet (∆M,∆C,∆K) in the form (2.1) for some symmetric
matrix Φ ∈ Rk×k solves the MUP. Assume that the following generic conditions among the
outgoing eigenpairs (Λ, X), the updated eigenpairs (Σ, Y ), and the untouched eigenpairs (Υ, Z)
are satisfied:
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a. Y = XT for some nonsingular matrix T ∈ Rk×k.
b. Z is of full row rank.
c. The spectra of Υ and Σ are disjoint.
d. TΣT−1 − Λ is nonsingular.

Then it is necessary that
1. The matrix X>K0XT − Λ>X>M0XTΣ is nonsingular.
2. The matrix T>

(
X>C0X + Λ>X>M0X + X>M0XΛ

)
TΣ is symmetric.

3. Φ = (TΣ− ΛT )(X>K0XT − Λ>X>M0XTΣ)−1Λ>.
4. M + ∆M and K + ∆K are positive definite.

Proof. It is clear from the definition in (2.2) that M1 = X>M0X, C1 = X>C0X, and
K1 = X>K0X. The second condition above follows from (2.19) if Γ is replaced by (2.3). The
first and the third conditions are established in the proof of Lemma 2.5. The fourth condition is
inherent in the assumption.

The matter of fact is that the converse of Theorem 2.6 is also true. Specifically, we make the
following claim that the above necessary conditions are also sufficient.

Theorem 2.7. Suppose that the outgoing eigenpairs (Λ, X), the updated eigenpairs (Σ, Y ),
and the untouched eigenpairs (Υ, Z) satisfy the generic conditions (a)-(d) in Theorem 2.6. As-
sume that Conditions 1-2 are satisfied. Then the triplet (∆M,∆C,∆K) in the form (2.1) with Φ
being uniquely given as in Condition 3 solves the two equations (1.5) and (1.6). If the resulting
M0 + ∆M and K0 + ∆K are positive definite, then the MUP is solvable; otherwise, the original
model (M0, C0,K0) cannot be updated by (Σ, Y ) without losing positive definiteness.

Proof. We need to check three things to warrant the assertion. First, Condition 1 implies that
the specific Φ given by Condition 3 is well defined. Condition 2 is equivalent to the equation (2.19)
where Γ is defined by (2.3), which shows that Φ is symmetric. The triplet (∆M,∆C,∆K) in the
form (2.1) with any symmetric matrix Φ already satisfies (1.6). Secondly, defining Ξ = Γ in (2.9),
by Lemma 2.2, we then can trace the proof of Theorem 2.6 backward to prove that the equation
(1.5) is satisfied. Thirdly, the uniqueness of Φ in Lemma 2.5 implies that the Conditions 1-3
either make or break the solvability of the MUP, depending upon whether the resulting M +∆M
and K + ∆K are positive definite or not.

Example 1. Consider the statically condensed oil rig model (M0, C0,K0) represented by the
triplet bcsstruc1 in the Harwell-Boeing collection [36]. In this model, M0 and K0 ∈ R66×66 are
symmetric and positive definite and C0 = 1.55I66. There are 132 eigenpairs. Suppose we want to
replace the eight eigenvalues

λ1 = −5.358410088235457, λ2= −3.462830582716281,

λ3 = −3.570946054521908, λ4= −9.276066378899415,

λ5 = −7.802118288361733+164.3321224340448i, λ6= −7.802118288361733−164.3321224340448i,

λ7 = −7.755809434339588+164.0571880852085i, λ8= −7.755809434339588−164.0571880852085i,

by newly measured eigenvalues

σ1 = −5.05, σ2= −3.32,

σ3 = −3.75, σ4= −9.07,

σ5 = −7 + 160i, σ6= −7− 160i,

σ7 = −8 + 170i, σ8= −8− 170i,

while keeping the corresponding eigenvectors invariant. That is, Y = X and T = I66. We check
to see that X>K0X − Λ>X>M0XΣ is nonsingular, so Condition 1 in Theorem 2.6 is satisfied.
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Condition 2 is reduced to the symmetry of ΓΣ which is automatically satisfied. We compute the
uniquely described Φ according to Condition 3 in Theorem 2.6 and the resulting (∆M,∆C,∆K).
We can verify numerically that the computed M + ∆M and K + ∆K are positive definite. We
think that the model has been updated satisfactorily because the residuals of the updated model

‖(M + ∆M)XΣ2 + (C + ∆C)XΣ + (K + ∆K)X‖2 = 2.830849890712934× 10−9,

‖(M + ∆M)ZΥ2 + (C + ∆C)ZΥ + (K + ∆K)Z‖2 = 7.620711447892196× 10−9.

is compatible with the residual of the original model

‖MXΛ2 + CXΛ + KX‖2 = 2.873651863994003× 10−9,

‖MZΥ2 + CZΥ + KZ‖2 = 7.617801878019591× 10−9.

Example 2. Consider the same data set as above except that Y = XT with

T = diag
{

0.9169, 0.8132, 0.6038, 0.4451,

[
0.9318 0.4186
0.4186 −0.9318

]
,

[
0.5252 0.6721
0.6721 −0.5252

]}
.

It can be checked that Conditions 1 and 2 are satisfied. We compute the unique Φ and the
resulting (∆M,∆C,∆K) based on Theorem 2.6. Surely, we find that the updated residuals are
reasonably small,

‖(M + ∆M)Y Σ2 + (C + ∆C)Y Σ + (K + ∆K)Y ‖2 = 2.822913902500785× 10−9,

‖(M + ∆M)ZΥ2 + (C + ∆C)ZΥ + (K + ∆K)Z‖2 = 7.612797317470159× 10−9.

However, it turns out that both M + ∆M and K + ∆K are not positive definite. This example
demonstrates that the MUP may not be solvable even if the triplet (∆M, ∆C,∆K) satisfy (1.5)
and (1.6).

Example 3. Consider the same data set again with Y = XT where

T = diag
{
−0.4326,−1.6656, 0.1253, 0.2877,

[
−1.1465 1.1909
−1.1909 −1.1465

]
,

[
1.1892 −0.0376
0.0376 1.1892

]}
.

Again, Conditions 1 and 2 are satisfied. We compute Φ and (∆M,∆C,∆K). It is found that

‖(M + ∆M)Y Σ2 + (C + ∆C)Y Σ + (K + ∆K)Y ‖2 = 4.535516693254191× 10−9,

‖(M + ∆M)ZΥ2 + (C + ∆C)ZΥ + (K + ∆K)Z‖2 = 7.620710821638826× 10−9,

while M + ∆M and K + ∆K are positive definite.
These three examples clearly illustrate the importance of a properly selected T .

3. Solvability under a specific structure.. Thus far, our theory of solvability has been
developed under the assumption that the incremental matrices ∆M , ∆C, and ∆K are of the
structure in (2.1). It has been proved in [4, Theorem 3.5] that for almost all values of the
untouched eigenpair (Υ, Z) these conditions are also necessary. Theorems 2.6 and 2.7 therefore
are perhaps the most general results for model updating while preserving both positive definiteness
and no spill-over.

Still, it is curious to ask whether there are other types of solutions (∆M,∆C,∆K) to the
MUP which do not assume the generic form. This section provides an affirmative answer to this
question for the case k = n. It suffices to limit ourselves to the case Y = X.
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Let the matrix M1 = X>M0X ∈ Rn×n be partitioned into t× t blocks,

M1 =



1 · · · 1 2 · · · 2
M

(1,1)
1 · · · M

(1,s)
1 M

(1,s+1)
1 · · · M

(1,t)
1

...
. . .

...
. . .

...
M

(s,1)
1 · · · M

(s,s)
1 M

(s,s+1)
1 · · · M

(l,t)
1

M
(s+1,1)
1 · · · M

(s+1,s)
1 M

(s+1,s+1)
1 · · · M

(s+1,t)
1

...
. . .

...
... · · ·

...
M

(t,1)
1 · · · M

(t,s)
1 M

(t,s+1)
1 · · · M

(t,t)
1



1
...
1
2
...
2

, (3.1)

where each block is of the size as indicated along the border. With respect to this partitioning,
there exists a permutation matrix P ∈ Rn×n among blocks such that

P>M1P = diag {M11, . . . ,Mpp} , (3.2)

where each Mii is composed of one or more blocks M
(g,h)
1 and is block irreducible [20]. If p = 1,

then M1 is block irreducible, otherwise, if p > 1, then M1 is block reducible.
Let Γ be the same as the one in the preceding section. Denote

P>ΛP = diag {Λ11, . . . ,Λpp} ,

P>ΣP = diag {Σ11, . . . ,Σpp} ,

P>ΓP = diag {Γ11, . . . ,Γpp} ,

which is always possible because Λ defined in (1.3) and the corresponding Σ and Γ are block
diagonal and have the same partitioning as M1.

Lemma 3.1. There exists one permutation matrix P ∈ Rn×n of blocks specified in (3.1) such
that

1. M11 is either empty or is diagonal with M11(Σ11 − Λ11) + Γ11 = 0;
2. For i = 2, · · · , p, if Mii ∈ R, then Mii(Σii − Λii) + Γii 6= 0; otherwise, either Mii has

only one 2-by-2 block, or Mii has at least two blocks and is block irreducible.
Proof. Let P denote temporarily any permutation matrix that does (3.2). For each i =

1, . . . , p, the submatrices Mii, Λii, Σii and Γii are of the same sizes. For each fixed i, there are
three possible cases for these four blocks Mii, Λii, Σii, Γii: they are all scalars, or they contain
only one 2-by-2 block from M1, Λ, Σ and Γ, respectively, or they have at least two blocks from
M1, Λ, Σ and Γ, respectively, and Mii is block irreducible. In the first case, we may introduce one
more round of permutation on the same partition (3.1) to group those withMii(Σii−Λii)+Γii = 0
together and rename the resulting block as M11.

To set forth the exploration of a “new” solution not in the generic form, we first develop some
useful identities that any solution (∆M,∆C,∆K) to (1.5) and (1.6) must satisfy. As a necessary
condition, it should not be surprising that many of the facts derived in the preceding sections
remain valid so long as their cogency is independent of any reference to Φ. For instance, we shall
continue using (2.5) with an appropriate symmetric block diagonal matrix Γ ∈ Rn×n.

Since M0 and X are nonsingular, we also can write

∆M = M0X (M0X)−1∆M(M0X)−>︸ ︷︷ ︸
Φ

X>M0,

where Φ is symmetric. Without causing ambiguity, we use the same notation as before,
∆M1 := X>∆MX = M1ΦM1,
∆C1 := X>∆CX,
∆K1 := X>∆KX,
Z := X−1Z,

(3.3)
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except that ∆C and ∆K are not necessarily in the parametric form in (2.1).
To satisfy the equation (1.5), observe that

(M + ∆M)XΣ2 + (C + ∆C)XΣ + (K + ∆K)X = 0
⇔ (M1 + M1ΦM1)Σ2 + (C1 + ∆C1)Σ + (K1 + ∆K1) = 0.

The second equation above enables us to carry through the steps taken in the preceding section
with only a few modifications. In particular, by Lemma 2.2, there exists a symmetric matrix Ξ
which is block diagonal with similar structure as that of Σ, satisfies

Σ>Ξ = ΞΣ, (3.4)

and is such that{
C1 + ∆C1 = Ξ− (M1 + M1ΦM1)Σ− Σ>(M1 + M1ΦM1),
K1 + ∆K1 = Σ>(M1 + M1ΦM1)Σ− ΞΣ = Σ>(M1 + M1ΦM1)Σ− Σ>Ξ,

(3.5)

It follows that (See (2.11))

∆M1 = M1ΦM1

∆C1 = M1Φ(Γ−M1Λ) + (Λ> − Σ> − Σ>M1Φ)M1

+(M1 + M1ΦM1)(Λ− Σ) + Ξ− Γ−M1ΦΓ,

∆K1 = (Λ> − Σ> − Σ>M1Φ)(Γ−M1Λ)
−Σ> [(M1 + M1ΦM1)(Λ− Σ) + Ξ− Γ−M1ΦΓ] .

(3.6)

Similarly, we can prove that (See (2.12))

M1ZΥ + (Γ−M1Λ)Z = 0, (3.7)

that (See (2.13))

(M1 + M1ΦM1)(Λ− Σ) + Ξ− Γ−M1ΦΓ = 0,

and hence (See (2.15))

(I + M1Φ)[M1(Σ− Λ) + Γ] = Ξ. (3.8)

Applying the permutation matrix P assumed in Lemma 3.1 to both sides of (3.8) and noting
that P>ΞP is block diagonal due to the structure of Ξ, we see that I +M11Φ11 · · · M11Φ1p

...
. . .

...
MppΦ>1p · · · I +MppΦpp

diag {M11(Σ11 − Λ11) + Γ11, . . . ,Mpp(Σpp − Λpp) + Γpp}

= diag {Ξ11, . . . ,Ξpp} , (3.9)

where we have denoted the symmetric matrices P>ΦP and P>ΞP by

P>ΦP =

 Φ11 · · · Φ1p

...
. . .

...
Φ>1p · · · Φpp

 ,

P>ΞP = diag {Ξ11, . . . ,Ξpp] .
11



By Lemma 3.1, it must be either Ξ11 is empty or Ξ11 = 0. In the latter, Φ11 is arbitrary but
symmetric. From (3.9) we also see that the following two equalities hold,

M11

[
Φ12 · · · Φ1p

]
diag {M22(Σ22 − Λ22) + Γ22, . . . ,Mpp(Σpp − Λpp) + Γpp} = 0, (3.10)

I +M22Φ22 · · · M22Φ2p

...
. . .

...
MppΦ>2p · · · I +MppΦpp

diag {M22(Σ22 − Λ22) + Γ22, . . . ,Mpp(Σpp − Λpp) + Γpp}

= diag {Ξ22, . . . ,Ξpp} . (3.11)

Now we are ready to characterize necessary conditions for the solvability of the MUP. The
emphasis is that (∆M,∆C,∆K) does not assume the parametric form described in (2.1). The
first condition is clear — since K0 +∆K is positive definite, the matrix Σ of updated eigenvalues
must be nonsingular, thus, Σi,i (i = 1, · · · , p) are also nonsingular.

We claim the following intermediate result concerning Ξ.
Lemma 3.2. The matrix diag {Ξ22, . . . ,Ξpp} is nonsingular.
Proof. We prove by contradiction. Suppose that Ξii is singular for some i = 2, . . . , p. Recall

that Ξii is of size either 1× 1 or 2× 2.
If Mii is a scalar, then Ξii = 0. Since M1 + M1ΦM1 = X>(M0 + ∆M)X is positive definite,

the matrix 
I +M22Φ22 · · · M22Φ2p

...
. . .

...
MppΦ>2p · · · I +MppΦpp


is nonsingular. The corresponding entry in (3.11) would force Mii(Σii − Λii) + Γii = 0, which is
impossible by the way we choose P in Lemma 3.1.

If Mii consists of only a 2× 2 block, the corresponding Ξii is of the form Ξii =
[

ξi ηi

ηi −ξi

]
.

The singularity of Ξii would imply Ξii = 0. The corresponding block in (3.11) would imply
Mii(Σii − Λii) + Γii = 0. By the structures that inhere in 2 × 2 matrices Σii, Λii and Γii, it
follows that Mii = −(Σii − Λii)−1Γii would have trace zero, which is impossible because Mii is
positive definite.

Finally, if Mii consists of at least two blocks and is block irreducible, we may assume without
loss of generality that the first diagonal block of Ξii is singular which, regardless of its sizes, by
the argument above must be zero. The corresponding first block column of Mii(Σii−Λi,i) + Γi,i

therefore would be zero. But this is again impossible, because Mii is block irreducible, Σii −Λii

is nonsingular, and both Σii − Λii and Γii are block diagonal.
From (3.11), we thus can write

I +M22Φ22 · · · M22Φ2p

...
. . .

...
MppΦ>2p · · · I +MppΦpp

 =

diag {Ξ22, . . . ,Ξpp}diag {M22(Σ22 − Λ22) + Γ22, . . . ,Mpp(Σpp − Λpp) + Γpp}−1
,

which implies together with (3.10) that{
Φij = 0, if i 6= j,
Φii = M−1

ii

{
Ξii[Mii(Σii − Λii) + Γii]−1 − I

}
, i = 2, . . . , p.

(3.12)
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In other words, we have just proved the following lemma.
Lemma 3.3. Suppose ∆M is part of a solution to the MUP. Let Φ := (M0X)−1∆M(M0X)−>

and P be the permutation matrix specified in Lemma 3.1. Then it must be such that

P>ΦP = diag {Φ11, . . . ,Φpp}

where Φ11 is arbitrary but M11 +M11Φ11M11 must be positive definite and Φii, i = 2, . . . , p, is
given by (3.12).

From the fact that K1 = Λ>M1Λ− ΓΛ, we write

P>K1P = diag {K11, . . . ,Kpp} ,

with

Kii := Λ>iiMiiΛii − ΓiiΛii = Λ>iiMiiΛii − Λ>iiΓii, i = 1, · · · , p. (3.13)

It follows that for i = 2, . . . , p, the matrix

Ξii(Λ>iiMiiΣii −Kii)−1Λ>iiMii = Ξii[(Σii − Λii) +M−1
ii Γii]−1 = Mii +MiiΦiiMii (3.14)

is positive definite because M1 + M1ΦM1 is positive definite.
Exploiting the structure of Ξii and Γii and rearranging the diagonal blocks if necessary, we

may assume without loss of generality that

Ξ−1
ii Γii = diag {ς1, . . . , ς`1 ,Ψ`1+1, . . . ,Ψ`1+`2} ,

where ςi ∈ R for i = 1, · · · , `1, and Ψ`1+j =
[

ς`1+j ϑ`1+j

−ϑ`1+j ς`1+j

]
for j = 1, · · · , `2. Likewise, let

Mii be partitioned accordingly as

Mii =



Θ1,1 · · · Θ1,`1 Θ1,`1+1 · · · Θ1,`1+`2
...

. . .
...

...
. . .

...
Θ>1`1

· · · Θ`1,`1 Θ`1,`1+1 · · · Θ`1,`1+`2

Θ>1,`1+1 · · · Θ>`1,`1+1 Θ`1+1,`1+1 · · · Θ`1+1,`1+`2
...

. . .
...

...
. . .

...
Θ>1,`1+`2

· · · Θ>`1,`1+`2
Θ>`1+1,`1+`2

· · · Θ`1+`2,`1+`2


.

Note that by (3.14) and the symmetry of Ξii and Γii, it is easy to show that i = 2, . . . , p, the
matrix

[
ΓiiM−1

ii + (Σii − Λii)>
]
Ξii, is symmetric. Since (Σii − Λii)T Ξii is symmetric, so is the

matrix ΓiiM−1
ii Ξii and, hence, MiiΞ−1

ii Γii. It follows that for all j = 1, · · · , `2, the diagonal block
Θ`1+j,`1+jΨ`1+j is symmetric, which can be true only if ϑ`1+j = 0 and, hence, Ξ−1

ii Γii must be a
diagonal matrix

Ξ−1
ii Γii = diag {ς1, . . . , ς`1 , ς`1+1I2, . . . , ς`1+`2I2} . (3.15)

We draw the following conclusion which is part of the necessary condition.
Lemma 3.4. Let Γ be the matrix defined by (2.3). For i = 2, . . . , p,
1. If Γii 6= 0, then either both Γii(Λ>iiMiiΣii − Kii)−1Λ>iiMii and Γi,iΣi,i(ΛT

iiMiiΣii −
Kii)−1Kii are positive definite or both Γii(Λ>iiMiiΣii−Kii)−1Λ>iiMii and Γi,iΣi,i(ΛT

iiMiiΣii−
Kii)−1Kii are negative definite.

2. If Γii = 0, then Λii is diagonal and ΛiiΣii is positive definite.
13



Proof. The facts that Mii is block irreducible (by Lemma 3.1), (3.15) holds, and MiiΞ−1
ii Γii

is symmetric imply that Ξ−1
ii Γii = ηiI for some scalar ηi. Thus it is always true that

Γii = ηiΞii. (3.16)

If Γii 6= 0, then ηi 6= 0 and by (3.14) we see that 1
ηi

Γii(Λ>iiMiiΣii −Kii)−1Λ>iiMii is positive
definite. If Γii = 0, then by (3.13) we have Kii = Λ>iiMiiΛii. By (3.14) again, we see that
Ξii(Σii − Λii)−1 is positive definite.

Suppose that Λii is not diagonal, then Σi,i − Λii has at least one nonsingular diagonal block

of the form
[

a b
−b a

]
. Correspondingly, Ξii has a diagonal block of the form

[
ξ η
η −ξ

]
. It

follows that Ξii(Σii−Λii)−1 has a diagonal block with trace zero, which contradicts with the fact
Ξii(Σii − Λii)−1 is positive definite.

We have one more item to check, namely, the positive definiteness of K0 + ∆K. From (3.5),
it is clear that P>(K1 + ∆K1)P is block diagonal and that its i-th diagonal block is given by
Σ>ii(Mii+MiiΦiiMii)Σii−Σ>iiΞii which is positive definite. Obviously, by (2.8), Σ>iiΞii = Ξi,iΣi,i

for all i. Using (3.14), we can write

Σ>ii(Mii +MiiΦiiMii)Σii − Σ>iiΞii = Σ>iiΞii(Λ>iiMiiΣii −Kii)−1Λ>iiMiiΣii − Σ>iiΞii

= ΞiiΣii(Λ>iiMiiΣii −Kii)−1Λ>iiMiiΣii − ΞiiΣii

= ΞiiΣii(Λ>iiMiiΣii −Kii)−1Kii, (3.17)

which is positive definite for i = 2, · · · , p. Thus ΓiiΣii(Λ>iiMiiΣii −Kii)−1Kii is positive definite
for i = 2, · · · , p. On the other hand, recall from (3.13) that if Γii = 0, then Kii = Λ>iiMiiΛii. In
this case, we can further deduce (3.17) to

Σ>ii(Mii +MiiΦiiMii)Σii − Σ>iiΞii = ΞiiΣii(Σii − Λii)−1Λii = Ξii(Σii − Λii)−1ΛiiΣii (3.18)

which is positive definite. By the fact that Ξii(Σii − Λii)−1 is positive definite, we conclude that
ΛiiΣii is positive definite.

We summarize the above necessary conditions in the following theorem. The most interesting
development is that the necessary conditions are also sufficient.

Theorem 3.5. Suppose that k = n and that Y = X. Let Γ be defined by (2.3) and P be
defined by Lemma 3.1. Then the MUP is solvable if and only if the matrix Σ is nonsingular and
for i = 2, · · · , p, the following conditions among the corresponding blocks defined by P hold:

1. If Γii 6= 0, then Γii(Λ>iiMiiΣii − Kii)−1Λ>iiMii and Γi,iΣi,i(ΛT
iiMiiΣii − Kii)−1Kii are

either both positive definite or both negative definite.
2. If Γii = 0, then Λii is diagonal and ΛiiΣii is positive definite.

Proof. Only the sufficiency needs to be proved. It will be most informative if we prove the
sufficiency by constructing the solution (∆M,∆C,∆K).

Clearly, Λ is nonsingular because K0 is positive definite. We may therefore select a symmetric
and positive definite matrix Φ11 such that

∆K11 := Σ>11(M11 +M11Φ11M11)Σ11 −K11

is positive definite. Set Ξ11 = 0. For i = 2, . . . , p and if Γii 6= 0, we can choose by assumption a
scalar ωi ∈ R such that both matrices Φii and ∆Kii defined by

Φii := M−1
ii

[
ωiΓii(Λ>iiMiiΣii −Kii)−1Λ>iiMii −Mii

]
M−1

ii ,

∆Kii := ωiΓiiΣii(Λ>iiMiiΣii −Kii)−1Kii −Kii,
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are positive definite. Set Ξii = ωiΓii. Similarly, if Γii = 0, we may choose a diagonal matrix Ξii

such that both matrices Φii and ∆Kii defined by

Φii := M−1
ii [Ξii(Σii − Λii)−1 −Mii]M−1

ii ,

∆Kii := Ξii(Σii − Λii)−1ΛiiΣii −Kii,

are positive definite. The matrix

Φ := Pdiag {Φ11, . . . ,Φpp}P>

is positive definite. By construction and the definition (3.13), the equation (3.8) is satisfied.
Furthermore, defining∆M := M0XΦX>M0,

∆C := X−>[−X>M0XΦΛ−T X>K0X + (Λ> − Λ> − Λ>X>M0XΦ)X>M0X]X−1,
∆K := −X−>[(Λ> − Λ> − Λ>X>M0XΦ)Λ−T X>K0X]X−1,

(3.19)

we find by using (2.5) and (3.8) that the corresponding (∆M1,∆C1,∆K1) defined in (3.19) can
be expressed as

∆M1 = M1ΦM1,
∆C1 = Ξ− (M1 + M1ΦM1)Σ− Σ>(M1 + M1ΦM1)− C1,
∆K1 = Σ>(M1 + M1ΦM1)Σ− Σ>Ξ−K1,

showing that

(M0 +∆M)
[

X Z
] [

Σ
Υ

]2

+(C0 +∆C)
[

X Z
] [

Σ
Υ

]
+(K0 +∆K)

[
X Z

]
= 0

Note that M0 + ∆M = M + MΦM is positive definite. Since ∆K satisfies

P>∆K1P = diag {∆K11, . . . ,∆Kpp}

which by construction is positive definite, we conclude that K + ∆K is also positive definite and
that the MUP is solved.

Recall that our goal in this section is to explore a solution that is not in the parametric
form assumed in the preceding section. Note that the “parameter matrix” Φ in the above proof
does not enter the solution (∆M,∆C,∆K) in (3.19) in the same way as that in the generic form
characterized by (2.1).

4. Conclusions. Updating a real symmetric quadratic model while preserving positive def-
initeness and no spill-over remains a fundamental challenge in the field. In this paper, we have
made some advances toward this challenge. Our main contributions of the present work are
twofold:

1. Theorems 2.6 and 2.7 provide necessary and sufficient solvability conditions for the under-
lying problem when the triplet (∆M,∆C,∆K) assumes the parametric form (2.1 which
are known to be generic in the literature.

2. Theorem 3.5 characterizes another necessary and sufficient solvability conditions of the
underlying problem for the case k = n and Y = X while not using the parametric form.

It is important to note that the techniques developed in Section 3 give complete answer to the
MUP but only under the condition that precisely n eigenvalues are to be updated. Theorem 3.5
therefore includes and generalizes Theorems 2.6 and 2.7 under this special circumstance. The
techniques cannot be carried through under other scenarios. Thus, for the case when less than
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n eigenpairs are to be updated, the only result we know of is Theorem 2.6 and 2.7 under the
assumption that (∆M,∆D,∆K) is in the parametric form (2.1) which, fortunately, is generically
true for almost all updated eigenpair (Σ, Y ).

Our study represents some new steps toward the understanding of the MUP. Many questions
remain open, including the preservation of semi-definiteness or skewness of the damping matrix
C and the structured problem.
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