GLOBAL RANK-1 APPROXIMATION FOR ORDER-3 TENSORS

MOODY T. CHU*

Abstract. Finding the absolute best rank-1 approximation for an egd@nsor is an important first step as critical as the trigttat
singular value decomposition for a matrix. This note repampirical results of two investigations. First, the fedity of employing
existent global optimization package to tackle the abeddest approximation problem is studied. Measuring the coatipnal complexity
in terms of CPU time, it is found that for tensors®§>*>< with s < 100, i.e., tensors with up to one million entries, the overhead i
approximatelyO(s2). Second, taking advantage of its quadratic convergenisendte also experiments a modified Newton method with
many starting points. It is found that the rank-1 approxioraproblem can easily have many local solutions. Thoughstieen generally
recognized that most of the lower rank approximation athors available in the literature can find a local solutiornyptilis experiment
raises the flag that these methods might have severely nilsségrget.
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1. Introduction. Inaddition to finding its own applications in areas such aswbmetrics [18, 20, 30, 31],
arithmetic complexity analysis [24], image processin@][2rincipal component analysis [19, 23], psycho-
metrics [25, 33] and other fields, the class of real-valuel#BB tensors

T = [ry,jk] € RA72x0s, (1.1)

has been of particular interest to researchers becauswéissas the watershed that separates what we already
know about the classical matrix theory and what we might nquainted with for high dimensional arrays [24].
Some properties of matrices, such as representing liree@sformations, can be generalized in an obvious way
to tensors, while others, such as ranks or eigenvaluesyadaimentally different, despite of their resemblance
in names. Likewise, some techniques well developed foriogsty such as the low rank approximation, cannot
be immediately extended to tensors. This paper revisitgltmsical problem of rank-1 approximation of an
order-3 tensor with some new numerical insights.

Given a real-valued ordertensorT’, we are interested in finding unit vectan§? € R'¢,d = 1,...3,
and a scalai € R such that the function

f()\,u(l),u(g),u(?’)) = || T — )\u(l)ou@)ou(?»)”?F’ (1.2)
whereo stands for the tensor product, is "absolutely" minimizet] [Zhe problem is equivalent to maximizing
A= Au® u® u®) = vee(T)"(u® @ u® @ u?), (1.3)

subject tou?) € S'<, the unit sphere iR+, d = 1,2, 3, with ® standing for the Kronecker product. The
challenge is at finding the "absolute" best approximatiandifg the absolute best rank-1 approximation for
an order-3 tensor is as important as the truncated singalaewdecomposition (TSVD) for a matrix [6, 21].
The difficulty is that there is no direct generalization oMI3from order-2 tensors to order-3 tensors. Solving
(1.2) is a basic building block with many potential applioat. We outline two scenarios below to demonstrate
why this building block might be useful.

First, recall that the outer produt = F o GG between an order: tensorF’ € R/1>*--*Im and an order:
tensorG € R71*-*/n is an ordertm + n) tensor defined by

Piroimdteein = Jir oo it (1.4)
Regarding (1.4) as a type of tensor factorizationPpfwe ask the inverse question. That is, given an order-
(m +n) tensorP € RIv<-xImxJix..xJu \when canP be factorized as the tensor product of two lower order
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tensorsF' andG of fixed m andn? There is no easy answer. If the factorization is not possiké then ask
for its best possible approximation in the sense of findirgglobal solution to the problem

FGRIlx...xI{,rLl}geRJlx...xJn 1P = F o Gllp. (1.5
For matrices, this is the classical problem of the best raakproximation. The answer is known precisely by
the Eckart-Young-Mirsky theorem. For tensors, this is derigsting nonlinear approximation with fixed facets,
which can be solved via proper matricization.
More specifically, an ordek-tensorl” € R/1*%2*---xIx can be recognized as a linear array where the entry
Tiv,....i, OF T'is saved at the location

(ik — 1)Ik71[k72 oL+ (Z'kfl — 1)[}6,2 L4+ (iQ — 1)[1 +71. (16)

Letc(F) := [[2, I; andc(G) := ]'[;?21 J; denote the total cardinalities of elements expectef and G,

respectively. We matricize the givéhinto a matrixlP € R°(¥)*<(¢) whose vectorization is precisely the same
linear array ofP. Let (s, i, g;) € R x R°(F) x Re(%) denote the triplets of the left and right singular vectors
of IP corresponding to théth largest singular valug, i = 1,. .., ¢, of P. The following result, which is more
general than (1.5), can be proved by using the Eckart-Ydudingky theorem [36].

LEMMA 1.1. Suppose > 1 is fixed. Definet; and G; by reshaping the columnsf; andg; (or, any
combination ofu;f; andb;g; with a;b; = s;) into an orderm tensor inR™* % *Im and an orders tensor in
R/1%--xJn respectively. Then

4
IP=> FioGi|r. (1.7)

=1

is minimized among all possiblg € R/ %-->*Im G, € R/1XXIn

Each term in the approximation in (1.7) |nvolves only twot(ns of lower order tensors, so the matrix
technique is still applicable. Had it been possible to cargithis procedure to three or more factors, we would
have resolved the general low rank tensor approximatioblpno. 1t was pointed out that the Eckart-Young-
Mirsky theorem could not be generalized to tensors [21]. Westndevelop some new approach for three
factors. The case of order 3 considered in this paper is thefivst step toward that direction.

Second, in contrast to the conventional approach by thelgmaternating least squares (ALS) method
that works to adjust one factor a time for the best rank-1@ypration of a generic tensor, it has been suggested
recently that the SVD-based algorithms improving two festsimultaneously might have a better limiting
behavior leading to better approximations [14, 16, 17, 38Jandomized SVD updating scheme is typified in
Algorithm 1, wherex; denotes the standard modenultiplication of a tensor with a vector [2]. The principal
mechanism of the algorithm is tlevds applied to the intermediate matri%;, defined at Line 7 to obtain its
globally best rank-1 approximation. Convergence theorthefalgorithm has been established and numerical
experiments do suggest that the SVD-based methods havetartage of saving the computational time on
large scale problems. The very same idea can be generalizagtove three or more factors simultaneously.
For instance, replacing, at Line 6 by a triad of three random indices, then the prodyait Line 7 becomes
an order-3 tensor. Thus ttsvds should be replaced by a mechanism that finds the globally fae&t1
approximation of”;, which is exactly the problem we are dealing with in this pape

The conventional alternating least squares (ALS) meth&d8,[26], as well as most nonlinear program-
ming techniques [34], can find only one local best rardpproximation tol" a time. How often does this
happen and how far are we off from the true best solution? irirast to many previous studies in the literature
[1, 5,7, 13, 22, 32] for low rank approximation of generalders by optimization techniques, we employ the
notion of global optimization to search for the absolutet vask-1 approximation for order-3 tensors. This
note investigates how to carry out the global optimizatiffactively and makes some overhead comparison.
As a by-product, this investigation also implements an@wéewton method and uncovers surprisingly many

2



Algorithm 1 (Best rank-1 approximation via SVD updating with randortiaa)

Require: An order+ generic tensof” andk starting unit vectora®, ... u® ¢ R”
Ensure: A local best rank-1 approximation 6
1.1+ 0
2: Ao (T, ®}_, u®)
3: repeat
4. t+t+1
5. o + random permutation ofl, ..., k}
6: By (0k—1,0%)
7. Ci T Xgy ulor) Xog oo Koo ulor-2)
8  [uy,st, ve] = svds(Cy, 1) {Dominant singular value triplet vidatlab routinesvds, assume

unigueness}
9 if (ug)1 < 0then
10: u=—-u,v=-—vy {Assume the general case tHat; ); # 0; otherwise, use another entry}
11:  endif
12: At < S
13 uloe-1) ug, ulor) Vi
14: until A\, meets convergence criteria

local solutions, strongly implying that most locally congent methods will be inadvertently trapped at local
solutions which might be far off the absolute best approxioma

This paper is organized as follows. In Section 2 we begin wiiime basic information. In Section 3 we
explain how the global optimization is set up and experinoenits application to randomly generated order-3
tensors with variable sizes. The information of overheaglathered in terms of CPU time and is analyzed
via regression models. In Section 4 we introduce a Newtaatitee scheme that uses only the projected
gradient and projected Hessian information. Itis proved, tthespite of the truncation by projection, the method
converges quadratically. The rapid speed of convergenge iih@ossible for us to perform large amount of
repeated experiments with random starting points. It isalisred that even forax 5 x 5 target tensor, there
are hundreds of local solutions for the rank-1 approxinmatio theory, the entire idea can generalized to higher
order tensors, but the computation will be exceedingly neareensive.

2. Basic preparation. Throughout the discussion, we shall work with (1.3) as thgdive function
which is a cubic polynomial in the variables. Obviouslyhiéttriplets(u®), u(®, u®) form a maximizer, then
so do the triplet§—u™), —u® u®)), (—u® u®, —u®) and(u®, —u®, —u®), all of which lead to the
same objective value. So the number of solutions in genbkaalld be a multiple of four. It suffices to limit our
search to the case when€!) resides in the "northern" hemispherest by fixed the sign of its last entry. We
use theGlobal Optimization Toolbox available inMatlab as the platform for computation.

Many solvers offer for convenience to estimate the gradieiat finite differences and use an approximate
Hessian which can be far from the true Hessian. The effebeisnicrease of overhead such as the CPU time,
because more iterations and many more function evaluadi@seeded for convergence. Providing gradient or
Hessian information of the objective or constraint functi@an yield a solution in fewer iterations with more
accuracy. This is especially useful since most global ogation techniques require to test out sufficiently
many basins by solving the optimization problem repeatedt different starting points. For our rank-1
approximation problem, we can supply both gradient and idesaformation in analytic form. This section
explains how these particulars can be accomplished.

2.1. Projected gradient. The first-order optimality condition for a equality constred optimization
problem is that the projected gradient should be zero. Hewdévis not always possible to have a projected
gradient in the analytic form, so general-purpose optitlonsapproaches do not calculate the projected gradi-
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ent explicitly. Instead, the theory of Lagrange multipiemathematically equivalent to having zero projected
gradient [8]. Most codes estimate the multipliers as pathefcalculation and adjust the iteration by taking
into account the second order derivative information. Rarrank-1 approximation problem, the following
derivative information is readily available.

LEMMA 2.1. Let x4 denote the modé-vector product [2]. Then the gradie’t\ of (1.3) is given by

T X9 u(2) X3 u(?’)
VAU, u® u®) = | T x;u® xz3u® |, (2.1)
T X1 u(l) X9 U.(2)

wherex 4 denotes the modétensor-vector multiplication.
In MATLAB we can use the commandsshape andshiftdim to conveniently carry out the above calcula-
tion. The partial gradieng% € R™, for example, can be obtained literally by a one-line comdhan

(reshape(u2+xu3’',12+13,1)’ xreshape(shiftdim(T,1),12+x13,[]))";

Using the product topology, the projected gradient is olediby projecting each partial gradiegﬁ%
onto the the tangent space of the corresponding unit sgHere R'«.
LEMMA 2.2. The projected gradient of the objective functidonto the product’t x Sz x S’ of unit
spheres is given by
T x5 u® x3u® — A\(u®, u® u®)u®
gu® u® u®)y = | T x;u® x5u® — A\(u®, u® u®)Hu® |. (2.2)

T x1u® x5 u® — Au®, u®, u®)u®

A typical way to solvey(u®, u® u®) = 0 is the so called the so called alternating least squaresYALS

; ; ; (3) (CORNNE
approach. The basic scheme is that, gm%jﬁ andu[p] , we updatm[pﬂ] via
1 2 3
)‘Ep]) =T %2 ufp]) X3 ufp])HQ’
(The ALS method) ¢ Tocsu® xgul (2.3)
Yoty = T

continue on in a similar way to upda:tr%;iu anduf}f)+1

sequence{(uf;]), u%),uf;’]))} converges [35, 37]. Being just a first order method, the Ake&aiion converges
only linearly.

It is easy to see that (2.2) is precisely the derivative ofdlassical Lagrangian with all multipliers equal
to A(u™, u® u®). We certainly can go beyond the conventional ALS method wititch more advanced
and efficient techniques to find the critical points. We caritploy, for example, a Newton-type iteration with
the availability of the analytic projected Hessian or angven optimization software, e.g., those available in
[15, 28]. Using these techniques has the danger of findinglmarcritical point or a local solution, which may

not be the best rank-1 approximation. To achieve our goaigsextra efforts must be taken.

| in turn, and repeat the cycles. It can be shown that the

2.2. Projected Hessian.We can calculate the projected Hessian without presupgdsaLagrange mul-
tipliers. The justification that the following two steps @guivalent to the action of the projected Hessian can
be found in [8].

Step 1. Extend g(u®, u®, u®) formally to the entire spacB’* x R> x R’ and calculate its Fréchet
derivative. Because we know the projected gradient amaliyi the extension is easy. Using the same
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notation for the extended function, the actiomtfu(®), u®, u®)) on an arbitraryh, h? h®) ¢
Rt x Rz x R’s is given by the vector

g'(u(l)7 u(2)7 u(?)))_(h(l)7 h(2)7 h(S)) _
_ai(kl) hOu® Z 2Ah® £ Txoh@xgu® — 86/\ hPu® 4 Pxou@x;h® — BA h(S) (1)
T><1h(1)><3u(3) _ ai()\l) hDa® — ﬁ.h(”u&) — \h® + T><1u(1)><3h(3) _ __h(S)u(2) (2.4)

T hWxou® — 2 hOu® 4 7 u®sxoh® — 03 R u® 03 hG1y) _ \h®

Step 2. Limit the action ofg’(u”,u(® u®) to tangent vectors. The tangent spaceSéf x S’z x S's
is the product of tangent spaces 8f¢, d = 1,2,3. Therefore, apply the action only to those
(h™M h® h®) satisfying

<h@ ud>=0, d=1,2,3. (2.5)

The negative definiteness of the resulting action on theetaingpace can serve as the second-order
optimality condition for our problem of maximizing (1.3).
The restricted map, the projected Hessian, can be intexpest follows.
LEMMA 2.3.The projected Hessian of the objective functioover the product of tangent spacesst,
d = 1,2, 3, can be represented by the matrix

=, T x3u® T xyu®
HuW, u® u®) = | (T x3u®)T —\, T x;u®
(T xou®)T (T x;uM)T ATy,

: (2.6)

wherel;, stands for the identity matrix iR/e*1d, d = 1,2, 3.

Proof. Consider the bilinear fornfh()), h(® h®)), ¢ (u(l) u® u®).(h™ h® h®) whereh® is a
tangent vector to the sphesé<. Using (2.5), the bilinear form applied to the tangent vestan be simplified
to

(0D, 5 1®), ¢ (D, u®, u®). (D h® n®) =
QRO+ B2+ B 2)+2((Txgu®, KO h®) + (Txpu®, hWoh®) +(Tx u), b oh))

The expression (2.6) is the matrix representation of sudhrelr mapO

Note that the off-diagonal portion df (u("), u(®,u®) is precisely the Hessian of the objective function
A, whereas the diagonal portion is that of the constraintsdflangth. In other words, (2.6) is precisely the
Hessian of the Lagrangian restricted to the tangent spasé:ot Sz x S'3, but we have avoided using the
Lagrangian.

3. Global optimization. Finding the best rank-1 approximation for an order-3 temsiggtht seem anal-
ogous to finding the best rank-1 approximation for an ordera2rix. Low rank approximation for matrices
enjoys well developed theory, i.e., the Echard-Young-Mitheorem, and reliable algorithms, e.g., the Golub-
Kahan SVD algorithm or the Lanzcos bidiagonalization pssdé only a few singular triplets are needed. In
contrast, there is no such a theory nor an effective algorfthr the best rank-1 approximation for an order-3
tensor. The so called truncated higher-order SVD for tensof10] does not generalize even the concept of
the TSVD for matrices at all [21]. Instead of a linear algedyparoach, we propose using global optimization
approach which, just like the SVD algorithm for matricesjtésative in nature. We explain the setup and
investigate the computational overhead in this sectionstNfaportantly, we want to call to the attention that,
without resorting to the global optimization mechanism stow rank tensor approximation techniques will
fail in finding the best solution.



Computing Global Best Rank-1 Order-3 Tensor
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FIGURE 3.1.Running time needed by global optimization for the best+hakproximation for order-3 tensors.

3.1. Set-up. The basic idea behind global optimization is to use a lodakseepeatedly on many starting
points with the goal of choosing the best among the locahogpfound in the basins of attraction of the starting
points. Because we have to compromise on the overhead wiitblfimany trials, there is no guarantee that
a solution is a true global solution. Still, after sufficigntany trials and if the starting points are reasonably
distributed throughout the bounded feasible set, the finlation has the potential of being the best one.

We propose to carry out numerical experiments as followsgéveerate square test tensors of the form

T, =asobsoc,

whereag, b, ¢, are random vectors iR®, s = 4,5,...,100. Our idea is that if the global optimization has
difficulty in recovering the exact decomposition fhy, then there is little hope for general order-3 tensors. The
interior point method is used as the local solver for the traised optimization packadgeincon. Variables
ul®, d = 1,2, 3, are constrained to the unit sphete). Analytic information of both gradient and Hessian is
explicitly given. Starting points are chosen randomly froniform distribution over the cubl-1, 1]° C R®.

For each giver{y, the global optimization solveultiStart is called to run the procedufenincon at 10
random starting points. Positive exit flag is checked to @atethat the local solver does converge to a local
optimum. Because the tens®y is exactly of rank one, the global objective value should lbse to the
theoretical value\ = 1, contingent upon the stopping criteria which are deterchiog the tolerance on the
constraint violatioriTolCon = 10~ 10, the termination tolerance on the function vali@Fun = 10~°, and
the termination tolerance on iteraf@sX = 10~6.

It used to be that the most objective means for gauging thepatational complexity would be counting
the theoretical number of floating-point operations (flop#wever, given nowadays computing technologies
where machines (even a desktop PC) are equipped with higbrpemce processors (vector or parallel, hyper-
threading or multi-cores), simple flop counts are no longdidvanymore for measuring the performance. A
standard computer software library, suchMalab or LAPACK, is often highly optimized, which also muddles
the flop counts. Furthermore, given the high speed of todaiyd, the memory latency to fetch anything notin
cache is much greater than the cost of a flop. For these readatiab has removed one of their most famous
commanddlops since Version 6. In order to compare the overhead, the alajpse taken byMultiStart to
finish the task, i.e., running through 10 random startingnisoio find the best solution, is recorded per given
T,. Depending on the loading of the CPU, the time measuremagtttrfiuctuate. So, for each of the dimension
s=4,5,...,100, we repeat the experiment 20 times with randomly generatgdensorg’; and measure the
individual CPU time. We understand that the face value oétmeasurement is machine dependent, but the
trend should be generally indicative.

3.2. Overhead estimate Plotted in the top streak of Figure 3.1 are the logarithmapdis of running time
needed byMultiStart to complete 10 random starting points to compute the globsi tank-1 approximation
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. Fitting with Quadratic and Cubic Polynomials
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FIGURE 3.2. Polynomial fitting of the running time needed for the beskrarapproximation of order-3 tensors.

for T. Each color represents one collection of time across thiati@m of dimensions from 4 to 100. There
should be 20 colors to represent the 20 runs for eaclihere is no need to tell the difference among the
curves. Rather, the clustering indicates that the measmeofitime for the 20 runs is consistent. What is most
interesting is the nearly linear relationship in the lotfariic graphs. Suppose we average the running time for
eachs and perform a linear regression. We obtain an approximafitime computational time

t10.caponential (5) & 10(—6-6065x10™1)+(1.1301x10~?)s (3.1)

The boundedness of our feasible set helps, but there is moetiieal basis that an attempt by finitely
many starting points will guarantee the finding of a globalison. Out of curiosity, we redo the experiment
by limiting MultiStart to the task of completing merely 5 random starting pointse Tésults are plotted in
the bottom streak of Figure 3.1, which again shows a linearetation that is almost parallel to that of the
10-starting-point case. The computational time is givgorapmately by

ts caponential (8) & 10(79.2521x10*1)+(1.1039x1(r2)s7 (3.2)
which is about one half ofig cxponentia (s). Such a ratio is understandable because in theory the tigtar
point case should cost half. It is rather surprising thatdgludal solution is found in almost 99.9% of the
tests even with only 5 multi-starts. This behavior, of ceurlsas something to do with the effective restart
strategy built in the package, e.g., rejecting startingifsdfialling in the basin of attraction that has already been
computed. If some statistical significance of success elégive to the number of trials can be established,
then we might save tremendous overhead by using fewemgjqrtiints.

We can further simplify the estimate of overhead by polyradmegressions. Let each time measurement
be represented by a suitably colored dot. The exponentiabitby models (3.1) and (3.2) are plotted by blue
circles in Figure 3.2, respectively. Suppose we perforrgmarinial fittings of degree 2 and 3 to the average of
the running time. We obtain the models

t10,cubic(8) = (9.0381x1079%)s® — (9.4997x107%%)s% 4 (4.3106x107°%)s — (6.1435x107%%), (3.3)
t10,quadratic(s) = (4.7353x107%)s? — (1.9137x107°%)s + (5.9062x10™1), (3.4)

and

t5 cubie(s) = (4.1153x107%6)s% — (4.2636x10~°4)s? + (1.9023x10~°%)s — (1.0537x10~°%), (3.5)
ts.quadratic(s) = (2.2180x107°%)s? — (9.3178x107%%)s + (2.8636x10~°1), (3.6)
7



respectively. The plots of these polynomials in Figure 38ns to suggest that even the quadratic fitting
provides a reasonable estimate of overhead for low dimeaktensors. In that case, notice again that

1
t5,quadratic (S) ~ _tIO,quadratic (S) ’

2
which suggests that the experiment is reasonably robu#.irteresting to expand the exponential function
(3.2) in its Taylor series

0.2184489693 + 0.005684372943 s + 0.00007395799551 s 4+ 0.0000006414996749 s> + O(s*)

The small coefficient associated with suggests again that maybe a quadratic fitting is sufficient.

In all, the scalability of time measurement by two indepenidgals with 5 multi-starts and 10 multi-
starts across the variation of dimensions= 4,5, ...,100 indicate that the data we have collected can be
considered as consistent. Our experiments thus lead ther irprising conclusion — the CPU time needed
for finding the global best rank-1 approximation for an of8densor inR***** by the global optimization
packageMultiStart is of the ordeiO(s?). Such an overhead for finding the globally best rank-1 agpration
is somewhat unexpectedly low because the tensor conthmsny entries.

4. Newton Method. The problem of maximizing (1.3) is simple enough that mayleecan apply the
Newton method to the projected gradient directly and, simid theMultiStart, we can test out multiple initial
points for the iteration to search for a global solution.

4.1. Inexact Newton Iteration. Taking into account that not only the equatigtu, u®, u®) =
0 is to be satisfied, but also thaa™™, u® u®) e S+ x Sz x §'s, whereas the matrix representation
H(u®, u® u®)is applicable only to the tangent spacesdf x S’ x S's, we propose a modified iterative
scheme that utilizes only the projection Hessian as follows

LEMMA 4.1. Assuming that the current itera(a&), ufj]), uf;’])) is feasible, then the update obtained from

Au(l)
[p]
W) @ @ @ | _ D) @) 3
H(upl g lugh) | Aupr o= —g(up) upgupy) (4.1)
Au(3)
[p]
(@) (d)
u; ; + pAu
O —. PIZT g —1.9.3, (4.2)

() ()
||U-[p] + P[p]AU-[p] 2

where the step size,, is selected by following the Armijo rule, converges quaidedly.

Proof. We start with the conventional Newton iteration appliethis Lagrangian of optimization problem
(1.3). To save from making repeated reference to the sydisgri we assume that the current iterates are
denoted agu®, u® u® A, X, A\3). One Newton step amounts to solving the linear system

Nl Txsu® Txou?® —u® 0 0 T au® T [ 7 x2u® x3u® — Au® ]
(T x3 u(S))T —X2lp, T x1 u® 0 —u® 0 Au® T x; u® x3u® — xu®
(T 2 u®)T (T3 u®™)T gl 0 0 —u® Au® T x1u® x3u® — Agu®

T 0 0 0 0 0 AN - Iu@y?-1

0 —u®7 0 0 0 0 AXz LR
0 0 —u®7 0 0 0 L Ars [®)2 1




for the increment§Au), Au®, Au® AX;, A)y, AX3). The last three equations together with the feasi-
bility of u™, u®, u® imply that

u@ Au@D =0 a=1,2,3.

Pre-multiplying thel-th equation b)u(d)T, we obtain the equalities

(T x1u® x3uB)TAuU® + (T x; u® x u@)TAu® + (A= X)) = AN,
(T X9 u® X3 u(3))TAu(1) + (T X1 u® X9 u(z))TAU.(B) + (/\ - /\2) = A, (43)
(T X9 U.(2) X3 u(3))TAu(1) + (T X1 U.(l) X3 u(g))TAU.(Q) + (/\ — /\3) = A/\3

For the Lagrangian of general problems, the Lagrange ntieltipare part of the unknowns to be found. In our
application, however, we know; = A, d = 1, 2, 3. The exact Newton step therefore can be written as

Au®
Hu® u® u®) | Au® | = —gu®,u® u®) +r, (4.4)
Au®
with
u®d 0 0 AN
r= r(u(l)7 u® u® Au® Au®, Au(3)) = 0 u® o0 Ay | . (4.5)

0 0 u® Al

In other words, the scheme (4.1) which ignores the term(4.4) constitutes an inexact Newton step.

By the theory of inexact Newton method [11, 12, 27], the magte of the residuat determines the rate
of local convergence. Using (4.5), together with the faat td?), d = 1,2, 3, is of unit length, we obtain the
first estimate that

(1)
ANy Au
e =O( | Axe | I)=0(| Au® | |))=0(lg®,u® u®)]|), (4.6)
Als
Au®

which is sufficient to assert that the iterates convergaligd11, Theorem 2.3].
Indeed, if we denote the three componentg@f?), u®, u®) separately ag(® (u®,u® u®), d =
1,2, 3, we can further simplifyA \; to

A = (9@ @D, 1@, u®) £ 2T AU + (¢ D, u®,u®) + xu®)TAu®),
= ¢@ " @®, u® u®)Au® + ¢® @O, u® u®)Au®), (4.7)

and likewise forAX; andA\s. Thus we actually know that
Ari = O(Jlg™,u® u®)[?), d=1,2,3. (4.8)

It follows by [11, Theorem 3.3] that the convergence of theesue (4.1) is quadratiél
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FIGURE 4.1. An example of 117 optimal values from 500 runs (red dots) &yNwton iteration on a random tensor P> 55,
Histogram of optimal values is plotted in black frame.

4.2. Multiple (many) local solutions. The Newton iteration converges fast, but is equally atécd¢d a
local minimum and a local maximum. So, different from thelglboptimization, the Newton iteration alone
cannot differentiate which direction the objective valuis converging to. However, k(u®,u® u®)is a
local minimum, then by the symmetry we see thét u®, —u®, —u®) = —A(u®,u® u®) is a local
maximum, and vice versa. Any local minimum found by the itieranaturally provides a counter part of a
local maximum by switching the sign. The Amijo rule theref@hould be applied in both ways, i.e., if the
condition of searching for a sufficient increase cannot belysuccessful step size reductions, then we reverse
to search for a sufficient decrease of the objective value.

Numerical experiments indicate that typically there areynsolutions for the first order optimality con-
dition g(u™, u®,u®) = 0. These are critical points for the objective functivand, with appropriate sign
switches, these are the local maxima for (1.3). Demonstraté&igure 4.1 are results from 500 runs of the
Newton method applied to one randomly generated tensorefsk 5 x 5. The starting points are randomly
selected from a uniform distribution over the unit spherksoflotted by horizontal bars on the right margin in
Figure 4.1 is the histogram of the optimal values in this.t€be frequency of occurrence is marked along the
top axis from right to left. The graph is significant in twadolFirst, it probably represents all possible critical
values. In this particular example, there are 117 localnogtivalues some of which are close to each other.
Recall that corresponding to each optimal value are 4 lagatisns which differ by sign changes. So there
are at least 468 local maximizers for this problem alone o8égit strongly suggests that the first-order ALS
method used extensively by practitioners or any locallyeogent method can easily get trapped at any of the
468 local solutions, some of which occur more frequentlytbtners, as is seen in the histogram. Because the
starting points are distributed uniformly, a possible exition for this frequency disparity is that some local
solutions have larger basins of attraction. The largesailve value, attainable by only 4 successes out of 500
trials, is verified independently by a run of the global optiation mentioned in Section 3. Though it has been
generally recognized that most lower rank approximatigo@dihms available in the literature can find a local
solution only, this experiment raises the flag that thesénaukt might have severely missed the target.

The Newton method is using the Hessian information, butkdahe mechanism of steering the iterates to
a global best rank-1 approximation. With its fast convemgemwe have a chance to repeat many more multiple
trials. Instead of just using brute force to perform manglg;i we might improve the chance by bringing in
some smart starting point strategy to avoid repeated basattraction. This requires a lot of fine tuning of the
code, which we choose not to investigate in the preliminatg since we already have the global optimization
in hand.
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Also arises is the interesting problem of determining theber of solutions of the polynomial system
g(u®, u® ul®) = 0ontheS™ x S x §'s. This is a classical problem in the realm of real algebraic
geometry. We do not think that there is an easy answer.

5. Generalization. Both ideas discussed above can readily be generalizeddorteof arbitrary order for
finding the global best rank-1 approximation. In particule analytic forms of the gradient and the Hessian
can be generalized mechanically from (2.2) and (2.6). Thm m@ancern, however, is the prevalent curse of
dimensionality that will substantially increase the congpional overhead.

For instance, to formulate a component such as

T Xo, ul®) x o u@) x, ule

for an orderk square tensor ové®’ </ wheres < k, an efficient nested multiplication without relying on
memory optimization requires [3]

k
e+ 1] e+ [[ Z+.--+ II =

=1 {F#aq l#ay ,00 l#aq,a2,...0051

many entry-to-entry multiplications. In forming the profjed gradient and the projected Hessian, the lengths
s arek — 1 andk — 2, respectively, and there akeand@ such components with varyin@i, . . ., as).
These counts reflect the cost needed for forming the derastnly, which will be computed repeatedly
many times during the optimization process. We need nottztke the total explicitly, but it should be clear
that the computational cost will be high whéris large. Additionally, other internal tasks, such as sajvi
linear system, convergence assessment, or even bookieef@mant to the optimization package, are also size
dependent. While in theory the cost for high order tensossadable, it might be too expensive to be practical.
If for problems of certain sizes the cost is tolerable, them dbsolute best approximation might be used to
bench the performance of other local methods.

6. Conclusion. The class of order-3 tensors might seem too limited to betefést when comparing with
general tensors. However, the class of order-2 tensorsglgamatrices, is even more special and has already
proved critical in almost every branch of sciences. Just fiilatrices, order-3 tensors have their own roles in
applications. Additionally, order-3 tensors serves asgéteway to and the testing ground for understanding
higher order tensors.

In this paper, we investigate the feasibility of employihg global optimization techniques to solve the
absolute best rank-1 approximation problem for order-38des By furnishing the analytic projected gradient
and projected Hessian information, we conclude that findiregabsolute best solution can be achieved at
reasonable computational cost.

We also experiment with an inexact Newton iteration. Wighqtiadratic rate of convergence we are able
to uncover many local solutions, so much so that most localiwergent methods probably are inadvertently
trapped at local solutions which might be far off the absohgst approximation.
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