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Abstract. Finding the absolute best rank-1 approximation for an order-3 tensor is an important first step as critical as the truncated
singular value decomposition for a matrix. This note reports empirical results of two investigations. First, the feasibility of employing
existent global optimization package to tackle the absolute best approximation problem is studied. Measuring the computational complexity
in terms of CPU time, it is found that for tensors inRs×s×s with s ≤ 100, i.e., tensors with up to one million entries, the overhead is
approximatelyO(s2). Second, taking advantage of its quadratic convergence, this note also experiments a modified Newton method with
many starting points. It is found that the rank-1 approximation problem can easily have many local solutions. Though it has been generally
recognized that most of the lower rank approximation algorithms available in the literature can find a local solution only, this experiment
raises the flag that these methods might have severely missedthe target.
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1. Introduction. In addition to finding its own applications in areas such as chemometrics [18, 20, 30, 31],
arithmetic complexity analysis [24], image processing, [29], principal component analysis [19, 23], psycho-
metrics [25, 33] and other fields, the class of real-valued order-3 tensors

T = [τℓ,j,k] ∈ RI1×I2×I3 , (1.1)

has been of particular interest to researchers because it serves as the watershed that separates what we already
know about the classical matrix theory and what we might not acquainted with for high dimensional arrays [24].
Some properties of matrices, such as representing linear transformations, can be generalized in an obvious way
to tensors, while others, such as ranks or eigenvalues, are fundamentally different, despite of their resemblance
in names. Likewise, some techniques well developed for matrices, such as the low rank approximation, cannot
be immediately extended to tensors. This paper revisits theclassical problem of rank-1 approximation of an
order-3 tensor with some new numerical insights.

Given a real-valued order-3 tensorT , we are interested in finding unit vectorsu(d) ∈ RId , d = 1, . . . 3,
and a scalarλ ∈ R such that the function

f(λ,u(1),u(2),u(3)) := ‖T − λu(1)◦u(2)◦u(3)‖2F , (1.2)

where◦ stands for the tensor product, is "absolutely" minimized [24]. The problem is equivalent to maximizing

λ = λ(u(1),u(2),u(3)) := vec(T )⊤(u(3) ⊗ u(2) ⊗ u(1)), (1.3)

subject tou(j) ∈ SId , the unit sphere inRId , d = 1, 2, 3, with ⊗ standing for the Kronecker product. The
challenge is at finding the "absolute" best approximation. Finding the absolute best rank-1 approximation for
an order-3 tensor is as important as the truncated singular value decomposition (TSVD) for a matrix [6, 21].
The difficulty is that there is no direct generalization of TSVD from order-2 tensors to order-3 tensors. Solving
(1.2) is a basic building block with many potential applications. We outline two scenarios below to demonstrate
why this building block might be useful.

First, recall that the outer productP = F ◦G between an order-m tensorF ∈ RI1×...×Im and an order-n
tensorG ∈ RJ1×...×Jn is an order-(m+ n) tensor defined by

pi1,...,im,j1,...,jn := fi1,...,imgj1,...,jn . (1.4)

Regarding (1.4) as a type of tensor factorization ofP , we ask the inverse question. That is, given an order-
(m+ n) tensorP ∈ RI1×...×Im×J1×...×Jn , when canP be factorized as the tensor product of two lower order
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tensorsF andG of fixedm andn? There is no easy answer. If the factorization is not possible, we then ask
for its best possible approximation in the sense of finding the global solution to the problem

min
F∈RI1×...×Im ,G∈RJ1×...×Jn

‖P − F ◦G‖F . (1.5)

For matrices, this is the classical problem of the best rank-1 approximation. The answer is known precisely by
the Eckart-Young-Mirsky theorem. For tensors, this is an interesting nonlinear approximation with fixed facets,
which can be solved via proper matricization.

More specifically, an order-k tensorT ∈ RI1×I2×...×Ik can be recognized as a linear array where the entry
τi1,...,ik of T is saved at the location

(ik − 1)Ik−1Ik−2 . . . I1 + (ik−1 − 1)Ik−2 . . . I1 + ...+ (i2 − 1)I1 + i1. (1.6)

Let c(F ) :=
∏m

i=1 Ii andc(G) :=
∏n

j=1 Jj denote the total cardinalities of elements expected inF andG,

respectively. We matricize the givenP into a matrixP ∈ Rc(F )×c(G) whose vectorization is precisely the same
linear array ofP . Let (si, fi,gi) ∈ R × Rc(F ) × Rc(G) denote the triplets of the left and right singular vectors
of P corresponding to theith largest singular valuesi, i = 1, . . . , ℓ, of P. The following result, which is more
general than (1.5), can be proved by using the Eckart-Young-Mirsky theorem [36].

LEMMA 1.1. Supposeℓ ≥ 1 is fixed. DefineFi andGi by reshaping the columnssifi andgi (or, any
combination ofaifi andbigi with aibi = si) into an order-m tensor inRI1×...×Im and an order-n tensor inRJ1×...×Jn , respectively. Then

‖P −

ℓ
∑

i=1

Fi ◦Gi‖F . (1.7)

is minimized among all possibleFi ∈ RI1×...×Im , Gi ∈ RJ1×...×Jn .
Each term in the approximation in (1.7) involves only two factors of lower order tensors, so the matrix

technique is still applicable. Had it been possible to continue this procedure to three or more factors, we would
have resolved the general low rank tensor approximation problem. It was pointed out that the Eckart-Young-
Mirsky theorem could not be generalized to tensors [21]. We must develop some new approach for three
factors. The case of order 3 considered in this paper is the very first step toward that direction.

Second, in contrast to the conventional approach by the so called alternating least squares (ALS) method
that works to adjust one factor a time for the best rank-1 approximation of a generic tensor, it has been suggested
recently that the SVD-based algorithms improving two factors simultaneously might have a better limiting
behavior leading to better approximations [14, 16, 17, 38].A randomized SVD updating scheme is typified in
Algorithm 1, where×d denotes the standard mode-d multiplication of a tensor with a vector [2]. The principal
mechanism of the algorithm is thesvds applied to the intermediate matrixCt defined at Line 7 to obtain its
globally best rank-1 approximation. Convergence theory ofthe algorithm has been established and numerical
experiments do suggest that the SVD-based methods have the advantage of saving the computational time on
large scale problems. The very same idea can be generalized to improve three or more factors simultaneously.
For instance, replacingβt at Line 6 by a triad of three random indices, then the productCt at Line 7 becomes
an order-3 tensor. Thus thesvds should be replaced by a mechanism that finds the globally bestrank-1
approximation ofCt, which is exactly the problem we are dealing with in this paper.

The conventional alternating least squares (ALS) methods [4, 9, 26], as well as most nonlinear program-
ming techniques [34], can find only one local best rank-1 approximation toT a time. How often does this
happen and how far are we off from the true best solution? In contrast to many previous studies in the literature
[1, 5, 7, 13, 22, 32] for low rank approximation of general tensors by optimization techniques, we employ the
notion of global optimization to search for the absolute best rank-1 approximation for order-3 tensors. This
note investigates how to carry out the global optimization effectively and makes some overhead comparison.
As a by-product, this investigation also implements an inexact Newton method and uncovers surprisingly many
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Algorithm 1 (Best rank-1 approximation via SVD updating with randomization.)

Require: An order-k generic tensorT andk starting unit vectorsu(1), . . . ,u(k) ∈ Rn

Ensure: A local best rank-1 approximation toT

1: t← 0
2: λ0 ← 〈T,

⊗k
ℓ=1 u

(ℓ)〉
3: repeat
4: t← t+ 1
5: σ ← random permutation of{1, . . . , k}
6: βt ← (σk−1, σk)
7: Ct ← T ×σ1 u

(σ1) ×σ2 . . .×σk−2
u(σk−2)

8: [ut, st,vt] = svds(Ct, 1) {Dominant singular value triplet viaMatlab routinesvds, assume
uniqueness}

9: if (ut)1 < 0 then
10: u = −ut,v = −vt {Assume the general case that(ut)1 6= 0; otherwise, use another entry}
11: end if
12: λt ← st
13: u(σk−1) ← ut,u

(σk) ← vt

14: until λt meets convergence criteria

local solutions, strongly implying that most locally convergent methods will be inadvertently trapped at local
solutions which might be far off the absolute best approximation.

This paper is organized as follows. In Section 2 we begin withsome basic information. In Section 3 we
explain how the global optimization is set up and experimenton its application to randomly generated order-3
tensors with variable sizes. The information of overhead isgathered in terms of CPU time and is analyzed
via regression models. In Section 4 we introduce a Newton iterative scheme that uses only the projected
gradient and projected Hessian information. It is proved that, despite of the truncation by projection, the method
converges quadratically. The rapid speed of convergence make it possible for us to perform large amount of
repeated experiments with random starting points. It is discovered that even for a5× 5× 5 target tensor, there
are hundreds of local solutions for the rank-1 approximation. In theory, the entire idea can generalized to higher
order tensors, but the computation will be exceedingly moreexpensive.

2. Basic preparation. Throughout the discussion, we shall work with (1.3) as the objective function
which is a cubic polynomial in the variables. Obviously, if the triplets(u(1),u(2),u(3)) form a maximizer, then
so do the triplets(−u(1),−u(2),u(3)), (−u(1),u(2),−u(3)) and(u(1),−u(2),−u(3)), all of which lead to the
same objective value. So the number of solutions in general should be a multiple of four. It suffices to limit our
search to the case whereu(1) resides in the "northern" hemisphere ofSI1 by fixed the sign of its last entry. We
use theGlobal Optimization Toolbox available inMatlab as the platform for computation.

Many solvers offer for convenience to estimate the gradients via finite differences and use an approximate
Hessian which can be far from the true Hessian. The effect is the increase of overhead such as the CPU time,
because more iterations and many more function evaluationsare needed for convergence. Providing gradient or
Hessian information of the objective or constraint functions can yield a solution in fewer iterations with more
accuracy. This is especially useful since most global optimization techniques require to test out sufficiently
many basins by solving the optimization problem repeatedlywith different starting points. For our rank-1
approximation problem, we can supply both gradient and Hessian information in analytic form. This section
explains how these particulars can be accomplished.

2.1. Projected gradient. The first-order optimality condition for a equality constrained optimization
problem is that the projected gradient should be zero. However, it is not always possible to have a projected
gradient in the analytic form, so general-purpose optimization approaches do not calculate the projected gradi-
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ent explicitly. Instead, the theory of Lagrange multiplieris mathematically equivalent to having zero projected
gradient [8]. Most codes estimate the multipliers as part ofthe calculation and adjust the iteration by taking
into account the second order derivative information. For our rank-1 approximation problem, the following
derivative information is readily available.

LEMMA 2.1. Let×d denote the mode-d vector product [2]. Then the gradient∇λ of (1.3) is given by

∇λ(u(1),u(2),u(3)) =







T ×2 u
(2) ×3 u

(3)

T ×1 u
(1) ×3 u

(3)

T ×1 u
(1) ×2 u

(2)






, (2.1)

where×d denotes the mode-d tensor-vector multiplication.
In MATLAB we can use the commandsreshape andshiftdim to conveniently carry out the above calcula-

tion. The partial gradient∂λ
∂u(1) ∈ RI1 , for example, can be obtained literally by a one-line command:

(reshape(u2*u3’,I2*I3,1)’*reshape(shiftdim(T,1),I2*I3,[]))’;

Using the product topology, the projected gradient is obtained by projecting each partial gradient∂λ
∂u(d)

onto the the tangent space of the corresponding unit sphereSId ⊂ RId .
LEMMA 2.2. The projected gradient of the objective functionλ onto the productSI1 × SI2 × SI3 of unit

spheres is given by

g(u(1),u(2),u(3)) =











T ×2 u
(2) ×3 u

(3) − λ(u(1),u(2),u(3))u(1)

T ×1 u
(1) ×3 u

(3) − λ(u(1),u(2),u(3))u(2)

T ×1 u
(1) ×2 u

(2) − λ(u(1),u(2),u(3))u(3)











. (2.2)

A typical way to solveg(u(1),u(2),u(3)) = 0 is the so called the so called alternating least squares (ALS)

approach. The basic scheme is that, givenu
(2)
[p] andu(3)

[p] , we updateu(1)
[p+1] via

(The ALS method)















λ
(1)
[p]

:= ‖T ×2 u
(2)
[p] ×3 u

(3)
[p] ‖2,

u
(1)
[p+1]

:=
T×2u

(2)

[p]
×3u

(3)

[p]

λ
(1)

[p]

,
(2.3)

continue on in a similar way to updateu(2)
[p+1] andu(3)

[p+1] in turn, and repeat the cycles. It can be shown that the

sequence{(u(1)
[p] ,u

(2)
[p] ,u

(3)
[p] )} converges [35, 37]. Being just a first order method, the ALS iteration converges

only linearly.
It is easy to see that (2.2) is precisely the derivative of theclassical Lagrangian with all multipliers equal

to λ(u(1),u(2),u(3)). We certainly can go beyond the conventional ALS method withmuch more advanced
and efficient techniques to find the critical points. We couldemploy, for example, a Newton-type iteration with
the availability of the analytic projected Hessian or any proven optimization software, e.g., those available in
[15, 28]. Using these techniques has the danger of finding merely a critical point or a local solution, which may
not be the best rank-1 approximation. To achieve our goal, some extra efforts must be taken.

2.2. Projected Hessian.We can calculate the projected Hessian without presupposing the Lagrange mul-
tipliers. The justification that the following two steps areequivalent to the action of the projected Hessian can
be found in [8].
Step 1. Extendg(u(1),u(2),u(3)) formally to the entire spaceRI1 × RI2 × RI3 and calculate its Fréchet

derivative. Because we know the projected gradient analytically, the extension is easy. Using the same
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notation for the extended function, the action ofg′(u(1),u(2),u(3)) on an arbitrary(h(1),h(2),h(3)) ∈RI1 × RI2 × RI3 is given by the vector

g
′(u(1)

,u
(2)

,u
(3)).(h(1)

,h
(2)

,h
(3)) =













−
∂λ

∂u(1) .h
(1)

u
(1)

− λh(1) + T×2h
(2)
×3u

(3)
−

∂λ

∂u(2) .h
(2)

u
(1) + T×2u

(2)
×3h

(3)
−

∂λ

∂u(3) .h
(3)

u
(1)

T×1h
(1)
×3u

(3)
−

∂λ

∂u(1) .h
(1)

u
(2)

−
∂λ

∂u(2) .h
(2)

u
(2)

− λh(2) + T×1u
(1)

×3h
(3)

−
∂λ

∂u(3) .h
(3)

u
(2)

T×1h
(1)
×2u

(2)
−

∂λ

∂u(1) .h
(1)

u
(3) + T×1u

(1)
×2h

(2)
−

∂λ

∂u(2) .h
(2)

u
(3)

−
∂λ

∂u(3) .h
(3)

u
(3)

− λh(3)













.(2.4)

Step 2. Limit the action ofg′(u(1),u(2),u(3)) to tangent vectors. The tangent space ofSI1 × SI2 × SI3

is the product of tangent spaces ofSId , d = 1, 2, 3. Therefore, apply the action only to those
(h(1),h(2),h(3)) satisfying

< h(d),u(d) >= 0, d = 1, 2, 3. (2.5)

The negative definiteness of the resulting action on the tangent space can serve as the second-order
optimality condition for our problem of maximizing (1.3).

The restricted map, the projected Hessian, can be interpreted as follows.
LEMMA 2.3. The projected Hessian of the objective functionλ over the product of tangent spaces ofSId ,

d = 1, 2, 3, can be represented by the matrix

H(u(1),u(2),u(3)) :=











−λII1 T ×3 u
(3) T ×2 u

(2)

(T ×3 u
(3))⊤ −λII2 T ×1 u

(1)

(T ×2 u
(2))⊤ (T ×1 u

(1))⊤ −λII3











, (2.6)

whereIId stands for the identity matrix inRId×Id , d = 1, 2, 3.
Proof. Consider the bilinear form〈(h(1),h(2),h(3)), g′(u(1),u(2),u(3)).(h(1),h(2),h(3))〉 whereh(d) is a

tangent vector to the sphereSId . Using (2.5), the bilinear form applied to the tangent vectors can be simplified
to

〈(h(1),h(2),h(3)), g′(u(1),u(2),u(3)).(h(1),h(2),h(3))〉 =

−λ(‖h(1)‖2+‖h(2)‖2+‖h(3)‖2)+2(〈T×3u
(3),h(1)◦h(2)〉+〈T×2u

(2),h(1)◦h(3)〉+〈T×1u
(1),h(2)◦h(3)〉).

The expression (2.6) is the matrix representation of such a bilinear map.
Note that the off-diagonal portion ofH(u(1),u(2),u(3)) is precisely the Hessian of the objective function

λ, whereas the diagonal portion is that of the constraints of unit length. In other words, (2.6) is precisely the
Hessian of the Lagrangian restricted to the tangent space ofSI1 × SI2 × SI3 , but we have avoided using the
Lagrangian.

3. Global optimization. Finding the best rank-1 approximation for an order-3 tensormight seem anal-
ogous to finding the best rank-1 approximation for an order-2matrix. Low rank approximation for matrices
enjoys well developed theory, i.e., the Echard-Young-Mirsky theorem, and reliable algorithms, e.g., the Golub-
Kahan SVD algorithm or the Lanzcos bidiagonalization process if only a few singular triplets are needed. In
contrast, there is no such a theory nor an effective algorithm for the best rank-1 approximation for an order-3
tensor. The so called truncated higher-order SVD for tensors in [10] does not generalize even the concept of
the TSVD for matrices at all [21]. Instead of a linear algebraapproach, we propose using global optimization
approach which, just like the SVD algorithm for matrices, isiterative in nature. We explain the setup and
investigate the computational overhead in this section. Most importantly, we want to call to the attention that,
without resorting to the global optimization mechanism, most low rank tensor approximation techniques will
fail in finding the best solution.
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Computing Global Best Rank-1 Order-3 Tensor

FIGURE 3.1.Running time needed by global optimization for the best rank-1 approximation for order-3 tensors.

3.1. Set-up.The basic idea behind global optimization is to use a local solver repeatedly on many starting
points with the goal of choosing the best among the local optima found in the basins of attraction of the starting
points. Because we have to compromise on the overhead with finitely many trials, there is no guarantee that
a solution is a true global solution. Still, after sufficiently many trials and if the starting points are reasonably
distributed throughout the bounded feasible set, the final solution has the potential of being the best one.

We propose to carry out numerical experiments as follows. Wegenerate square test tensors of the form

Ts = as ◦ bs ◦ cs

whereas,bs, cs are random vectors inRs, s = 4, 5, . . . , 100. Our idea is that if the global optimization has
difficulty in recovering the exact decomposition forTs, then there is little hope for general order-3 tensors. The
interior point method is used as the local solver for the constrained optimization packagefmincon. Variables
u(d), d = 1, 2, 3, are constrained to the unit sphereS(s). Analytic information of both gradient and Hessian is
explicitly given. Starting points are chosen randomly fromuniform distribution over the cube[−1, 1]s ⊂ Rs.
For each givenTs, the global optimization solverMultiStart is called to run the procedurefmincon at 10
random starting points. Positive exit flag is checked to ascertain that the local solver does converge to a local
optimum. Because the tensorTs is exactly of rank one, the global objective value should be close to the
theoretical valueλ = 1, contingent upon the stopping criteria which are determined by the tolerance on the
constraint violationTolCon = 10−10, the termination tolerance on the function valueTolFun = 10−10, and
the termination tolerance on iteratesTolX = 10−6.

It used to be that the most objective means for gauging the computational complexity would be counting
the theoretical number of floating-point operations (flops). However, given nowadays computing technologies
where machines (even a desktop PC) are equipped with high performance processors (vector or parallel, hyper-
threading or multi-cores), simple flop counts are no longer valid anymore for measuring the performance. A
standard computer software library, such asMatlab or LAPACK, is often highly optimized, which also muddles
the flop counts. Furthermore, given the high speed of today’sCPU, the memory latency to fetch anything not in
cache is much greater than the cost of a flop. For these reasons, Matlab has removed one of their most famous
commandsflops since Version 6. In order to compare the overhead, the elapsed time taken byMultiStart to
finish the task, i.e., running through 10 random starting points to find the best solution, is recorded per given
Ts. Depending on the loading of the CPU, the time measurement might fluctuate. So, for each of the dimension
s = 4, 5, . . . , 100, we repeat the experiment 20 times with randomly generated test tensorsTs and measure the
individual CPU time. We understand that the face value of time measurement is machine dependent, but the
trend should be generally indicative.

3.2. Overhead estimate.Plotted in the top streak of Figure 3.1 are the logarithmic graphs of running time
needed byMultiStart to complete 10 random starting points to compute the global best rank-1 approximation
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FIGURE 3.2.Polynomial fitting of the running time needed for the best rank-1 approximation of order-3 tensors.

for Ts. Each color represents one collection of time across the variation of dimensions from 4 to 100. There
should be 20 colors to represent the 20 runs for eachs. There is no need to tell the difference among the
curves. Rather, the clustering indicates that the measurement of time for the 20 runs is consistent. What is most
interesting is the nearly linear relationship in the logarithmic graphs. Suppose we average the running time for
eachs and perform a linear regression. We obtain an approximationof the computational time

t10,exponential(s) ≈ 10(−6.6065×10−1)+(1.1301×10−2)s. (3.1)

The boundedness of our feasible set helps, but there is no theoretical basis that an attempt by finitely
many starting points will guarantee the finding of a global solution. Out of curiosity, we redo the experiment
by limiting MultiStart to the task of completing merely 5 random starting points. The results are plotted in
the bottom streak of Figure 3.1, which again shows a linear correlation that is almost parallel to that of the
10-starting-point case. The computational time is given approximately by

t5,exponential(s) ≈ 10(−9.2521×10−1)+(1.1039×10−2)s, (3.2)

which is about one half oft10,exponential(s). Such a ratio is understandable because in theory the 5-starting-
point case should cost half. It is rather surprising that theglobal solution is found in almost 99.9% of the
tests even with only 5 multi-starts. This behavior, of course, has something to do with the effective restart
strategy built in the package, e.g., rejecting starting points falling in the basin of attraction that has already been
computed. If some statistical significance of success rate relative to the number of trials can be established,
then we might save tremendous overhead by using fewer starting points.

We can further simplify the estimate of overhead by polynomial regressions. Let each time measurement
be represented by a suitably colored dot. The exponential fittings by models (3.1) and (3.2) are plotted by blue
circles in Figure 3.2, respectively. Suppose we perform polynomial fittings of degree 2 and 3 to the average of
the running time. We obtain the models

t10,cubic(s) = (9.0381×10−06)s3 − (9.4997×10−04)s2 + (4.3106×10−02)s− (6.1435×10−02), (3.3)

t10,quadratic(s) = (4.7353×10−04)s2 − (1.9137×10−02)s+ (5.9062×10−1), (3.4)

and

t5,cubie(s) = (4.1153×10−06)s3 − (4.2636×10−04)s2 + (1.9023×10−02)s− (1.0537×10−02), (3.5)

t5,quadratic(s) = (2.2180×10−04)s2 − (9.3178×10−03)s+ (2.8636×10−01), (3.6)
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respectively. The plots of these polynomials in Figure 3.2 seem to suggest that even the quadratic fitting
provides a reasonable estimate of overhead for low dimensional tensors. In that case, notice again that

t5,quadratic(s) ≈
1

2
t10,quadratic(s),

which suggests that the experiment is reasonably robust. Itis interesting to expand the exponential function
(3.2) in its Taylor series

0.2184489693+ 0.005684372943 s+ 0.00007395799551 s2+ 0.0000006414996749 s3+O(s4)

The small coefficient associated withs3 suggests again that maybe a quadratic fitting is sufficient.
In all, the scalability of time measurement by two independent trials with 5 multi-starts and 10 multi-

starts across the variation of dimensionss = 4, 5, . . . , 100 indicate that the data we have collected can be
considered as consistent. Our experiments thus lead to a rather surprising conclusion — the CPU time needed
for finding the global best rank-1 approximation for an order-3 tensor inRs×s×s by the global optimization
packageMultiStart is of the orderO(s2). Such an overhead for finding the globally best rank-1 approximation
is somewhat unexpectedly low because the tensor containss3 many entries.

4. Newton Method. The problem of maximizing (1.3) is simple enough that maybe we can apply the
Newton method to the projected gradient directly and, similar to theMultiStart, we can test out multiple initial
points for the iteration to search for a global solution.

4.1. Inexact Newton Iteration. Taking into account that not only the equationg(u(1),u(2),u(3)) =
0 is to be satisfied, but also that(u(1),u(2),u(3)) ∈ SI1 × SI2 × SI3 , whereas the matrix representation
H(u(1),u(2),u(3)) is applicable only to the tangent space ofSI1 ×SI2 ×SI3 , we propose a modified iterative
scheme that utilizes only the projection Hessian as follows.

LEMMA 4.1. Assuming that the current iterate(u(1)
[p] ,u

(2)
[p] ,u

(3)
[p] ) is feasible, then the update obtained from

H(u
(1)
[p] ,u

(2)
[p] ,u

(3)
[p] )













∆u
(1)
[p]

∆u
(2)
[p]

∆u
(3)
[p]













= −g(u
(1)
[p] ,u

(2)
[p] ,u

(3)
[p] ) (4.1)

u
(d)
[p+1]

:=
u
(d)
[p] + ρ[p]∆u

(d)
[p]

‖u
(d)
[p] + ρ[p]∆u

(d)
[p] ‖2

, d = 1, 2, 3, (4.2)

where the step sizeρ[p] is selected by following the Armijo rule, converges quadratically.
Proof. We start with the conventional Newton iteration applied tothe Lagrangian of optimization problem

(1.3). To save from making repeated reference to the subscript [p], we assume that the current iterates are
denoted as(u(1),u(2),u(3), λ1, λ2, λ3). One Newton step amounts to solving the linear system























−λ1II1 T ×3 u
(3) T ×2 u

(2) −u
(1) 0 0

(T ×3 u
(3))⊤ −λ2II2 T ×1 u

(1) 0 −u
(2) 0

(T ×2 u
(2))⊤ (T ×1 u

(1))⊤ −λ3II3 0 0 −u
(3)

−u
(1)⊤ 0 0 0 0 0

0 −u
(2)⊤ 0 0 0 0

0 0 −u
(3)⊤ 0 0 0











































∆u
(1)

∆u
(2)

∆u
(3)

∆λ1

∆λ2

∆λ3





















= −

























T ×2 u
(2) ×3 u

(3) − λ1u
(1)

T ×1 u
(1) ×3 u

(3) − λ2u
(2)

T ×1 u
(1) ×2 u

(2) − λ3u
(3)

‖u(1)‖2−1
2

‖u(2)‖2−1
2

‖u(3)‖2−1
2
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for the increments(∆u(1),∆u(2),∆u(3),∆λ1,∆λ2,∆λ3). The last three equations together with the feasi-
bility of u(1),u(2),u(3) imply that

u(d)⊤∆u(d) = 0, d = 1, 2, 3.

Pre-multiplying thed-th equation byu(d)⊤, we obtain the equalities



















(T ×1 u
(1) ×3 u

(3))⊤∆u(2) + (T ×1 u
(1) ×2 u

(2))⊤∆u(3) + (λ− λ1) = ∆λ1,

(T ×2 u
(2) ×3 u

(3))⊤∆u(1) + (T ×1 u
(1) ×2 u

(2))⊤∆u(3) + (λ− λ2) = ∆λ2,

(T ×2 u
(2) ×3 u

(3))⊤∆u(1) + (T ×1 u
(1) ×3 u

(3))⊤∆u(2) + (λ− λ3) = ∆λ3.

(4.3)

For the Lagrangian of general problems, the Lagrange multipliers are part of the unknowns to be found. In our
application, however, we knowλd = λ, d = 1, 2, 3. The exact Newton step therefore can be written as

H(u(1),u(2),u(3))











∆u(1)

∆u(2)

∆u(3)











= −g(u(1),u(2),u(3)) + r, (4.4)

with

r = r(u(1),u(2),u(3),∆u(1),∆u(2),∆u(3)) :=







u(1) 0 0
0 u(2) 0

0 0 u(3)











∆λ1

∆λ2

∆λ3



 . (4.5)

In other words, the scheme (4.1) which ignores the termr in (4.4) constitutes an inexact Newton step.
By the theory of inexact Newton method [11, 12, 27], the magnitude of the residualr determines the rate

of local convergence. Using (4.5), together with the fact thatu(d), d = 1, 2, 3, is of unit length, we obtain the
first estimate that

‖r‖ = O(‖





∆λ1

∆λ2

∆λ3



 ‖) = O(‖











∆u(1)

∆u(2)

∆u(3)











‖) = O(‖g(u(1),u(2),u(3))‖), (4.6)

which is sufficient to assert that the iterates converge linearly [11, Theorem 2.3].
Indeed, if we denote the three components ofg(u(1),u(2),u(3)) separately asg(d)(u(1),u(2),u(3)), d =

1, 2, 3, we can further simplify∆λ1 to

∆λ1 = (g(2)(u(1),u(2),u(3)) + λu(2))⊤∆u(2) + (g(3)(u(1),u(2),u(3)) + λu(3))⊤∆u(3),

= g(2)
⊤
(u(1),u(2),u(3))∆u(2) + g(3)

⊤
(u(1),u(2),u(3))∆u(3), (4.7)

and likewise for∆λ2 and∆λ3. Thus we actually know that

∆λd = O(‖g(u(1),u(2),u(3))‖2), d = 1, 2, 3. (4.8)

It follows by [11, Theorem 3.3] that the convergence of the scheme (4.1) is quadratic.
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FIGURE 4.1. An example of 117 optimal values from 500 runs (red dots) by the Newton iteration on a random tensor inR5×5×5.
Histogram of optimal values is plotted in black frame.

4.2. Multiple (many) local solutions. The Newton iteration converges fast, but is equally attracted to a
local minimum and a local maximum. So, different from the global optimization, the Newton iteration alone
cannot differentiate which direction the objective valueλ is converging to. However, ifλ(u(1),u(2),u(3)) is a
local minimum, then by the symmetry we see thatλ(−u(1),−u(2),−u(3)) = −λ(u(1),u(2),u(3)) is a local
maximum, and vice versa. Any local minimum found by the iteration naturally provides a counter part of a
local maximum by switching the sign. The Amijo rule therefore should be applied in both ways, i.e., if the
condition of searching for a sufficient increase cannot be met by successful step size reductions, then we reverse
to search for a sufficient decrease of the objective value.

Numerical experiments indicate that typically there are many solutions for the first order optimality con-
dition g(u(1),u(2),u(3)) = 0. These are critical points for the objective functionλ and, with appropriate sign
switches, these are the local maxima for (1.3). Demonstrated in Figure 4.1 are results from 500 runs of the
Newton method applied to one randomly generated tensor of size5 × 5 × 5. The starting points are randomly
selected from a uniform distribution over the unit sphere. Also plotted by horizontal bars on the right margin in
Figure 4.1 is the histogram of the optimal values in this test. The frequency of occurrence is marked along the
top axis from right to left. The graph is significant in twofold. First, it probably represents all possible critical
values. In this particular example, there are 117 local optimal values some of which are close to each other.
Recall that corresponding to each optimal value are 4 local solutions which differ by sign changes. So there
are at least 468 local maximizers for this problem alone. Second, it strongly suggests that the first-order ALS
method used extensively by practitioners or any locally convergent method can easily get trapped at any of the
468 local solutions, some of which occur more frequently than others, as is seen in the histogram. Because the
starting points are distributed uniformly, a possible explanation for this frequency disparity is that some local
solutions have larger basins of attraction. The largest objective value, attainable by only 4 successes out of 500
trials, is verified independently by a run of the global optimization mentioned in Section 3. Though it has been
generally recognized that most lower rank approximation algorithms available in the literature can find a local
solution only, this experiment raises the flag that these methods might have severely missed the target.

The Newton method is using the Hessian information, but it lacks the mechanism of steering the iterates to
a global best rank-1 approximation. With its fast convergence, we have a chance to repeat many more multiple
trials. Instead of just using brute force to perform many trials, we might improve the chance by bringing in
some smart starting point strategy to avoid repeated basinsof attraction. This requires a lot of fine tuning of the
code, which we choose not to investigate in the preliminary note since we already have the global optimization
in hand.
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Also arises is the interesting problem of determining the number of solutions of the polynomial system
g(u(1),u(2),u(3)) = 0 on theSI1 × SI2 × SI3 . This is a classical problem in the realm of real algebraic
geometry. We do not think that there is an easy answer.

5. Generalization. Both ideas discussed above can readily be generalized to tensors of arbitrary order for
finding the global best rank-1 approximation. In particular, the analytic forms of the gradient and the Hessian
can be generalized mechanically from (2.2) and (2.6). The main concern, however, is the prevalent curse of
dimensionality that will substantially increase the computational overhead.

For instance, to formulate a component such as

T ×α1 u
(α1) ×α2 u

(α2) . . .×αs
u(αs)

for an order-k square tensor overRI1×...Ik , wheres ≤ k, an efficient nested multiplication without relying on
memory optimization requires [3]

k
∏

ℓ=1

Iℓ +
∏

ℓ 6=α1

Iℓ +
∏

ℓ 6=α1,α2

Iℓ + . . .+
∏

ℓ 6=α1,α2,...αs−1

Iℓ

many entry-to-entry multiplications. In forming the projected gradient and the projected Hessian, the lengths
s arek − 1 andk − 2, respectively, and there arek and k(k−1)

2 such components with varying(α1, . . . , αs).
These counts reflect the cost needed for forming the derivatives only, which will be computed repeatedly
many times during the optimization process. We need not calculate the total explicitly, but it should be clear
that the computational cost will be high whenk is large. Additionally, other internal tasks, such as solving
linear system, convergence assessment, or even bookkeeping relevant to the optimization package, are also size
dependent. While in theory the cost for high order tensors isscalable, it might be too expensive to be practical.
If for problems of certain sizes the cost is tolerable, then the absolute best approximation might be used to
bench the performance of other local methods.

6. Conclusion. The class of order-3 tensors might seem too limited to be of interest when comparing with
general tensors. However, the class of order-2 tensors, namely, matrices, is even more special and has already
proved critical in almost every branch of sciences. Just like matrices, order-3 tensors have their own roles in
applications. Additionally, order-3 tensors serves as thegateway to and the testing ground for understanding
higher order tensors.

In this paper, we investigate the feasibility of employing the global optimization techniques to solve the
absolute best rank-1 approximation problem for order-3 tensors. By furnishing the analytic projected gradient
and projected Hessian information, we conclude that findingthe absolute best solution can be achieved at
reasonable computational cost.

We also experiment with an inexact Newton iteration. With its quadratic rate of convergence we are able
to uncover many local solutions, so much so that most locallyconvergent methods probably are inadvertently
trapped at local solutions which might be far off the absolute best approximation.
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