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Abstract. This article reports an exploratory work that unveils some inter-
esting yet unknown phenomena for all smooth functions over the Euclidean
spaces. The findings are based on the fact that, generalizing the conventional
gradient dynamics, the right singular vectors of the Jacobian matrix of any dif-
ferentiable map point in directions that are most pertinent to the infinitesimal
deformation of the underlying function and that the singular values measure
the rate of deformation in the corresponding directions. A continuous adaption
of these singular vectors therefore constitutes a natural moving frame that car-
ries indwelling information of the variation. This inherence exists in functions
over spaces of any dimensions, but the development of fundamental theory
and algorithm for surface exploration is the important first step for immediate

application and further generalization. For 2-parameter maps, including 3-D
surfaces, trajectories of these singular vectors, referred to as singular curves,
unveil some intriguing patterns per the given function. At points where singu-
lar values coalesce, curious and complex behavior occurs, manifesting specific
landmarks for the function. Upon analyzing this dynamics, it is discovered that
there is a remarkably simple and universal structure underneath all smooth 2-
parameter maps. This work delineates with graphs this interesting dynamical
system and the possibly new discovery that, analogous to the double helix with
two base parings in DNA, two strands of critical curves and eight base pair-
ings could encode properties of a generic and arbitrary surface. Such an innate
structure thus arouses the curiosity, which is yet to be further investigated, that
maybe this approach could lead to a unifying paradigm of function genetics
where all smooth surfaces can be genome sequenced and classified accordingly.
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1. Introduction. The notion of nonlinear maps has been used in almost every
field of disciplines as the most basic apparatus to describe complicated phenomena.
However, the metaphysical question of what impinges on a function in such a way
that we may make use of its variations to denote distinct episodes remain a natural
mystery. Surface descriptions and their constructions in R

3, for example, are of
critical importance to a wide range of disciplines. But what makes surfaces to
present so many different shapes and geometric properties? This paper reports
a preliminary study of a dynamics system inbuilt in every function, which might
suggest an alternative, interesting, and possibly universal paradigm to help explore
these questions.

Our idea is motivated by the gradient adaption which is ubiquitous in nature.
Heat transfer by conduction and osmosis of substances, moving respectively oppo-
site to the temperature gradient which is perpendicular to the isothermal surfaces
and down a concentration gradient across the cell membrane without requiring en-
ergy use, are just two common examples typifying this natural process. Gradient
adaption follows the fundamental fact that the gradient

∇η(x) :=

[
∂η

∂x1
, . . . ,

∂η

∂xn

]

of a given smooth scalar function η : Rn −→ R points in the steepest ascent direction
for the function value η(x) with the maximum rate exactly equal to the Euclidean
norm ‖∇η(x)‖. A mechanical generalization of the gradient of a scalar function to
a smooth vector function f : Rn −→ R

m should be the Jacobian matrix defined by

f ′(x) :=




∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn


 .

In this situation, the information about how f(x) transforms itself is masked by the
combined effect of m gradients. One way to quantify the variation of f is to measure
the rate of change along any given unit vector u via the norm of the directional
derivative

lim
t→0

∥∥∥∥
f(x + tu)− f(x)

t

∥∥∥∥ = ‖f ′(x)u‖. (1)

Similar to the gradient adaption, we ask the question that along which directions the
function f(x) changes most rapidly and how much the maximum rate is attained.
The answer lies in the notion of singular value decomposition (SVD) of the Jacobian
matrix f ′(x).

Any given matrix A ∈ R
m×n enjoys a factorization of the form

A = V ΣU⊤, (2)

where V ∈ R
m×m and U ∈ R

n×n are orthogonal matrices, Σ ∈ R
m×n is zero

everywhere except for the nonnegative elements σ1 ≥ σ2 ≥ . . . ≥ σκ > σκ+1 =
. . . = 0 along the leading diagonal, and κ = rank(A). The scalars σi and the
corresponding columns ui in U and vi in V are called the singular values, the right,
and the left singular vectors of A, respectively [9]. The notion of the SVD has long
been conceived in various disciplines [22] as it appears frequently in a remarkably
wide range of important applications — data analysis [6], dimension reduction [16],
signal processing [23], image compression, principal component analysis [24], to
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name but a few. Among the multiple ways to characterize the SVD of a matrix A,
the variational formulation,

max
‖u‖=1

‖Au‖, (3)

sheds light on an important geometric property of the SVD. One can show that
the unit stationary points ui ∈ Rn for problem (3) and the associated objective
values ‖Aui‖ are exactly the right singular vectors and the singular values of A. By
duality, there exists a unit vector vi ∈ R

m such that v⊤
i Aui = σi. This vi is the

corresponding left singular vector of A. Because the linear map A transforms the
unit sphere in R

n into a hyperellipsoid in R
m, the right singular vectors ui’s are the

pivotal directions which are mapped to the semi-axis directions of the hyperellipsoid.
Upon normalization, these semi-axis directions are precisely the left singular vectors
vi’s. Additionally, the singular values measure the extent of deformation. In this
way, it is thus understood that the SVD of the Jacobian matrix f ′(x) carries crucial
information about the infinitesimal deformation property of the nonlinear map f

at x. At every point x ∈ R
n, we now have in hand a set of orthonormal vectors

pointing in particular directions pertinent to the variation of f . These orthonormal
vectors form a natural frame point by point.

It is often the case in nature that a system adapts itself continuously in the
gradient direction. We thus are inspired to think that tracking down the “motion”
of these frames might help reveal some innate peculiarities of the underlying function
f . More precisely, we are interested in the solution flows xi(t) ∈ R

n defined by the
dynamical system

ẋi := ±ui(xi), xi(0) = x̃, (4)

or the corresponding solution flows yi(t) ∈ R
m defined by

ẏi := ±σi(xi)vi(xi), yi(0) = f(x̃), (5)

where (σi,ui,vi) is the ith singular triplet of f ′(xi). The scaling in (5) is to ensure
the relationship

yi(t) = f(xi(t)). (6)

The sign ± in defining the vector field is meant to select the direction so as to
avoid discontinuity jump because singular vectors are unique up to a sign change.
Suppose ẋ(t) = u(x(t)) and we define z(t) := x(−t), then ż(t) = −u(z(t)). We
thus may assume, without loss of generality, that a direction of singular vectors has
been predestined and that the time t can move either forward or backward.

It must be noted that any given point x̃ at which f ′(x̃) has at least one isolated
singular vector cannot be an equilibrium point of the dynamical system (4). The
frame therefore must move. What can happen is that the right side of (4) (or (5)) is
not well defined at points when singular values coalesce because at such a point f ′(x)
has multiple singular vectors corresponding to the same singular value. A missed
choice might cause ẋi (or ẏi) to become discontinuous. We shall argue in this paper
that it is precisely at these points that the nearby dynamics manifests significantly
different behavior. Such a discontinuity is not to be confused with the theory of
analytic singular value decomposition (ASVD) which asserts the existence of an
analytic factorization for an analytic function in x [1, 25]. The subtle difference
is that the ASVD guarantees an analytic decomposition as a whole without any
ordering, but once we begin to pick out a specific singular vector, say, u1(x) always
denotes the right singular vector associated with the largest singular value σ1, then
u1(x) by itself cannot guarantee its analyticity at the place where σ1 = σ2.
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Because of the way they are constructed, the integral curves {xi(t)} and {yi(t)}
are referred to in this paper as the right and the left singular curves1 of the map
f , respectively. It suffices to consider only the right singular curves because the
relationship (6) implies that their images under f are precisely the left singular
curves. What makes this study interesting is that singular curves represent some
curious undercurrents not recognized before of functions. Each function carries its
own inherent flows. We conjecture that, under appropriate conditions, a given set of
trajectories should also characterize a function. Exactly how such a correspondence
between singular curves and a function take place remains an open question.

Singular curves do exist for smooth functions over spaces of arbitrary dimen-
sions. However, singular vectors in high dimensional spaces generally do not have
analytic form, making the analysis more challenging. In this paper, we study only
the singular curves for 2-parameter functions so that we can actually visualize the
dynamics. In particular, we focus on how it effects parametric surfaces in R

3. Under
this setting, it suffices to consider only the principal singular curves x1(t) because
the secondary singular curves x2(t) are simply the orthogonal curves to x1(t). Lim-
iting ourselves to 2-parameter functions seems to have overly simplified the task.
Nonetheless, we shall demonstrate that the corresponding dynamics already mani-
fests some remarkably amazing exquisiteness.

The study of surfaces is a classic subject with long history and rich literature,
both theoretically and practically. Research endeavors range from abstract theory
in pure mathematics [2, 3, 20] to study of minimal surfaces [5, 18] and to applica-
tions in computer graphics, security, and medical images [4, 11, 12]. For instance,
perhaps the best known classification theorem for surfaces is that any closed con-
nected surface is homeomorphic to exactly one of the following surfaces: a sphere,
a finite connected sum of tori, or a sphere with a finite number of disjoint discs re-
moved and with crosscaps glued in their place [8]. To extract fine grains of surfaces,
more sophisticated means have been developed. For example, the classic conformal
geometry approach uses discrete Riemann mapping and Ricci flow for parametriza-
tion, matching, tracking, and identification for surfaces with arbitrary number of
genuses [10, 11]. See also the work [21] where the notion of Laplace-Beltrami spec-
tra is used as an isometry-invariant shape descriptor. We hasten to acknowledge
that we do not have the expertise to elaborate substantially on these and other
alternative methods for extracting geometric features of surfaces. Neither are we
positioned to make a rigorous comparison. We simply want to mention that while
these approaches for the geometry of surfaces are plausible, they might encounter
three challenges – the associated numerical algorithms are usually complicated and
expensive; the techniques designed for one particular problem are often structure
dependent and might not be easily generalizable to another type of surface; and,
most disappointedly, they could not offer to decipher what really causes a surface
to behave in the way we expect it to behave. In contrast, our approach is at a much
more rudimentary level than most of the studies in the literature. We concentrate
on the dynamics of singular vectors that governs the structural dissimilarity of every
smooth surface.

1The term “singular curve” has been used in different context in the literature. See, for example,
[19]. We emphasize here its association with the singular value decomposition. Also, the notion
of singular curves is fundamentally different from what is known as the principal curves used in
statistics [7, 13, 14, 15].
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Using the information-bearing singular value decomposition to study smooth
nonlinear functions, which reveals a fascinating undercurrent per the given function,
is perhaps the first of its kind. Our goal in this note therefore is aimed at merely
conveying the point that the dynamical system of singular vectors dictates how
a smooth function varies and vice versa. In particular, our initial investigation
suggests a surprising and universal structure that is remarkably analogous to the
biological DNA formation — associated with a general parametric surface in R

3

are two strands of critical curves in R
2 strung with a sequence of eight distinct

base pairings whose folding and ordering might encode the behavior of a surface. A
tantalizing new prospect thus comes this way — Would it be possible that a surface
could be genome sequenced, synthesized, and its geometric properties be explained
by the makeup of genes? This new subject is far from being completely understood.
This work is only the first step by which we hope to stimulate some general interest.

This paper is organized as follows. For high dimensional problems, it is not
possible to characterize the vector field (4) explicitly. For 2-parameter maps, we
can describe the dynamical system in terms of two basic critical curves. These
basics are outlined in Section 2. The intersection points of these critical curves
are precisely where the dynamical system breaks down and, hence, contribute to
the peculiar behavior of the system. In Section 3 we demonstrate the interesting
behavior of the singular curves by a few parametric surfaces such as the Klein
bottle, the Boy face, the snail and the breather surfaces. The first order local
analysis of the dynamical system is given in Section 4. By bringing in the second
order information in Section 5, we can further classify the local behavior in terms of
base pairings which provide a universal structure underneath all generic parametric
surfaces. In Section 6, we recast the singular vector dynamics over the classical
scalar-valued functions and give a précis of how the notion of base pairing should
be modified into “wedges” for this simple case. Finally, in Section 7 we outline a
few potential applications, including a comparison with the gradient flows and a
demonstration of the base pairing sequence.

2. Basics. Given a differentiable 2-parameter function f : R2 → R
m, denote the

two columns of its m× 2 Jacobian matrix by

f ′(x) =
[
a1(x), a2(x)

]
.

Define the two scalar functions
{

n(x) := ‖a2(x)‖2 − ‖a1(x)‖2

o(x) := 2a1(x)
⊤a2(x)

(7)

which measure, respectively, the disparity of norms and nearness of orthogonality
between the column vectors of f ′(x). Generically, each of the two sets defined by

{
N := {x ∈ R

n |n(x) = 0}
O := {x ∈ R

n | o(x) = 0}
(8)

forms a 1-dimensional manifold in R
2 which is possibly empty or composed of

multiple curves or loops. They will be shown in our analysis to play the role of
“polynucleotide” connecting a string of interesting points and characterizing cer-
tain properties of a function.
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A direct computation shows that the two singular values of f ′(x) are given by





σ1(x) :=
(

1
2

(
‖a1(x)‖2 + ‖a2(x)‖2 +

√
o(x)2 + n(x)2

))1/2

,

σ2(x) :=
(

1
2

(
‖a1(x)‖2 + ‖a2(x)‖2 −

√
o(x)2 + n(x)2

))1/2

.

(9)

The corresponding right singular vectors2 are

u1(x) :=
±1√

1 + ω(x)2

[
ω(x)

1

]
, (10)

u2(x) :=
±1√

1 + ζ(x)2

[
ζ(x)

1

]
, (11)

respectively, where





ω(x) := o(x)

n(x)+
√

o(x)2+n(x)2
,

ζ(x) :=
−n(x)−

√
o(x)2+n(x)2

o(x) .

(12)

In the above, we normalize the second entry of the singular vectors with the under-
standing of taking limits when either ω(x) or ζ(x) becomes infinity. The following
fact is observed immediately from (10).

Lemma 2.1. The tangent vectors to the singular curves x1(t) at any points in
N but not in O are always parallel to either αn := 1√

2
[1, 1]⊤ or βn := [1, −1]⊤,

depending on whether o(x) is positive or negative. Likewise, the tangent vectors of
the singular curves at any points in O but not in N are parallel to αo := [0, 1]⊤ or
βo := [1, 0]⊤, depending on whether n(x) is positive or negative.

At places where N and O intersect, which will be called singular points, the
singular values coalesce and the (right) singular vectors become ambiguous. We
shall argue that it is the angles of intersection by N and O at the singular point
that affect the intriguing dynamics. The 1-dimensional manifolds N and O can be
thought of as stringing singular points together (with particular pairings) and will
be referred to as the critical curves of f .

Example 1. It might be illustrative to plot the above basic curves by considering
one graphic example f : R2 → R

2 defined by

f(x1, x2) :=

[
sin (x1 + x2) + cos (x2)− 1
cos (2 x1) + sin (x2)− 1

]
.

Applying a high-precision numerical ODE integrator to the differential system (4) at
a mesh of starting points over the window [−5, 5]×[−5, 5], we find its singular curves
x1(t) behave like those in the left drawing of Figure 1, whereas its critical curves
are sketched in the middle drawing. By overlaying the two drawings in the right
graph of Figure 1, we can catch a glimpse into how these critical curves affect the
dynamics of singular curves. In particular, the singular curves x1(t) make interest
twists nearby by points where N and O intersect. Also, take notice of the angles
when the singular curves cut across the critical curves according to Lemma 2.1.
Details will be analyzed in the sequel. In this example, note also that there are

2Expressions for both u1 and u2 are given, but we will carry out the analysis for x1(t) only as
that for x2(t) can be done similarly. Also, x2(t) is simply the orthogonal curve of x1(t) in R

2.
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regions where the critical curves are extremely close to each other, forming long
and narrow ridges with σ2/σ1 > 0.95.
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Figure 1. Example of singular curves (red) and critical curves:
N (green); O (black).

3. Application to parametric surfaces. In this section we further demonstrate
the critical curves, singular points, and the trajectories of (left) singular curves of a
few selected parametric surfaces3. In all case, we denote the 2-parameter map in the
form f(x1, x2) = (X(x1, x2), Y (x1, x2), Z(x1, x2)) whose component are abbreviated
as (X,Y, Z). Our point is that the surfaces might be complicated in R

3, but the
dynamics of the (right) singular curves could be surprisingly simple in R

2.
Example 2. (Klein Bottle) With the abbreviations c1 := cosx1, s1 := sinx1,

c2 := cosx2, and s2 := sinx2 for x1 ∈ [−π, π] and x2 ∈ [−π, π], the parametric
equations





X := − 2
15 c1(3c2 + 5s1c2c1 − 30s1 − 60s1c

6
1 + 90s1c

4
1)

Y := − 1
15s1(80c2c

7
1s1 + 48c2c

6
1 − 80c2c

5
1s1 − 48c2c

4
1 − 5c2c

3
1s1 − 3c2c

2
1

+5s1c2c1 + 3c2 − 60s1)

Z := 2
15s2(3 + 5s1c1)

define a Klein bottle. In the left drawing of Figure 2, we find that critical curves
for this particular Klein bottle are surprisingly simple. There is no N curve at all,
whereas the O curves form vertical and horizontal grids. Therefore, there is no
singular point in this case. We sketch two (right) singular curves by integrating
the dynamics system (4) in both forward (red) and backward (blue) time from two
distinct starting points4 which are identifiable at the places where the colors are
changed. It is interesting to note that in this example all right singular curves are
horizontal, whereas their images, namely, the corresponding left singular curves, are
periodic on the bottle and wind the bottle twice. The right drawing of Figure 2 is
by removing the surface shown in the middle drawing.

3Admittedly, it is difficult to render a satisfactory 3-D drawing unless one can view the surface
from different perspectives. The singular curves presented here are simply some snapshots of the
far more complicated dynamics. We can furnish our Matlab code for readers to interactively play
out the evolution of the singular curve at arbitrarily selected locations in R

2. Also built in our
code is a mechanism that can perform local analysis as we shall explain in the next section.

4The forward and backward directions of an integration are relative to the singular vector chosen
at the starting point x̃. Such a distinction is really immaterial. We mark them differently only
to identify the starting point. If, however, the vector field u1(x) is obtained through numerical
calculation, then we must be aware that a general-purpose SVD solver cannot guarantee the
continuity of u1(x(t)), even if x(t) is continuous in t. An additional mechanism must be made to
ensure that u1(x(t)) does not abruptly reverse its direction, once the initial direction is set.
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Figure 2. Klein bottle: N (green); O (black); singular curves
(forward time (red); backward time (blue)).

If we perturb the equation by modifying some coefficients, the resulting surface is
topologically equivalent to the original bottle. However, the critical curves are very
different. The drawing of Figure 3 is the flattened bottle where the Y component is
scaled down to 10% of its original value, i.e., the coefficient − 1

15 is changed to − 1
150 .

Note that now there are N curves and singular points and that the left singular
curves are no longer periodic. We prefer to see this kind of distinction because it
shows the idiosyncrasies even among topologically equivalent surfaces .

Figure 3. Klein bottle with Y down scaled: N (green); O (black);
singular curves (forward time (red); backward time (blue)).

Example 3. (Boy’s Surface) Denote p := cosx1 sinx2, q := sinx1 sinx2, and
r := cosx2 for x1 ∈ [0, π] and x2 ∈ [0, 2π]. Then the parametric equations





X :=: (2p2 − q2 − r2 + 2qr(q2 − r2) + rp(p2 − r2) + pq(q2 − p2))

Y :=
√
3
2 (q2 − r2 + (rp(r2 − p2) + pq(q2 − p2)))

Z := (p+ q + r)((p+ q + r)3 + 4(q − p)(r − q)(p− r)).

define a Boy’s face [17]. Shown in the left drawing of Figure 4, the critical curves
repeat themselves as jigsaw puzzles with period π in both x1 and x2 directions and
there are many singular points in this case. We integrate one right singular curve
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starting at the location (1, 4.5) over the extended domain in the x2 direction to
show how far it can migrate. A total of four singular points are involved. Going
southwest, the forward time (red) integration passes by, but never touches, the first
singular point A. Then it makes a U turn around a second singular point B and
comes to a stop (due to the discontinuity) at a third singular point C. The backward
time (blue) integration moves northeast, makes a U turn around a forth singular
points D before it stops at the first singular point A. It is interesting to note that
the first point A serves both as a roundabout and an attractor and that the fourth
singular point is a translation by π of the second singular point. We rotate the
XY -plane by 90◦ to show the back side of the (left) singular curves in the right
drawing of Figure 4. As the Boy’s surface is known to have no cuspidal points,
an interesting question that is yet to be understood is the geometric significance of
these singular points on the surface.

Figure 4. Boy’s surface: N (green); O (black); singular curves
(forward time (red); backward time (blue)).

Example 4. (Snail) Denote v := x2+
(x2−2)2

16 , s := e−
1

10v , and r := s+ 7
5s cosx1

for x1 ∈ [0, 2π] and x2 ∈ [−10, 35]. Then the parametric equations





X := r cos v,

Y := 4(1− s) + 7
5s sinx1,

Z := r sin v

define a snail shape surface in R
3. Despite the impression that the snail surface

appears complicated, its critical curves are surprisingly simple. The left drawing in
Figure 5 shows the O curves are straight lines intersecting the N curve at only two
singular points in the given window. Not shown is the mirror image of the N curve
with respect to the horizontal O curve, which produces exactly the same dynamics.
In the left drawing of Figure 5, we integrate the right singular curve x1(t) from one
particular starting point (at where colors change). The forward (red) integration
approaches asymptotically to the vertical O curve. The corresponding left singular
curve converges to the tip of the snail. The backward (blue) integration converges
to a singular point which indicates an ”isotropic point” on the surface at which
rates of change are identical in all directions. The snail does have a core inside the
shell. The left singular curve curve plotted in the right drawing of Figure 5 traces
that core.
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In Figure 6 we cut open the snail by restricting x2 ∈ [−3, 3] to demonstrates
another singular curve starting from (2,−2). Note that its backward (blue) integra-
tion stays on the outside shell and converges to the tip of the snail while its forward
(red) integration loops around the opening mouth of the snail.

Figure 5. Snail: N (green); O (black); singular curves (forward
time (red); backward time (blue)).

Figure 6. Snail: N (green); O (black); singular curves (forward
time (red); backward time (blue)).

Example 5. (Breather) Denote w :=
√
21
5 and ρ := 2

5 ((w cosh(25x1))
2+(25 sin(wx2))

2).
The parametric equations





X := −x1 +
2w2

ρ cosh(25x1) sin(
2
5x1),

Y :=
2w cosh( 2

5x1)

ρ (−w cos(x2) cos(wx2)− sin(x2) sin(wx2)),

Z :=
2w cosh( 2

5x1)

ρ (−w sin(x2) cos(wx2) + cos(x2) sin(wx2))

define a Breather surface where x1 controls how the far the tips extend outward and
x2 controls how far the girth goes around. Starting with 0, every increment of x2

by 5
2
√
21
π ≈ 3.42776 defines one ”vertebra” with two layers of ”patagium” extended

to the tips for a total of 22 vertebrae around the girth. We plot a portion of the
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surface with x1 ∈ [−5, 5] and x2 ∈ [−2, 5] and some singular curves in Figure 7.
There are periodic left singular curves on the vertebra, so the color distinction of
the trajectories becomes futile. The horizontal O curves at x2 = 0, 5

2
√
21
π, and so on

are invariant under the right singular curves dynamics (4) whose corresponding left
singular curves are precisely those “ribs” on the Breather surface. Again, we find
it interesting that critical curves and singular curves are simple when comparing to
the entirety of the Breather surface.

Figure 7. Breather: N (green); O (black); singular curves (for-
ward time (red); backward time (blue)).

4. Local Behavior. We rewrite the dynamical system governing the (right) sin-
gular curves as

ẋ = ± 1√
2
√
n(x)2 + o(x)2




o(x)
√

n(x)+
√

n(x)2+o(x)2

√
n(x) +

√
n(x)2 + o(x)2


 , (13)

which clearly shows that there are no equilibrium points, but becomes undefined
at singular points. Let x0 be an isolated singular point. We now investigate the
dynamical behavior nearby x0.

Consider the scenario where N and O intersect in the scheme depicted in Fig-
ure 85. The short red segments denote tangent vectors of singular curves crossing the
critical curves after taking into account the signs of o(x) and n(x). By Lemma 2.1,
these directions are invariant on each halves of the critical curves. The portions of
N and O where the tangent vectors of the crossing singular curves are parallel to
the unit vectors αn = 1√

2
[1, 1]⊤ and αo := [0, 1]⊤, respectively, are referred to as

the α-halves of the critical curves and denoted by nα and oα. Likewise, by changing
α to β, we refer to the other halves of the critical curves. It is convenient to flag
the critical curves by arrows to indicate the sides of nα and oα. In this generic
case, the neighborhood of x0 is naturally divided into “quadrants” distinguished
by the signs (sgn(n(x)), sgn(o(x)) which, in a sense, imply a specific “orientation”
of a local curvilinear coordinate system. With tangent vectors depicted in the left

5Here we have assumed the generic case where only one N curve and one O curve intersect
at x0. It is possible that more then two critical curves are intersecting a singular point, e.g., the
monkey saddle. To present the basic idea, we consider only the generic case here.
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N

O
x0

(+,+)

(+,−)(−,+)

(−,−) N

O
x0

(+,+)

(+,−)(−,+)

(−,−)

Figure 8. Local behavior nearby a propellent singular point x0.

drawing of Figure 8, the flow of the singular curves near x0 should move away from
x0 as is depicted in the right diagram. In other words, the singular point x0 acts
like a repeller for the flows x1(t). If the orientation is switched such as that depicted
in Figure 9, then the nearby dynamical behavior may change its topology.

N

O

x0

(+,+)

(+,−) (−,+)

(−,−)

N

O

x0

(+,+)

(+,−) (−,+)

(−,−)

Figure 9. Local behavior nearby a roundabout singular point x0.

The manifolds N and O near x0 can be infinitesimally represented by their
respective tangent vectors τn and τ o at x0. Again we flag the originally undirected
vectors τn and τ o with arrows pointing to the corresponding α-halves of the critical
curves. Starting with the north and centered at x0, divide the plane into eight
sectors, each with a central angle π

4 , and assign an ordinal number to name the
sectors clockwise. The relative position of the two α-halves nα and oα with respect
to these sectors is critical for deciding the local behavior. For easy reference, we say
that we have the configuration (i, j) when τn and τ o are located in the i-th and
the j-th sectors, respectively. There are a total of 64 possible configurations.

Consider first the general case when τn is not parallel to αn and τ o is not
parallel to αo. Special cases can be discussed in a similar manner. As already
demonstrated earlier in Figures 8 and 9, the orientations of τn and τ o do matter.
The 48 configurations where i 6= j and |i − j| 6= 4 already include τn and τ o in
reverse positions. Each of the 8 configurations where i = j contains 2 distinct
cases when the orientations of τn and τ o are swapped. Likewise, each of the 8
configurations where |i − j| = 4 also contains 2 distinct orientations. Using the
ideas described in Figures 8 and 9 to conduct an exhaustive search, we sketch all
80 possible local behaviors in Figure 10, some of which are identical by rotations.
In all, we make the following observation.

Lemma 4.1. Assume that a given singular point is the intersection of exactly one
N curve and one O curve in its neighborhood. Assume also that at this point τn is
not parallel to αn and τ o is not parallel to αo. Then the singular point serves to
effect three essentially different dynamics, i.e., propellant, roundabout, or one-side
roundabout and one-side attractor or propellant.
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The local bearings are identified by the two-letter marks, namely, the pairings, at
the upper left corner in each case, which will be explained in the next section. We
mention in passing that every even number column in the upper table in Figure 10
has the same paring as that in the odd column immediate to its left.

Aa Aa Ac Ac Bb Bb Bd Bd

DdDdCaCaCcCcDbDb

Db Db CcCc CaCa DdDd

BbBb BdBd AaAa AcAc

BbBb BdBd AaAa AcAc

Ca Ca DdDd Db Db CcCc

Cc CcDb DbDd DdCa Ca

AaAa Ac Ac Bb Bb BdBd

Bb Ca Dd Ac AcDdCaBb

Aa Db Cc Bd Aa Db Cc Bd

Figure 10. 80 possible local behaviors nearby a singular point x0.
Arrows point at the α-halves nα(green) and oα (black).

5. Base Pairing. To justify the various curling behaviors of x1(t) shown in Fig-
ure 10, we need to take into account more than just the first order derivative u1(t).
Observe that ω(x) can be expressed as

ω(x) :=






sgn (o(x)) − n(x)
o(x) +

sgn(o(x))n(x)2

2o(x)2
+O

(
n(x)3

)
, near n(x) = 0,

o(x)
2n(x) −

o(x)3

8n(x)3 + o(x)5

16n(x)5 +O
(
o(x)

7
)
, near o(x) = 0 and if n(x) > 0,

−1
o(x)
2n(x)

− o(x)3

8n(x)3
+ o(x)5

16n(x)5
+O(o(x)7)

, near o(x) = 0 and if n(x) < 0.

(14)
We already know that the first derivative of x1(t) is related to ω(x1(t)) via (10). The
expansion (14) of ω(x) can now be used to estimate the second derivative of x1(t).
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In this way, we can characterize the concavity property and the local behaviors
observed in Figure 10.

As an example, consider the case that we are at a point on nα where the singular
flow points necessarily in the direction αn. Then it follows from (14) that the value
of ω(x(t)) will increase if the vector x(t) moves to the side where n(x) < 0, implying
that the slope of the tangent vector u1(x(t)) must be less than 1. Likewise, if x(t)
moves to the side where n(x) > 0, then the slope of u1(x(t)) must be greater than
1. We therefore know how x(t) is bent.

A careful analysis concludes that, in all, near a singular point x0 and relative to
a fixed τn there are only four basic patterns, marked as A, B, C, and D, that the
singular curves can cross the critical curve N . Noting that τn can be rotated to
point in other directions, we sketch a few possible concavities of x1(t) in Figure 11.

(B) (D)(A) (C)

n(x) > 0
n(x) > 0

n(x) > 0
n(x) > 0n(x) < 0

n(x) < 0

n(x) < 0
n(x) < 0

x0
x0 x0 x0

τn

τn τn

τn

Figure 11. Basic concavities of singular curves near n(x) = 0.

Similarly, suppose that we are at a point on oα where the singular flow necessarily

points in the direction of α0. If the vector x(t) veers to the side where
o(x)
n(x) > 0, then

ω(x) increases from 0 and, hence, the absolute value of slop of the tangent vector
u1(x(t)) must decrease, causing the bend. Again, there are four basic concavities of
x1(t) marked as a, b, c, and d, near O, subject to rotations, as depicted in Figure 12.

(a) (c)(b) (d)

o(x) > 0o(x) > 0

o(x) > 0o(x) > 0
o(x) < 0

o(x) < 0

o(x) < 0o(x) < 0
x0x0

x0x0

τ o

τ o

τ o

τ o

Figure 12. Basic concavities of singular curves near o(x) = 0.

Paring the second order derivative information along both the N curve and the
O curve does not give rise to 16 cases. Instead, after carefully examining the 80
possible dynamics in Figure 10, we make the following interesting observation.

Theorem 5.1. Assume that a given singular point is the intersection of exactly
one N curve and one O curve in its neighborhood. Assume also that at this point
τn is not parallel to αn and τ o is not parallel to αo. Then the local behavior of the
singular curves can be one of 8 possible patterns identified by the base parings Aa,
Ac, Bb, Bd, Ca, Cc, Db, and Dd only. There is no other possible combinations.

Proof. The result is nothing but from direct comparison case by case. More specif-
ically, we have four ways of describing the concavity along the N curve near a
singular point x0. These are the cases (A) and (C) where x0 behaves like a pro-
pellent and the cases (B) and (D) where x0 behaves like a roundabout. In the
meantime, we have four similar ways of describing the concavity along the O curve.
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Under the assumption, the case (A) or (C) can pair with (a) or (c) only to ob-
tain a propellent. A pairing Ab or Ad is not possible because it will require the
singular curve near x0 to have both a positive tangent and a negative tangent simul-
taneously. Likewise, the case (B) or (D) can pair with (b) or (d) only, whence x0

serves as either a roundabout or a mixture of one-sided roundabout and one-sided
repellent/attractor.

Each drawing in Figure 10 is identified by two letters of base paring at the upper
left corner to indicate the corresponding dynamics. Each base paring has its own
characteristic traits which can be distinguished by visualization, e.g., the difference
between both Aa and Ac in configurations (1,2) and (1,3) are repellents but the
difference is at whether the tailing is above or below βo. We shall not categorize
the details as they might be too tedious to describe in this introduction paper. It
is the combined effect of these basic curvatures which we refer to as base pairing,
together with the positions of τn and τ o, that makes up the local dynamics observed
in Figure 10. It is worth noting that a quick count shows that each base pairing
results in 8 dynamics in the top drawing as general cases and 2 in the middle
or bottom drawings as special cases. We shall characterize in Section 6 another
situation under which different types of pairings might occur.

In the examples outlined in Section 3, there are cases not covered in Figure 10.
Still, local behaviors of singular curves can be analyzed similarly, but need more
details. One aspect is that they depend not only on the relative position of the
tangent vectors τ o to τn but also on which side of τn that the α-half nα resides.
For instance, consider the scenario depicted in Figure 13 where that τn points to
the north-east and τ o is not parallel to τn, nor the east-west direction. Then there
are 8 possible patterns. The subtlety is at the “crossover” of base pairings on the
two sides of τn. In the two rightmost drawings of Figure 13, we observe that if
nα resides on the left side of τn, then we have the Bd dynamics similar to that
of (1, 8) in Figure 10; but if nα veers to the right of τn, then we have the Dd
dynamics similar to that of (2, 8) in Figure 10. We denote this as a hybrid Bd/Dd
base pairing which results in a roundabout behavior near the singular point x0

with distinct traits. Similarly, the Aa/Ca pairing results in a new type of repelling
behavior near x0. Readers might try this out as an exercise for themselves. Without
repeating mundane details, we mention that local patterns when τ o points in the
north-south direction or even when τn and τ o are parallel to each other can be
explained by the idea outlined above.

Bd

Dd

Aa

Ca

Bb

Db Ca Cc

Aa Ac Ac

Cc

Bb

Ca

Bd

Dd

Figure 13. Relative positions of τ o and possible transitions of
base pairings when τn points to the north-east.
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6. Wedged bases of scalar-valued functions. One simple but significant case
must be mentioned because it commonly defies the assumption made in Theo-
rem 5.1. Consider the surface that is the graph of a first-order continuously differ-
entiable 2-variable function f : R2 → R. An obvious parametric equation is





X := x1

Y := x2

Z := f(x1, x2).

(15)

It is easy to see that




n(x) =
(

∂f
∂x2

)2

(x)−
(

∂f
∂x1

)2

(x),

o(x) = 2 ∂f
∂x1

(x) ∂f
∂x2

(x).
(16)

Thus a singular points x0 whereO andN intersect must satisfy ∂f
∂x1

(x0) =
∂f
∂x2

(x0) =
0. In other words, the singular points are precisely the conventional critical points
where the gradient of the function f vanishes. Indeed, we find from (10) that the
first right singular vector is given by

u1 = ±
(
12 +

(n+
√
n2 + o2

o

)2
)− 1

2
[

1
n+

√
n2+o2

o

]
= ± 1√

∂f
∂x1

2
+ ∂f

∂x2

2

[
∂f
∂x1

∂f
∂x2

]
,

(17)
so the principal singular curve x1(t) in the context of (15) is precisely the (normal-
ized) gradient flow of f(x). The choice of signs determines whether this is a descent
flow or an ascent flow.

Furthermore, it is clear from (16) that o(x) and n(x) are always factorizable in
this particular case. Define





N 1 := {(x, y)|fx(x, y)− fy(x, y) = 0},
N 2 := {(x, y)|fx(x, y) + fy(x, y) = 0},
O1 := {(x, y)|fx(x, y) = 0},
O2 := {(x, y)|fy(x, y) = 0}.

(18)

Each critical curve of either O or N has at least two separate components. So,
at a singular point where all components meet together, there will be more than
just two intersecting curves6. This situation is different from what we have detailed
in Figure 10 and Theorem 5.1. The techniques employed earlier can readily be
generalized to this case. However, the multiple components of critical curves allow
more variations of sign changes for n(x) and o(x) near x0. It is possible to have
multiple α-halves for N or O curves. The following result represents a typical case.

Lemma 6.1. Assume that at a singular point x0 each of the curves defined in (18)
contains exactly one curve. Then, up to the equivalence of rotations,

1. There are only four possible ways for singular curves to intersect with the N
curve, as are shown Figure 14.

2. There are only four possible ways for singular curves to intersect with the O
curve, as are shown in Figure 15.

6For example, the function f(x1, x2) = x3
1 − 3x1x

2
2 has four components for each critical curve

O or N , so at the monkey saddle point a total of 8 critical curves intersect together.
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n(x) > 0

n(x) > 0

n(x) > 0

n(x) > 0

n(x) > 0

n(x) > 0

n(x) > 0

n(x) > 0

n(x) < 0

n(x) < 0

n(x) < 0

n(x) < 0

n(x) < 0

n(x) < 0

n(x) < 0

n(x) < 0

x0x0
x0x0

Figure 14. Basic concavities of singular curves near n(x) = 0.

o(x) > 0

o(x) > 0

o(x) > 0

o(x) > 0

o(x) > 0 o(x) > 0

o(x) > 0
o(x) > 0

o(x) < 0

o(x) < 0

o(x) < 0

o(x) < 0
o(x) < 0

o(x) < 0

o(x) < 0

o(x) < 0

x0
x0 x0x0

Figure 15. Basic concavities of singular curves near o(x) = 0.

Proof. It can easily be checked that the singular curves cross the critical curves
N 1,N 2,O1, and O2 with tangent vectors parallel to αn,βn,αo, and βo, respec-

tively. Trivially, by (17), the tangent of the singular curve is n+
√
n2+o2

o . It follows
that when a singular curve crosses the N curve, the absolute value of its tan-
gent becomes greater than one when it enters the region {(x, y)|n(x, y) > 0}, and
the absolute value of its tangent becomes less than one when it enters the region
{(x, y)|n(x, y) < 0}. This property necessarily determines the concavity of the sin-
gular curves. The double-arrowed curve in Figure 14 represents N 1. There can be
only four positions of N 2 relative to N 1 that give rise to different local behaviors.
Similarly, when a singular curve crosses the O curve, its tangent becomes positive
when it enters the region {(x, y)|o(x, y) > 0}, and its tangent becomes negative
when it enters the region {(x, y)|o(x, y) < 0}.

Observe that in each of the eight basic drawings, the property of concavity is
symmetric with respect to x0. Therefore, it suffices to identify the corresponding
dynamics by simply the upper half wedge of each drawing. In this way, each wedge is
still made of one α-half and one β-half with a cusp at x0. In Figure 11 and Figure 12,
the concavity is determined by one single curve. In contrast, the concavities in the
new bases are determined by two curves. These wedged bases give considerably more
flexibility for pairing of N and O. Indeed, we conjecture from our investigation that
all 16 pairings are possible.

7. Applications. Thus far, we have been curious to study only the motifs of sin-
gular curves. The classification of all possible local behaviors suggests a simplistic
collection of “tiles” for the delicate and complex “mosaics” observed in the dynam-
ics of singular curves. The inherent characteristics of each given function determine
the reflections or kinks of the critical curves N and O and a particular set of base
pairings. These local tiles are strung together along the strands of critical curves to
form the particular patterns of the underlying function. While there are zillions of
possible variations, we find it interesting that there are only finitely many possible
base pairings. To our knowledge, the dynamical system of singular curves has not
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been studied before. The analysis on such a special differential system should be of
theoretical interest in itself.

On the other hand, a successful exploration of the following two questions might
help find important applications of the dynamical system of singular curves to
parametric surfaces:

1. Given a parametric surface, can we decipher the making of its base pairings?
2. Given a sequence of base pairings together with a specific formation of critical

curves, can we synthesize the main features of a surface?

At present, we are obviously far from complete understanding of these concepts. We
are hoping that this paper will stimulate some further investigation from interested
readers. For the idea to work, it seems plausible to expect that when a group
of base pairings are strung together, they form a “gene” which, similar to the
biological genes that dictate how the cells are going to live and function, should
have the combine effect on determining how a surface would vary. We demonstrate
two simple examples below.

Example 7. For surfaces arising in the form of (15), the singular points are
the critical points and the singular curves are the gradient flows. As expected, the
dynamics of singular curves therefore traces directions along which the function f
changes most rapidly. On one hand, since we allow the integration to go in both
forward and backward directions, every gradient trajectory stops at either a local
maximum or a local minimum. Depending on the direction of the flows, these
kinds of extreme points are either a sink or a source. In contrast to Lemma 4.1,
these singular points are neither propellants nor roundabouts. On the other hand,
the only other type of singular points are the saddle points of f around which
the gradient (singular) trajectories will exhibit a mixture behavior. No Hessian
information at the critical point is available unless we fix the sigh of the gradient.
In all, we think we have enough knowledge to answer the above two questions almost
in the same way as we learn to sketch a surface in multi-variable calculus.

Example 8. Critical curves N and O generally intertwine in a much more
involved way. Once their α-halves are determined, which is precisely the inborn
property of the underlying function, we begin to see the beauty and complexity of
its mosaic patterns. We illustrate our point by color coding the the jigsaw pieces
of Example 1 over a small window [−2, 4]× [−2, 4] in Figure 16 to evince the signs
of n(x) and o(x). Singular points occurs at the common borders where the regions
overlap, whose orientations are thus determined. We look up from Figure 10 to
label the singular points with corresponding base pairings. We immediately notice
that the same segment of the base parings, say, as short as BbAcBd in the drawing,
determines almost the same dynamical behavior, and vise versa. The ideas about
sequencing a surface or synthesizing a surface seems sensible.

Though we have all the local pieces in hand, we hasten to point out that there
must be some other information missing in the current analysis of the dynamics.
For instance, the two groups of singular curves near the point (0, 1) in Figure 16
share the same Bd paring and, hence, local behavior. However, when away from
this singular point, the singular curves wander off and are contracted to distinct
destinations. This long term dynamics must have other bearings not explainable
by our local analysis yet.
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x
1

x 2

α −Halves and Base Pairings for Example 1

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4 Dd/Db

Ca/Cc

Cc/Ca

Db/Dd

Aa/s

Bd

Bd

Ac

Aa

Ac

Bb

Bb

Ac

Ac

Bd

Bd

Aa/s

Bb

Ac

Bb

Figure 16. Base pairings for sample singular points in Example
1: N (green); n(x) > 0 (blue); O (black); o(x) > 0, (yellow).

8. Conclusion. Gradient adaption is an important mechanism occurring frequently
in nature. Its generalization to Jacobian for vector functions does not reveal the crit-
ical adaption directions immediately. That information is manifested by the moving
frame formed from the singular vectors of the Jacobian matrix. Intricate patterns
resulting from singular curves seem to characterize some underneath movement of
the function. The idea discussed in this paper is perhaps the first that relates the
dynamical system of singular vectors to parametric surfaces.

The global behavior in general and its interpretation in specific of the dynamical
system of singular vectors are yet to be completely understood. For parametric
surfaces in R

3 at least and for any f : R2 → R
n in general, this work finds that two

strands of curves joined by singular points with specific base pairings make up the
local behavior of the function. In particular, at a singular point where exactly one
N curve crosses exactly one O curve, there are exactly eight possible base pairings
available.

This work aims at introducing the notion of singular curves. Many interest-
ing questions remain to be answered, including whether a surface can be genome
sequenced and synthesized.
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http://www.iro.umontreal.ca/~kegl/research/pcurves/, 2012.
[16] V. C. Klema and A. J. Laub, The singular value decomposition: its computation and some

applications, IEEE Trans. Automat. Control, 25 (1980), pp. 164–176.
[17] A. J. Maclean, Parametric equations for surfaces, University of Sydney, available at

http://www.vtk.org/VTK/img/ParametricSurfaces.pdf , 2006.
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