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Abstract. The notion of asymptotic variance has been used as a means for performance evaluation of MCMC methods. An imperative
task when constructing a Markov chain for the Monte Carlo simulation with prescribed stationary distribution is to optimize the asymptotic
variance. Cast against an appropriately chosen coordinate system, the worst-case analysis of the asymptotic variance arising in MCMC can
be formulated as a minimax problem. While the part of maximization is readily solvable as an eigenvalue problem, the part of minimization
remains challenging. This work proposes employing global optimization techniques as a general means for numerical construction of the
optimal transition matrix for MCMC methods. The framework of computation that eventual leads to an actual implementation is discussed
in detail. Experimental results evidence the complexity of the underlying problem, including global solutions across the board for reversible
problems and high occurrence of local solutions for nonreversible problems. In all, the approach via the global optimization techniques is
a feasible and practical means for numerical construction of the optimal Markov chain.
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1. Introduction. For decades Markov chain Monte Carlo (MCMC) methods have been employed as a
practical tool in a wide variety of applications such as Bayesian statistics, computational physics, genetics,
and machine learning. See, for example, [3, 13, 23, 25, 26]. The methods become particularly useful when
generating independent and identically distributed (i.i.d.) samples is not feasible or when the underlying dis-
tribution is not completely known. The basic idea underlying the MCMC is to construct a Markov chain with
the desired distribution as its invariant distribution with the hope that, as the procedure runs long enough, the
samples generated from the Markov chain serve as a good approximation to the would-be samples drawn from
the unknown distribution. A key question to ask is how good an approximation is and the answer depends on
the comparison criteria [2, 4, 18]. In the literature, one of the commonly employed measurements for gauging
the performance of an MCMC algorithm is the so-called asymptotic variance which is the focus of this paper.

We briefly explain why the notion of asymptotic variance is a reasonable criterion for evaluating the perfor-
mance of the MCMC methods. Let S = {1, 2, · · · , n} represent a finite state space and π be a probability dis-
tribution on S. It is often the case that we are interested in evaluating the expectation E(f) = ∑

x∈S f(x)π(x),
where f is a real-valued function defined on S. When the closed-form calculation is not easy, we could appeal
to the MCMC. Assume X0, X1, . . . is a discrete time Markov chain on S with some transition probability ma-
trix P and invariant distribution π. We then use the time average 1

n

∑n−1
i=0 f(Xi) as an estimator to approximate

the space average E(f), since by the strong law of large numbers we should have

∑n−1
i=0 f(Xi)

n

a.s.−→ E(f). (1.1)

In such a scenario, the asymptotic variance is defined by

ν(f, P ) := lim
n→∞

nEµ0

[∑n−1
i=0 f(Xi)

n
− π(f)

]2

, (1.2)

where µ0 denotes an arbitrary initial distribution. Obviously, smaller asymptotic variance indicates a better
approximation. For this reason, various techniques have been proposed in the literature with the aim of reducing
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the asymptotic variance. Far from being complete, we refer to research endeavors reported in [5, 11, 14, 20, 22,
24]. To this date, the theory on the optimal asymptotic variance for reversible Markov chain is well established,
but that for general case remains open [14, 19]. We propose to employ global optimization techniques to tackle
this problem numerically. The goal of this paper is twofold — to reframe the problem under the context of
linear algebra so as to facilitate the optimization procedure and to report some interesting observations.

We need not to repeat the tremendous importance of the stationary vector π ∈ R
n satisfying π

⊤P = π
⊤

for a given row stochastic matrix P in the applications of Markov chains. On the other hand, in order to employ
the MCMC process explained above, we need to have in hand an irreducible and aperiodic Markov chain such
that the invariant distribution of the corresponding transition probability matrix P is the same as the prescribed
distribution π. Constructing a (row) stochastic matrix with a prescribed left eigenvector π associated with the
Perron root 1 is a special type of the so called inverse eigenvalue problems [6]. More specifically, since the main
concern in the construction is on maintaining the eigenvector π, we refer to the current problem as an inverse
eigenvector problem. In addition to the obvious structural constraint that P must be a row stochastic matrix,
in the context of MCMC methods, we are also looking for a matrix P so that the corresponding asymptotic
variance is minimized.

We should further clarify the meaning of optimal asymptotic variance before proceeding. Thus far, the
definition ν(f, P ) in (1.2) is case dependent, that is, it depends on the function f . So that an MCMC procedure
is applicable to general cases, it is perhaps more reasonable to be concerned about the worst possible asymptotic
variance among all possible f . In this paper, we investigate how such a worst-case analysis can be formulated
for numerical calculation. Solving the inverse eigenvector problem with merely stochastic constraint is not
difficult, but endeavors to minimize the worst-case asymptotic variance have been only partially successful.
Though the theory is yet to be fully developed, numerical construction of such an optimal transition probability
matrixP for the MCMC process could serve not only as a feasible alternative approach, but also have significant
practical importance. In the following we explain how to use the global optimization techniques as a general
means to construct such an optimal matrix P numerically.

The discoveries of our investigation can be summarized as follows:
1. For the reversible Markov chain, we find that, in addition to what is known as the classical solution [11,

14], the optimization problem may have many different optimizers. However, all of these solutions
result in the same global optimal value, that is, all of them are global solutions and there are many.

2. Departing from the reversibility, we show numerically that the minimization of the worst-case problem
for general stochastic matrices have multiple local solutions, suggesting that landscape of the objective
function could be extremely complicated. Without resorting to the global optimization techniques, we
demonstrate the high likelihood of producing a local optimizer and, hence, a less effective MCMC
process.

3. We find that the optimal solution often occurs as the boundary of the feasible set. The Karush-Kuhn-
Tucker (KKT) optimality conditions [10] will require us to discern active set from inactive set. The
complexity involved in this process probably can only be resolved through numerical calculation. In
contrast to the reversible case, it might be difficult, if possible at all, to obtain a closed-form solu-
tion for general irreversible Markov chains. Nonetheless, we offer to formulate the problem readily
solvable through existent global optimization techniques.

This paper is organized as follows. In Section 2, we propose using weighted inner product (by π) to
facilitate the description of the asymptotic variance (1.2). The advantage is that the worst-case problem is
transformed into a minimax problem, where the maximization is readily resolved by taking the logarithmic
norm of some suitable restricted map. So it only remains to solve the minimization of the logarithmic norm,
which is the core of the challenge. In Section 3 we briefly review the case of reversible MCMC. As the
reversibility is equivalent to self-adjoint with respect to the weighted inner product, we can take advantage
of many properties available from symmetry. In particular, a constructive proof in the form of a recurrence
relation can be derived, which leads to a closed-form solution. In Section 4 we discuss the feasible set and
the optimality condition in general. In particular, we set up the logistics needed for global optimization which
leads to some interesting discoveries.
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2. Worst-case analysis as a minimax optimization. We begin this section with the introduction of the
concept of π-orthogonality. Then we provide background of the worst-case analysis for asymptotic variance
and formulate the maximin problem.

2.1. π-orthogonality. To explain the idea, we first introduce the weighted inner product between arbitrary
a,b ∈ R

n via

〈a,b〉π := b
⊤Πa = 〈Π 1

2 a,Π
1
2b〉, (2.1)

where Π := diag{π1, . . . , πn}. It follows that with respect to the induced π-norm

‖a‖π :=
√
〈a, a〉π = ‖Π 1

2a‖2,

the vector 1 := [1, . . . , 1]⊤ has unit length. The notion of π-orthogonality also naturally arises. By (2.1), we
say that b ⊥π a if and only if Π

1
2b ⊥ Π

1
2a, or b ⊥ Πa, or Πb ⊥ a. In particular, we see that

1 ⊥π a ⇐⇒ π ⊥ a. (2.2)

Similarly, we can extend to the π-Frobenius inner product between two matrices A,B ∈ R
n×m by

〈A,B〉Fπ
:= trace(B⊤ΠA) =

n∑

i=1

m∑

j=1

πiaijbij . (2.3)

Built upon the notion of mutually π-orthogonal columns, the matrix V ∈ R
n×n of the form

V = [1,v2, . . . ,vn︸ ︷︷ ︸
V2

] (2.4)

is π-orthogonal if and only if the matrix

Q := Π
1
2V = [Π

1
21,Π

1
2v2, . . . ,Π

1
2vn︸ ︷︷ ︸

Q2

] (2.5)

is orthogonal. Since the first column Π
1
2 1 of Q is fixed, the columns of Q2 can be taken to be the orthonormal

basis of its orthogonal complement subspace. Once Q2 is formed, then

V2 = Π− 1
2Q2. (2.6)

Though it is not unique, note that V2 is known once the desirable stationary distribution π is specified. For
instance, suppose that π > 0. Then it can readily be checked that, with v1 = 1, the vectors

vk =
1√

πk−1(
∑n

j=k πj)(
∑n

j=k−1 πj)


 0, . . . , 0︸ ︷︷ ︸
k − 2 times

,

n∑

j=k

πj ,−πk−1, . . . ,−πk−1︸ ︷︷ ︸
n− k + 1 times




⊤

, k = 2, . . . , n (2.7)

form a π-orthonormal basis for Rn×n. If so desire, we may use this basis in all the following discussion.
LEMMA 2.1. The π-orthogonal complement of the unit vector 1, denoted by 1

⊥π , is invariant under the

transformation by any stochastic matrix P with stationary distribution π.

Proof. Suppose w ∈ 1
⊥π . Then, by (2.2), 〈w,π〉 = 0. On the other hand, we have 〈Pw,1〉π =

1
⊤ΠPw = 〈π, Pw〉 = 0, because π⊤P = π

⊤.
Therefore, it makes sense to consider the restricted map

P
∣∣
1⊥π

: 1⊥π → 1
⊥π .
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Corresponding to every element w ∈ 1
⊥π , there is a unique z ∈ R

n−1 such that w = Π− 1
2Q2z. Using

columns of V2 as a π=orthonormal basis for 1⊥π , we can identify P
∣∣
1⊥π

as a linear map from R
n−1 to R

n−1

which has a matrix representation

P
∣∣
1⊥π

= Q⊤
2 Π

1
2PΠ− 1

2Q2 = V
♮
2 PV2, (2.8)

where the product

V
♮
2 := Q⊤

2 Π
1
2 (2.9)

is only the so called {1, 2, 4}-inverse of V2 and is not the Moore-Penrose pseudo-inverse V †
2 in general1.

It is easy to see that with respect to the π-inner product (2.1), the corresponding adjoint of P , denoted by
P⊤π , is given by

P⊤π = Π−1P⊤Π. (2.10)

If P is a row stochastic matrix satisfying π
⊤P = π

⊤, then so is P⊤π .

2.2. Reformulation. Assuming the generic condition that the Perron root of P is unique, it is known that
the asymptotic variance ν(f, P ) can be expressed as

ν(f, P ) = 2
〈(
(I−P−1π

⊤)−1−1π
⊤
)
(f−(π⊤f)1), f−(π⊤f)1

〉
π

−〈f−(π⊤f)1, f−(π⊤f)1〉π. (2.11)

The readers are referred to [1, 16] for this expression. By re-centering f if necessary, we may assume without
loss of generality henceforth that π⊤f = 0. Then, for f ∈ 1

⊥π , the asymptotic variance is reduced to

ν(f, P ) = 2
〈
(I − P )

−1
f, f

〉
π

− 〈f, f〉π (2.12)

where the inverse (I − P )−1 should be interpreted as the inverse of the restricted map (I − P )
∣∣
1⊥π

. That is,

(I − P )−1
∣∣
1⊥π

=
(
In−1 − V

♮
2 PV2

)−1

, (2.13)

where we stress that In−1 is the identity matrix of size n − 1. Since ν(f, P ) in (2.12) is homogeneous in f ,
it makes sense to assume further that ‖f‖π = 1. Noticed that, for a fixed transition probability matrix P ,
asymptotic variance depends on the choice of the function f . In the literature, there are various ways to analyze
the asymptotic variance over all functions f within classes of interest without exploiting any possible prior
knowledge on these functions. The aspect of averaging the asymptotic variance over functions is taken in [4].
On the other hand, the worst-case analysis is employed in [11]. More precisely, the authors there consider the
maximization of asymptotic variance over functions of interest as the criterion for evaluating the performance
of MCMC algorithms. In the present paper, we adopt the worst-case analysis. Therefore, the worst scenario of
the asymptotic variance for each fixed P amounts to finding

sup
f∈1⊥π ,‖f‖π=1

〈
(I − P )

−1
f, f

〉
π

, (2.14)

which we translate as the maximization problem

max
z∈Rn−1,‖z‖2=1

〈(
In−1 − V

♮
2 PV2

)−1

z, z

〉
. (2.15)

1A matrix X ∈ R
n×m satisfying the properties that AXA = A, XAX = X , and (XA)⊤ = XA is called a {1, 2, 4}-inverse of

the matrix A ∈ R
m×n. If, in addition, X also satisfies (AX)⊤ = AX , then it is the unique Moore-Penrose pseudo-inverse of A. In the

current context, V2V
♮
2

is not symmetric, while V
†
2

=
(

Q⊤
2
Π−1Q2

)−1
Q⊤

2
Π− 1

2 would be much more complicated than V
♮
2

.
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Note that we have changed sup to max because the optimal value is attainable over the unit sphere. We note that
throughout the rest of the present paper, the asymptotic variance is referred to the worst case of the asymptotic
variance for simplicity of presentation. For convenience, introduce the abbreviation

R(P ;π) :=
(
In−1 − V

♮
2PV2

)−1

. (2.16)

At first glance, the notation R(P ;π) might seem redundant because once P is given, then its stationary dis-
tribution π is determined. In our acceleration problem, however, our task is to construct a matrix P with a
specified π. In this context, the matrix P is not known a priori and the expression R(P ;π) does depend on the
parameter π in the way that V2 is defined in (2.6).

It is clear from linear algebra that one way to characterization the maximization of (2.15) is via the sym-
metric eigenvalue formulation.

LEMMA 2.2. The maximizer of (2.15) is attained at the unit eigenvector zmax associated with the largest

eigenvalue λmax of the symmetric matrix R(P ;π)+R(P ;π)⊤ and the optimal objective value is the logarith-

mic norm of R(P ;π), that is, λmax

2 .

The inverse problem of reconstructing a Markov chain P to accelerate asymptotic variance, therefore, can
be formulated as

min
P

1
2λmax

(
R(P ;π) +R(P ;π)⊤

)
,

subject to P ∈ N (π),
(2.17)

where N (π) is the set

N (π) := {P ∈ R
n×n

∣∣
π

⊤P = π
⊤, P is row stochastic}. (2.18)

Example 1. Consider the case n = 2. Write the row stochastic matrix P as

P =

[
x 1− x

y 1− y

]
,

where x and y are to be determined. With respect to a prescribed a stationary distribution π = [π1, π2]
⊤

satisfying π1 + π2 = 1, π1, π2 > 0, the feasible set N (π) can be identified as the segment

N (π) ≡
{
(x, y) ∈ R

2
∣∣π1x+ π2y = π1, 0 ≤ x, y ≤ 1

}
.

See Figure 2.1. By (2.5), we can construct

V2 =




−
√

π2

π1√
π1

π2




and obtain

V
♮
2 = [−√

π1π2,
√
π1π2] .

With P ∈ N (π), it follows that

R(P ;π) =

{
π2

1−x
, if π2 > π1;

π1

y
, if π2 ≤ π1;

achieves its minimum value π2 at (0, π1

π2
), if π2 > π1; or the minimum value π1 at (1 − π2

π1
, 1), if π2 ≤ π1. It

is interesting to note that the minimum is attained at the boundary of N (π).
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FIGURE 2.1. Feasible set N (π) for the case n = 2. Left: π2 > π1; Right: π2 ≤ π1.

The above discussion indicates that the task of minimizing the asymptotic variance in a MCMC method is
a minimax problem. In one formulation, the part of maximization is readily solved for every given P by means
of the symmetric eigenvalue computation. It remains to solve the constrained minimization problem (2.17). In
this approach, we have to deal with the intricate change of λmax

(
R(P ;π) +R(P ;π)⊤

)
relative to the change

in P . Alternatively, we could also work on the saddle-point problem

min
P∈N (π)

max
z∈Sn−2

〈(
I − V

♮
2 PV2

)−1

z, z

〉
, (2.19)

where Sn−2 stands for the unit sphere in R
n−1 and we treat z and P independently with the hope of avoiding

stagnation at a local solution prematurely. Though techniques are available for the minimax problem (2.19),
our emphasis in this paper is on using the global optimization techniques. Since the global solution is to be
found, it no longer matters whether the maximization problem is solved first or not. It suffices to tackle the
constrained optimization problem (2.17).

By now the reference to the given stationary distributionπ is clear. We abbreviateN (π) as N andR(P ;π)
as R(P ) hereafter.

3. Reversible MCMC. Let a matrix P be denoted in terms of its entries by writing P = [pij ]. A row
stochastic matrix P is said to be reversible relative to π if and only if it satisfies the so called detailed balance
condition,

ΠP = P⊤Π.

Equivalently, P is reversible if and only if P = P⊤π , that is, P is self-adjoint respect to the π-inner product
(2.1). Similar to symmetric matrices, it is readily verifiable that all eigenvalues of a reversible stochastic matrix
are real-valued, and that there exists a basis consisting of mutually π-orthogonal eigenvectors of P . Exploiting
the relatively simpler eigenstructure, research efforts on other topics such as mixing time or mean recurrence
time for reversible Markov chains have been extensive and fruitful. For some general comparison between
reversible and non-reversible Markov chains in MCMC, see the discussions in [5, 8, 20].

Many popular MCMC methods also assume reversibility. The reason is that if we limit our construction
of a Markov chain to the class of reversible matrices, then the minimum asymptotic variance is achievable via
a closed-form solution. We can deal with the formulation (2.15) directly without resorting to the formulation
(2.17). Furthermore, since eigenvectors that are π-orthogonal to 1 are in the same space spanned by V2,
finding the reversible P that minimizes the asymptotic variance is equivalent to finding the reversible P whose
second largest eigenvalue λ2 is minimized. In fact, the rate of convergence of a reversible Markov chain to its
equilibrium is also related to the second eigenvalue λ2 [7, 9, 12, 15, 28].
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Renaming the state variable if necessary, we may assume without loss of generality that the given stationary
distribution π has been arranged in the order 0 < π1 ≤ π2 ≤ . . . ≤ πn. Then it has been established that one
such a reversible solution matrix can be characterized as follows2. Define

P (1) :=




0
π
(1)
2

β2

π
(1)
3

β2
. . .

π(1)
n

β2

1− α2

... α2P
(2)

1− α2




(3.1)

and recursively

P (k) :=




0
π
(k)
k+1

βk+1
. . .

π(k)
n

β2

1− αk+1

... αk+1P
(k+1)

1− αk+1



, k = 2, . . . , n− 1 (3.2)

where

π
(1) := π

π
(k+1) :=

π
(k)

βk+1
, k = 1, . . . n− 2,

and

αk+1 := 1− π
(k)
k

βk+1

βk+1 := 1− π
(k)
k , k = 1, . . . , n− 2.

Then the optimizer P whose second largest eigenvalue λ2 is minimal among all reversible matrices is given by

P = P (1) +


1−

n−1∑

j=1

P
(1)
nj


 ene

⊤
n ,

where en is the n-th standard unit vector [11, Theorem 1]. Besides the Perron root of unity, the other eigenval-
ues of P are precisely αk − 1, k = 2, . . . n, which are all negative and λ2 is the largest among these negative
values. Similar to Example 1, it is interesting to note that the minimal asymptotic variance for reversible
Markov chains is attained at the boundary of N .

4. Numerical approach. For general stochastic matrices, the construction of a Markov chain in closed
form with minimal asymptotic variance has been an open question. In this section, we approach this problem
(2.17) by conventional numerical optimization techniques which enable us to gain some interesting insight into
the problem. In particular, we offer numerical evidence that

1. Without the reversibility, there are many local solutions to the problem (2.17). Consequently, finding
the absolute minimal asymptotic variance is challenging in general.

2. The reversible problem might have different optimizers, but all of them are global.
3. Existent global optimization techniques can help to construct the optimal Markov chain numerically,

even if the theory of a closed-form solution is not available.

2A Markov chain with prescribed stationary distribution and minimal asymptotic variance is not unique, as we shall see from Exam-
ple 4 in Section 4.3.
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4.1. Feasible set. We first observe a few topological properties of the feasible N . For most optimization
software, it suffices to realize that the constraints imposed upon (2.17) are either linear equality or box con-
straints. However, the feasible set N has more innate structures. It is a monoid, that is, it is closed under matrix
multiplication, has the identity, but it is not a group since not all its elements are invertible. It is compact and
convex. Also, N has boundaries which turn out to be where the difficulty resides. The tangent space TPN of
N at an interior point P ∈ N can be characterized as follows, which shows that TPN is independent of P
and, hence, the set N is an affine subset.

LEMMA 4.1. Suppose P is an interior point to N . Then the tangent space TPN of N at P can be

parameterized by (n− 1)2 free parameters. Specifically, any W ∈ TPN is of the form

W = V2ZΞ (4.1)

where Z ∈ R
(n−1)×(n−1) is arbitrary and Ξ := [In−1,−1n−1] ∈ R

(n−1)×n, where the identity matrix In−1

and the vector 1n−1 of all 1’s are of size n− 1.

Proof. The matrix W ∈ TPN if and only if π⊤W = 0 and W1 = 0. The first equation implies that
columns of W are in 1

⊥π . The second equation implies that the last column of W is the negative sum of the
preceding n− 1 columns.

We also characterize how an arbitrary vector can be projected onto TPN . Note that the projection is taken
with respect to the π-Frobenius inner product for the sake of convenience.

LEMMA 4.2. Given any X ∈ R
n×n, its projection onto TPN with respect to the π-Frobenius inner

product is given by

PTPNX = Π− 1
2Q2Q

⊤
2 Π

1
2XΩ = V2V

♮
2XΩ, (4.2)

with

Ω :=




1− 1
n

− 1
n

. . . − 1
n

− 1
n

1− 1
n

...
. . .

...

− 1
n

1− 1
n




Proof. By Lemma 4.1, the projection of X onto the tangent space TPN with respect to the π-Frobenius
inner product is equivalent to minimizing ‖X−V2ZΞ‖Fπ

by suitable Z ∈ R
(n−1)×(n−1), which we rewrite as

‖X − V2ZΞ‖Fπ
= ‖Π 1

2X −Π
1
2V2ZΞ‖F = ‖Π 1

2X −Q2ZΞ‖F = ‖Q⊤
2 Π

1
2X − ZΞ‖F .

The least squares solution to the last objective function is given by Z = Q⊤
2 Π

1
2XΞ†. It is easy to check that

Ω = Ξ†Ξ.

4.2. Optimality conditions. For easy reference, let S : Rn×n → R
(n−1)×(n−1) be the map

S(P ) :=
1

2

(
R(P ) +R(P )⊤

)
.

Note that S(P ) is symmetric. Consequently, the maximal eigenvalue of S(P ), denoted as λmax : Rn×n → R,
is differentiable in P [17, 21]. We know that the Fréchet derivative of λmax of S(P ) at P acting on a general
matrix H ∈ R

n×n satisfies the relationship

∂λmax(S(P ))

∂P
.H =

〈
x(P ),

(
∂S(P )

∂P
.H

)
x(P )

〉
, (4.3)
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where x(P ) is the unit eigenvector of S(P ) associated with the eigenvalue λmax(S(P )). We can calculate
from (2.16) that

∂S(P )

∂P
.H =

1

2

(
R(P )V ♮

2HV2R(P ) +
(
R(P )V ♮

2HV2R(P )
)⊤

)
. (4.4)

Upon substitution into (4.3), we see from the Riesz representation theorem that the gradient of λmax with
respect to the Frobenius inner product (2.3) can be expressed as

∇λmax(S(P )) = V
♮
2

⊤
R(P )⊤x(P )x(P )⊤R(P )⊤V ⊤

2 . (4.5)

Equivalently, if the π-Frobenius inner product is used to represent the action of the Fréchet derivative, then we
write the gradient as ∇πλmax = Π−1∇λmax.

When P is in the interior of N , the projection of −∇λmax onto the tangent space TPN points to a steepest
descent direction. When P is on the boundary of N and −∇λmax points away from N , we need to take the
projection of −∇λmax onto the tangent space of the boundary of N . This requirement further complicates the
optimality condition. For instance, by Lemma 4.2, we have

PTPN (−∇λmax) = −V2R(P )⊤x(P )x(P )⊤R(P )⊤V ⊤
2 Ω (4.6)

If there is a matrix P ∈ N that zeros out the right-hand side of (4.6), then definitely it is a local critical point for
the objective function λmax(S(P )). However, it is possible, and seemingly always the case for our problem,
that a minimizer for λmax occurs at the boundary where (4.6) is not zero.

Example 2. We already know the solution to (2.17) for Example 1 is obvious. In particular, we know
that the boundary of the feasible set is active. Suppose that we carry out the steps outlined above. The 2 × 2
projected gradient corresponding to (4.6) becomes

PTPN (−∇λmax) = −1

2




π2
2

π1(1−x)2
− π2

2

π1(1−x)2

−π2

(1−x)2
π2

(1−x)2


 ,

which clearly shows that at a boundary point the projected gradient is never zero. So merely checking the
derivative information is not enough.

We can continue to explore the projection of the gradient onto the tangent space of the boundary of N
and further refine the optimality under the KKT conditions. Such a theory has been well established in the
field of constrained optimization. There is no need to reproduce the results here. Above all, we think that the
KKT conditions for the general problem (2.17) would be so involved that a closed-form solution similar to
that for the reversible problem might not be immediately available. Nonetheless, having an optimal transition
probability matrix will effectuate the performance of an MCMC process. The demand for such a construction
is indispensable. For practical purpose, we move ahead to finish the construction numerically by utilizing the
many available optimization software packages in which the various techniques such as checking the active set
and so on have already been built. Many of these codes can be more efficient in calculation if the analytic form
of ∇λmax in (4.5) is given.

4.3. Multiple Solutions. We use the routine fmincon in MATLAB as the optimization tool to experiment
with the problem (2.17). For demonstration, we invoke the sequential quadratic programming (sqp) algorithm
which computes a quasi-Newton approximation to the Hessian of the Lagrangian, where the gradient (4.5)
of the objective function is supplied. Termination tolerance on the function value (TolFun), tolerance on the
constraint violation (TolCon), and termination tolerance on P (TolX) are all set at 10−12 for high precision
calculation. We call for the multi-start global optimization solver MultiStart with 100 starting points each
of which is required to respect the box constraint initially and then is corrected to meet the feasibility within
the prescribed tolerance. MultiStart runs the local solver sqp, starting at the points uniformly but randomly
distributed within bounds [27]. A positive exit flag indicates a successful return from the local solver.
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FIGURE 4.1. Values (blue dots) and histogram of local minimal λmax.

Example 3. Corresponding to the prescribed stationary distribution3

π = [0.3200, 0.0765, 0.2007, 0.1446, 0.2581]⊤,

plotted in Figure 4.1 are the 100 local minimal values of λmax found by fmincon. We rearrange these values
in increasing order for ease of comparison. The potentially global minimum value is estimated to be 0.8823
attained at4

P1 =




0.0221 0.0000 0.3543 0.1206 0.5031
0.8339 0.0000 0.0932 0.0075 0.0654
0.5619 0.0935 0.0020 0.3319 0.0107
0.0237 0.1740 0.1790 0.0018 0.6215
0.5152 0.1262 0.2090 0.1496 0.0000



.

The horizontal bars on the left edge of the plot are the histogram of these calculated objective values which
are distributed over the indicated bins. We check the exit flag to ascertain that each run of the local solver
has converged. Therefore, though they are clustered, each of the dots in Figure 4.1 represents a true local
minimal value. What is most puzzling is that out of 100 start points, we find 100 distinct local minima, a strong
indication that the topology associated with the objective function in (2.17) is fairly complicated [4]. Without
resorting to the global optimization technique with sufficiently many tests, the optimal asymptotic variance
problem probably cannot be easily found. Most likely, a causal starting point will lead convergence to a local
solution only.

Example 4. On the other hand, corresponding to the same prescribed stationary distribution π, suppose
we impose the additional requirement of reversibility. Plotted in Figure 4.2 are the 25 entries for each of the
optimizers found by fmincon. Details of these drawings are immaterial, but it is quite obvious from a glance
that not all the minimizers are the same. Thus, there are multiple solutions even for the reversible problem. The
downward spikes at locations 1,7, 13, 19, and 25 are diagonal entries which are small, but are not identically

3For the ease of running text, all numbers are displayed in 4 digits only.
4It is potentially global because the 100 multi-starts cannot constitute an exhaustive search. It is rare, but possible, that a true global

optimizer has not been found yet.
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FIGURE 4.2. Entry values of local reversible minimizer.

zero. For instance,

P2 =




0 0.1566 0.2174 0.2794 0.3465
0.0828 0.0000 0.2302 0.2820 0.4049
0.0828 0.1659 0.0289 0.2313 0.4911
0.0828 0.1581 0.1799 0.1048 0.4744
0.0828 0.1830 0.3081 0.3825 0.0435




is one such a reversible solution. In contrast, the optimizer obtained from the receipt in Section 3 is

P3 =




0 0.1566 0.2174 0.2794 0.3465
0.0828 0 0.2364 0.3039 0.3769
0.0828 0.1703 0 0.3334 0.4134
0.0828 0.1703 0.2593 0 0.4875
0.0828 0.1703 0.2593 0.3931 0.0944




which always has zero diagonal entries except the last one. What is most interesting is that for the reversible
problem we have the same optimal value 0.9235 universally at all local solutions which, therefore, are also
global solutions.

Example 5. To catch a glimpse into a possible landscape associated with the objective function λmax,
consider the subclass of 3× 3 row stochastic matrices

P =




p̂11 p̂12 p̂13
x p22 p23
p31 y p33


 ,

where the first row [p̂11, p̂12, p̂13] of P is fixed. We use x and y as the variables which, once chosen, determine
the remaining entries p22, p23, p31 and p33 from the equations π⊤P = π

⊤ and P1 = 1. Obviously, since all
entries of P must be nonnegative, x and y are subject to the constraints

π1p̂12 − π2 ≤ π2x− π3y ≤ π1p̂11,

π1 − π3 − π1p̂11 ≤ π2x− π3y ≤ π1 − π1p̂11.
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FIGURE 4.3. Logarithm of λmax(R(P )) over feasible domain.

We are interested in seeing the ”cross-section" of λmax(S(P )) when the first row of P is fixed. Consider an ex-
ample with randomly generated π = [0.1099, 0.5097, 0.3804]⊤ and [p̂11, p̂12, p̂13] = [0.3133, 0.4746, 0.2121].
Because the objective values λmax with P satisfying the corresponding constraints vary significantly, we plot
in Figure 4.3 the values of logλmax(S(P )) over the feasible domain to demonstrate the possible complexity
of the objective function. We mention in passing that with the first row and π as are given, the minimum of
λmax(S(P )) is 1.2881 attainable at (x, y) = (0.0281, 0.8287), whereas without such a restriction on the first
row the global minimum of λmax(S(P )) is .8391 attainable at

P =




0.0000 0.9752 0.0248
0.0261 0.2984 0.6755
0.2538 0.6583 0.0879


 .

5. Conclusions. Constructing a Markov chain with a prescribed stationary distribution vector is the first
step needed in a MCMC method. To optimize the performance of the MCMC process, it is desirable that the
worst-case asymptotic variance of the constructed Markov chain is minimal. In the present paper we revisit
this important problem with the tool of global optimization in hand. As extensive search is possible through
efficient numerical computation, it is found that the reversible problems enjoy having multiple global solutions
which are different from the one known as classical in the literature. This multiple choice of optimal reversible
Markov chains opens the door to factoring in other considerations when constructing a MCMC process. On
the other hand, it is found that the irreversible problems will have multiple local solutions in general and that
the basin of attraction for some of the local solutions might be larger than that for the global solution. Unless
a global optimization approach is adopted, it might be difficult to construct the ultimate Markov chain for a
MCMC process. In all, this paper suggests a framework of applying existent global optimization techniques to
tackle the problem of Markov chains construction with prescribed stationary distribution vector and minimal
worst-case asymptotic variance.
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