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Abstract� The wave front �eld aberrations induced by atmospheric turbulence can severely de�
grade the performance of an optical imaging system� Adaptive optics refers to the process of removing
unwanted wave front distortions in real time� i�e�� before the image is formed� with the use of a phase
corrector� The basic idea in adaptive optics is to control the position of the surface of a deformable
mirror in such a way as to approximately cancel the atmospheric turbulence e�ects on the phase of
the incoming light wave front� A phase computation system� referred to as a reconstructor� transforms
the output of a wave front sensor into a set of drive signals that control the shape of a deformable
mirror� The control of a deformable mirror is often based on a linear wave front reconstruction algo�
rithm that is equivalent to a matrix�vector multiply� The matrix associated with the reconstruction
algorithm is called the reconstructor matrix� Since the entire process� from the acquisition of wave
front measurements to the positioning of the surface of the deformable mirror� must be performed
at speeds commensurate with the atmospheric changes� the adaptive optics control imposes several
challenging computational problems�

The goal of this paper is twofold� �i� to describe a simpli�ed yet feasible mathematical framework
that accounts for the interactions among main components involved in an adaptive optics imaging
system� and �ii� to present several ways to estimate the reconstructor matrix based on this frame�
work� The performances of these various reconstruction techniques are illustrated using some simple
computer simulations�

�� Introduction� Imaging through turbulence is a challenging task that has signif�
icant impacts on many important applications in defense� engineering and science� The
presence of atmospheric turbulence� for example� has especially frustrated astronomers�
In the absence of any correction to the turbulence� no design or optical quantity of a
telescope can improve the degraded image� Atmospheric turbulence exists by simple
factors such as mixing of warm and cold air layers that results in changes in air density�
This non�uniformity of air density then slows the light wave forms by di�erent degrees
and hence distorts the image �����

Researchers in science and engineering are actively seeking to overcome the degra�
dation of astronomical image quality caused by the e�ects of atmospheric turbulence
and other image degradation processes� Exciting technological breakthroughs are
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rapidly coming to the aid of scientists attempting to de�blur atmospheric images� see
the survey articles ��� �	� �
�� New optical imaging methods are now being developed
to give vital tools for ground�based� air�to�air� and air�to�ground imaging� Among
these� one interesting approach is to perform turbulence compensation using mechan�
ical means� now generally referred to as adaptive optics �AO�� A quick brieng about
the AO applications as well as current research activities in this area can be found
in a recent SIAM News article ���� Some more technical background can be found in
�
� �� ��� ��� �	� and the many references contained therein� The purpose of this paper
is to recast some of the estimation methodology used in AO under a simple� unied
mathematical framework�

In modern imaging facilities using AO technology� the improvement in optical
image quality is most often attempted in two stages� The rst stage involves real�
time adaptive deformable mirror �DM� control� The idea is that at approximately the
same time when the observed image is initially formed� optical systems also detect the
distortions using either a natural guide star or a guide star articially generated using
range�gated laser backscatter� A wave front sensor �WFS� measures the optical phase
distortions which can then be partially nullied by deforming a �exible mirror in the
imaging system� Deformable mirrors operating in a closed�loop adaptive�optics system
can partially compensate for the degradation e�ects of atmospheric turbulence� To be
e�ective� these corrections have to be performed at real�time speed�

The second stage consists of o��line post�processing steps to restore the images�
These steps involve the removal or minimization of noise or blur in an image using
a priori knowledge about the degradation phenomena� This inverse problem� usually
ill�posed and large�scaled� is generally solved by deconvolution techniques ��� �� ����
The study of post�processing image restoration needed for this second stage for recon�
structing and restoring optical images is itself an area full of exciting and active math�
ematical research� The progress made is broad and signicant� The power of these new
techniques is very impressive� Some ongoing research subjects include regularization
techniques� total variation techniques� phase diversity techniques� blind deconvolution
methods� and many other articles presented in this conference�

The work in this paper concerns mainly the AO reconstructor problem involved
in the rst stage� The problem includes the determination of an optimal reconstructor
matrix for phase reconstruction as well as a set of commands that control the surface
of a DM� For ease of explanation� we sketch the main components of a closed�loop
AO system in Figure ���� These include the deformable mirror� the wave front sensor�
and the actuator command computer� Light in a narrow spectral band approaching
the atmosphere from a distant light source� such as star� is usually modeled by a
plane wave� When traveling through the atmosphere that does not have a uniform
index of refraction� light waves are aberrated and no longer planar� In the closed�loop
AO system depicted in Figure ���� this aberrated light is rst re�ected from the DM�
Some of this light is focused to form an image� and some is diverted to the WFS that
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Fig� ���� A simpli�ed closed�loop AO system with main components�

measures the wave front phase deformations� These WFS measurements are then fed
to the actuator command computer that maps them into real time control commands
for the DM� These control commands are used to adjust the DM actuators so as to
compensate the wave front distortions� The underlying task is to somehow translate
the atmospheric measurements to the actuator controls of the deformable mirrors� How
this translation is done depends on the criterion selected� see �
� ���� In this paper�
several di�erent types of linear estimators and their performances are discussed�

The basic problem in adaptive optics is thus to control the position of the surface
of a deformable mirror in such a way as to approximately cancel the atmospheric
turbulence e�ects on the phase of the incoming light wave front� A phase computation
system� referred to as a reconstructor� transforms the output of a wave front sensor into
a set of drive signals that control the shape of a deformable mirror� The control of a
deformable mirror is often based on a linear wave front reconstruction algorithm that is
equivalent to a matrix�vector multiply� The matrix associated with the reconstruction
algorithm is called the reconstructor matrix�

The paper is organized as follows� We begin in Section � with a description of
the dynamics associated with an AO system� We brie�y discuss how the wave front
phase is measured in terms of wave front slope� how the actuator command corrects the
wave front phase and hence a�ects the wave front slope measurements� and how the
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measurements are gathered in a closed�loop AO system� The mathematics connecting
these quantities sets forth several basic relationships that play fundamental roles in
the reconstructor problem� Since wave front phase proles normally are not available
for real time processing� we discuss in Section � di�erent approaches to estimate the
wave front prole from observed wave front slope information� In Section �� we discuss
various algorithms to update the actuator control system using currently measured
atmospheric conditions� These algorithms di�er on the type of objective criterion
selected� An important issue to be considered is the availability of information required
by a particular objective criterion� If such required information is not available then
the algorithm may incur higher computational cost� Finally� in Section � we illustrate
and compare the performance of these various approaches via some simple computer
simulations�

Although classical image restoration has been extensively studied ��� �� �� ���� aero�
optics imaging through the atmosphere is a very di�cult task� Some of the challenges
in imaging processing through atmospheric turbulence include ��� �	� ��� �
� ����

�� The real�time measurement of the atmospheric turbulence� The statistical in�
formation of the atmosphere varies on time scales of minutes and will never
be known exactly� The associated parameters therefore have to be estimated
adaptively for optimal performance�

�� The use of the atmospheric measurements to actuate the control systems of
the deformable mirrors� Since these measurements are time�varying and are
only an estimate� the degree of validity that this information can be used in
the communication among actuator� sensor� and control computer needs to be
carefully identied� managed� and evaluated�

�� The fast performance of large�scale data processing and computations� In the
rst stage� the statistical information of the atmospheric turbulence needs to be
processed in real�time to alter the shape of the DM to counteract distortions�
In the post�processing stage� gigabytes of data need to be analyzed in order to
enhance the image partially corrected by the earlier AO procedure ��� �� ����

In this paper� we limit ourselves to mathematical and statistical models only� Readers
are referred to the excellent books by Roggemann and Welsh ���� and Hardy ���� for a
discussion on factors that contribute to the limitations that keep an AO system from
achieving its ideal performance�

�� Basic Relationships� For convenience� we shall denote the turbulence�induced
phase prole at position �x in the telescope aperture plane� determined by the primary
mirror� at time t by ���x� t�� Likewise� the deformable mirror command issued at time t
for the ith DM actuator is denoted by ai�t�� The wave front slope sensor measurement
obtained from the kth subaperture of the WFS with no correction at time t is denoted
by sk�t�� The goal in positioning the DM surface via commands ai�t� is to represent an
approximate conjugate of the turbulence�induced eld ���x� t� so that the eld re�ected
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from the DM will have the aberration somewhat canceled and more closely approximate
the eld when no atmosphere turbulence is present� In this section we discuss the
mathematical models representing these quantities�

The mirror surface is controlled by a number of actuators that basically push and
pull on the mirror surface to cause it to deform� Assuming that there are m actuators
and that the actuators response linearly to the commands� the DM surface can be
modeled by

����x� t� �
mX
i��

ai�t�ri��x�������

where ri��x�� called the in�uence function on the DM surface at position �x� denotes
the response of the ith actuator to a unit adjustment� Suppose we sample the DM
surface at n surface positions �xj� j � �� � � � n� then the relationship between the surface
position and the actuator command can be described aS

���t� � Ha�t�������

In the above� the n dimensional vector ���t� � �����x�� t�� � � � � ����xn� t��
T represents the

discrete corrected phase prole at time t� The n � m DM con�guration matrix H�
whose ith column is the vector �ri��x��� � � � � ri��xn��

T � is independent of time�
The wave front sensors usually do not measure the wave front phase ��t� directly�

Instead� the spatial gradient of ��t�� commonly referred to as the wave front slope� is
estimated� Without given specic details� we shall use the Hartman WFS �H�WFS� in
this discussion� Readers are referred to ���� for more details on the physical congu�
ration a H�WFS� In brief� the H�WFS spatially segments the incident wave front with
an array of � small regions in the telescope pupil� Each array element� referred to as a
subaperture� focuses a spot onto an array of detectors in the focal plane� The average
wave front slope associated with the kth subaperture given by

sk�t� �
Z
d�xWk��x�r���x� t�

� �
Z
d�xrWk��x����x� t�������

where Wk��x� is the kth subaperture weighting function� accounts for the H�WFS slope
measurement� Upon approximating the integral in ����� by some quadrature rules at
designated positions �xj� j � �� � � � n� together with possible measurement noises� a
linear relationship between wave front phase and the H�WFS slope measurement can
be described as

s�t� � W��t� � ��t�������

In the above� ��t� � ����x�� t�� � � � � ���xn� t��
T represents the discrete phase prole at

time t� the matrix W � �wkj� � R��n where wkj denotes the jth quadrature weight of
the integral ����� at abscissa �xj� and ��t� accounts for any measurement error or noise�
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The corresponding H�WFS slope measurement of the corrected wave front phase
���t� can be measured as follows�

�sk�t� �
mX
i��

�
�
Z
d�x�rWk��x�ri��x�

�
� �z �

Gki

ai�t��

Once again� upon discretization� we can write

�s�t� � Ga�t������

where the matrix G � �Gki� � R��m must satisfy the relationship

WH � G����
�

It should be noted that the DM actuators are not capable of producing the exact wave
front phase ���x� t� due to their niteness of degrees of freedom� So �s � Ga is never an
exact measurement in practice�

In a closed�loop AO system such as the one demonstrated in Figure ���� the wave
front that arrives at either the H�WFS or the image plane detector is the one that
has been re�ected from the DM� Thus the information obtained at the image plane
detector is actually the residual phase error

���t� �� ��t��Ha�t�������

That is� after the AO correction� ���t� is the observable instantaneous wave front
distortion at time t� Likewise� the information available at the H�WFS is the feedback
applied to s�t� by DM actuator adjustment

�s�t� �� s�t��Ga�t�������

This is the observable H�WFS slope measurement at time t� Given the relationship
������ it is easy to see that an identical linear relationship

�s�t� �W���t� � ��t������

holds between the residual phase error ���t� and and the feedback H�WFS slope
measurement �s�t��

�� Minimum Variance Estimator� The ultimate goal in an AO system is to
retrieve su�cient information about the turbulence�induced wave front phase ��t� in
order to determine the actuator command vector a�t� to control the shape of the DM�
In this section� we present four possible ways to estimate the wave front phase based
on the mathematical framework outlined in x��
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Fig� ���� A close�loop AO control model

We are dealing with atmospheric turbulence that is usually random in nature� It is
convenient to adopt the conventional notation and terminology from statistics for the
discussion in the sequel� That is� let E �x� denote the mathematical expectation from
the underlying distribution function p�x� of a random variable x� Dene the mean
�x �� E �x�� the covariance Vx �� E ��x� �x��x� �x�

T �� and so on �����

The problem at hand is equivalent to nding a mapping from H�WFS measure�
ments to the actuator control so as to result in the desired system performance� A
schematic control�loop diagram corresponding to the AO system discussed in x� is
sketched in Figure ���� We have already described how a given actuator command a�t�
a�ects the residual phase error ���t� and the feedback H�WFS slope measurement
�s�t�� The gray region in Figure ��� is meant to highlight the reconstructor problem
of interest� Extensive research e�orts are still ongoing in this direction ���� �	��

The spatial variations induced by the atmosphere in the optical path length be�
tween the object and telescope are generally recognized as the physical origin of the
aberration� The primary function of deformable mirrors is to mechanically adjust the
optical path length so as to partially compensate for this aberration before light is
focused into an image� Therefore� it seems intuitive that the change a�t� should be
�proportional� �via the transformation H� to the residual phase error ���t�� However�
in most AO systems the residual phase error ���t� is not available directly� either be�

	



cause that such a quantity is not measurable from an image plane detector or because
that its relationship to the image is highly nonlinear and cannot presently be inverted
in real time� Indeed� the only actual measurement that is available in real time is
�s�t�� In fact� because of the delay needed to read out the H�WFS detectors� even
the value of �s�t� itself is an integrated measurement of the average of the turbulence
over the time interval �t� �t

�
� t� �t

�
� where �t is the time between successive H�WFS

measurements� For the purpose of deriving the deformable mirror actuator command
from ���t� in real time� it becomes necessary to e�ectively estimate ���t� from �s�t�
based on the model ������

We rst present a classical result that plays a fundamental role throughout the
discussion� The proof can be found in ���� ���

Theorem ���� Suppose that the observation z is related to two uncorrelated ran�
dom vectors � and � by the linear form

z � B� � �������

Assume that �� � 	� Then the vector

�� � �� � A�z � B���������

where
A ��

h
BTV ��

� B � V ��
�

i��
BTV ��

� ������

is the best unbiased� linear minimum variance estimate of � in the sense that E �k����k���
is minimized�

The obvious advantage of the above estimator �� is that a full probabilistic descrip�
tion such as the distribution function for � or � is not required� Only the rst and
second statistical moments of � and � are needed� Knowledge about these moments
often can be gathered from enough experimental samples� The disadvantage of this
approach is that� in practice� it is fairly di�cult to evaluate the inverses involved in
the closed form ����� of the reconstructor matrix A�

The following result is an alternative way to evaluate the reconstructor A� In
particular� it avoids information of moments about � and allows us to estimate the
matrix A adaptively� with the arrival of any additional measurements�

Corollary ���� Under the same assumption as in Theorem ���� the unbiased�
linear minimum variance estimator �� given in ����� can be computed equivalently from

�� � �� � E ��� � ����z � �z�
T �
�
E ��z � �z��z � �z�

T �
���

�z � �z�������

Proof� It is easy to see that

E ��� � ����z � �z�
T � � E ��� � �����B�� � ��� � ��T �

� V�B
T





and that

E ��z � �z��z � �z�
T � � E ��B�� � ��� � ���B�� � ��� � ��T �

� BV�V
T
� B

T � V��

The matrix identity

V�B
T
�
BV�V

T
� B

T � V�
���

�
h
BTV ��

� B � V ��
�

i��
BTV ��

�

is easily established by postmultiplying by BV�V
T
� B

T � V� and premultiplying by

BTV ��
� B � V ��

� �
If it is known a priori that the variables involved are Gaussian� then the density

functions are completely determined by the information of the rst two moments� In
this case� the following theorem o�ers another interesting interpretation �����

Theorem ���� Suppose the variables � and � in ����� are Gaussian� Then the
linear minimum variance estimator �� de�ned in ����� is the optimum when compared
with any other linear or nonlinear estimators of �� Furthermore�

��jz � ��������

V�jz �
h
BTV ��

� B � V ��
�

i��
����
�

Thus the estimator �� maximizes the likelihood function p��jz�� i�e�� the conditional
density function of � for observation z�

In the context of optical imaging� the random quantities involved often are Gaus�
sian variables� The minimum variance estimator given by Theorem ��� therefore o�ers
considerable tractability for wave front reconstructor problems� We now describe sev�
eral possible approaches to the reconstructor problem�

Estimator �� In the open�loop AO system� shown in Figure ���� where the
received s�t� is rst measured in its uncorrected state� an estimate of ��t� can be
computed from wave front slope information s�t� based on the model ������ From
Theorem ���� the minimum variance estimator of � at a xed time t is given by

�� � �� � A�s�W��������

with
A ��

h
W TV ��

� W � V ��
�

i��
W TV ��

� ������

This is the ideal situation when the open�loop measurement s is available and when
the stochastic information on the rst two moments of � and � is known� Once the
turbulence�induced wave front is estimated� the required corrections can then be com�
puted and fed to the wave front compensation device� Obviously� the time required
for the measurement and correction process must be less than the time change of the
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wave front� Also� this �one�shot� signal process requires that the correction loop be
calibrated accurately� otherwise� any error in these components will show up directly
in the optical output �����

In a closed�loop environment� one possible scenario is that if simultaneous mea�
surements �s� ��� and a are all available� then the open�loop information might be
computed in principle from� for example� relationships such as ����� and ������ We
may then proceed using ����� to retrieve information about �� However� one should be
cautious that� since G� H� and a�t� are only known approximately� there might exist
some long�term drifts and biases in the system� Some schemes more sophisticated than
merely using ����� or ����� should be used instead� as we shall begin to describe below�

Estimator �� As mentioned earlier� the residual phase error ���t� is generally
not available in real time� In a closed�loop environment using the H�WFS model� the
relationship ����� can be used in a similar way as Estimator � to estimate ���t� from
�s�t�� i�e��

��� � ��� � A��s�W����������

where

A ��
h
W TV ��

� W � V ��
��

i��
W TV ��

� �����	�

provided ��� and V�� are known�

In practice� the covariance matrices needed in ����	� are not known a priori �
� �� ���
The dimensionality of observable data ranging from hundreds to thousands also makes
it impractical to compute A using its closed form ����	�� Thus the challenge is to
compute the reconstructor A in real time using measured data�
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One possible approach is to employ recursive least squares techniques to estimate
A� The following formulation was suggested to us by Ellerbroek ���� A similar esti�
mation can be established for the open�loop calculation required in ������ In order to
a�ord the possibility of following the statistical variations of the observable data in a
nonstationary environment such as the atmosphere� we dene ensemble averages over
the measurements by

��n � ��n�� � 	���n ���n����������

�sn � �sn�� � 	��sn ��sn����������

where 	 � �	� �� plays the role of the so called forgetting factor ����� We also dene
ensemble covariance and ensemble variance matrices� respectively� by

Bn � ��� 	�
h
	���n ���n�����sn ��sn���

T �Bn��

i
�������

Cn � ��� 	�
h
	��sn ��sn�����sn ��sn���

T � Cn��

i
�������

In the case of a stationary environment� we have the following results� The proofs
are straightforward with tedious algebraic manipulation�

Theorem ���� Suppose f�sjg and f��jg are random samples� respectively� from
some stationary distributions for �s and ��� Then

E ���n� � ����

E ��sn� � ��s�

lim
n��

V
��n

�
	

�� 	
V���

lim
n��

V
�sn

�
	

�� 	
V�s�

i�e�� the ensemble averages ��n and �sn are unbiased estimates of �� and �s� but
carry a considerable size of variances even as n goes to in�nity�

Theorem ���� Under the same assumption as in Theorem ��	� the expected value
of ensemble covariance matrix of �� and �s converges� i�e��

lim
n��

E �Bn� �
���� 	�

�� 	
E ����� ������s� ��s�

T ��������

Theorem ���� Under the same assumption as in Theorem ��	� the expected value
of ensemble variance matrix of �s converges� i�e��

lim
n��

E �Cn� �
���� 	��

��� 	��
E ���s� ��s���s� ��s�

T ������
�
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Theorems ���� ��
 together with Corollary ��� imply that� in a stationary environ�
ment� the reconstructor matrix A given in ����	� is given by

A �
�
�� �	

�� 	

�
lim
n��

E �Bn��E �Cn��
���������

This relationship suggests that it might be reasonable to approximate the reconstructor
matrix A from the product BnC

��
n � The point to make is that the rank�one update

of Cn dened in ������ makes it possible to employ the Sherman�Morrison formula to
facilitate the computation of its inverse�

Estimator �� It is sometimes reasonable to assume that the elements in the noise
vector � are independent� Thus assuming V� � 
�I� we reduce ����� to

A � �W TW � 
�V ��
�� �

��W T �������

This approach corresponds to some of the earliest techniques for the reconstructor
problem� i�e�� the reconstructor matrix A is essentially reduced to the Moore�Penrose
generalized inverse W y of W � Here� the residual phase error is estimated from

��� � �W TW ���W�s�������

the solution to the least squares problem where k�s � W��k� is minimized� From
������ we see that ������ is essentially valid when the noise variance 
�I decreases to
zero� i�e�� no noise� or when no a priori information about the variable �� is known�
i�e�� V ��

�� � 	�
Estimator �� Suppose we want to estimate the residual phase error using an

equation of the form
��� � E�s�����	�

for some reconstructor matrix E� For the estimate to remain unbiased� it is necessary
to require

EW � I�������

Let A stand for the vector space of actuator commands� S stand for the vector
space of H�WFS slope measurements� and � stand for the vector space of phase pro�
�les� The diagram shown in Figure ��� claries the relationship between the various
transformations involved� Recall that we already have the relationship WH � G� It
follows that

EG � H�������

It is known that WW y is an orthogonal projection operator onto the range space
of W � Dene

�s � �I �WW y��s�������

�� � ���W y�s�������

��
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Then �smay be interpreted as the orthogonal component of �s in the direction perpen�
dicular to the range space of W � Note also that �� is precisely the di�erence between
�� and its nominal least squares approximation ��� given by ������ in Estimator �� It
is easy to see from the model ����� that the relationship

�s � W��� �������

holds between �s and ��� Therefore� using a recursive least squares procedure similar
to that described in Estimator �� we can compute a reconstructor matrix E��

E� � E �������s�T �
�
E ���s���s�T �

���
�����
�

The theory asserts that the quantity

� �� � E��s������

is the best� possibly biased� linear minimum variance estimate of �� in the sense that

E �kE��s� ��k���������

is minimized ����� Now dene

E ��W y � E��I �WW y��������

It is clear that condition ������ is satised� Furthermore�

��� E�s � ���
�
W y � E��I �WW y�

�
�s

� ����W y�s�� E��I �WW y��s

� ��� E��s�����	�

��



From ������ we see that with the reconstructor E dened in ������� the quantity

E �k��� E�sk���������

is minimized� This approach is signicant in reducing the cost of computing E� and
still maintaining an unbiased� linear minimum variance estimator for ��� This is a
slight modication of the approach due to Ellerbroek and Rhoadarmer ����

�� Actuator Control� In the preceding section we discussed several ways to es�
timate ���t� �or ��t� in an open�loop environment�� Suppose an estimate to this
quantity ���t� is available� The question now is how this estimate should be utilized
to obtain the actuator command vector a�t�� To measure the performance of the esti�
mator� we assume that the vector space � of phase proles is a Hilbert space with the
weighted inner product

hf� gi �� fT�g�����

where � is a symmetric and positive denite weighting matrix� In this section� we
address several possible strategies for this critical control issue�

Control �� The ultimate goal of DM control is to minimize the residual phase
error ���t�� Assume rst that we know the wave front phase ��t�� Then the most
intuitive control computation based on the model ����� would be

a�t� �� �HT�H���HT���t�������

which minimizes h�����i as an actuator command�
Control �� In an open�loop environment where noise is present in the measure�

ment ��t�� one can consider using either the estimator ���t� dened in ����� to congure
the DM� or computing the control command a�t� directly based on the WFS slope
measurement s�t�� The former approach is similar to the closed�loop control which will
be discussed later� We explore the latter idea as follows�

The problem is to compute a reconstructor matrix M to formulate an actuator
command vector in the form

a�t� � Ms�t�������

See Figure ��� for the role ofM � In some simple models� it might be feasible to consider
using the least square solution

a�t� �� �GTG���GT s�t������

that minimizes k�sk�� as an actuator command� More generally� however� it is desired
to issue a command a�t� so that the residual phase error E �h���t�����t�i� is minimized�
Observe that


��M� �� E �h��HMs� ��HMsi�

� E �h�� �i�� �hHT�E ��sT ��MiF � hME �ssT �MT � HT�HiF�����

��



where we have used h�� �iF to denote the Frobenius inner product for matrices� It is
easy to see that the gradient of 
��M� is given by

r
��M� � ��HT�E ��sT � � �HT�H�ME �ssT �����
�

It follows that the optimal command vector a�t� is given by

a�t� �
�
HT�H

��� �
HT�E ��sT �

� �
E �ssT �

���
s�t�������

Obviously� to implement the above actuator control system requires detailed knowl�
edge of statistics for both ��t� and s�t�� This could prove to be a major drawback in
practice�

Control �� In a closed�loop environment� �� represents the residual error after
the correction by the current DM command� which we denote by ac� To improve the
image� we expect that the new DM command a� should help to reduce the residual
error� Suppose that the phase prole ��t� has been stationary� then ideally we would
like have Ha� � � and hence

H�a � �������

where �a � a� � ac� This motivates us to consider the problem of minimizing the
quantity hH�a����H�a���i� If we have perfect knowledge of ��� then the new
command is given by

a� � ac � �HT�H���HT���������

This formulation is analogous to ������ One must realize� however� that in a closed�loop
system the measured wave front slope is �s�t� and that �� is generally not available�
Even so� we shall see below that ����� provides important insights into how the actuator
command a�t� should be updated�

Control �� Thus far� we have assumed that the actuator control system would
respond instantaneously to the the WFS slope measurements s�t�� In reality� there
is a nite temporal delay due to the servo control loop� including� for example� time
needed to read out the WFS information and to process the wave front data� Any time
delay between the measurement and correction of a wave front disturbance results in
a temporal error� Thus� when applying the next actuator command� one should also
somehow try to compensate the e�ects of time delays� This is done in principle by
predicting what the wave front structure will be at the time it is compensated� Since
the correlation of atmospherically distorted wave fronts decays with time� one simple
way of prediction is to use the current value of the wave front� with a decay factor�
as the best estimate of the next sample� In AO systems� this idea is implemented
using a temporal integrator or low�pass lter� We rst explore the temporal integrator
approach for a closed�loop system�

Recall that in a closed�loop system �� is generally not available� Realizing that
the change of the DM command should still maintain a relationship similar to ������

��



we assume that the DM actuator command a�t� follows the control law

da

dt
� k�� � kM�s�Ga�����	�

where M is a constant matrix and k is a constant scalar� The di�erential equation
is meant to serve as a servo�loop compensator because a�t� is �ltered� before it is
applied to the deformable mirror �
�� To be physically feasible� one has to assume that
all eigenvalues of the matrix product MG have positive real part� See Figure ��� again
for the role of M � It follows that the steady�state solution is given by

a�t� �
Z �

�

e�kMG�kMs�t� �� d��������

In �
�� the linear constraint
MG � I������

was imposed� In this case� we obtain

a�t� �My�t��������

where

y�t� ��
Z �

�

e�k�ks�t� �� d�������

can be interpreted as the temporally ltered version of the slope measurements s�t��
The model ������ is exactly in the same format as ����� with y�t� replacing s�t�� except
that in ������M must satisfy the constraint ������� Upon applying Lagrange multiplier
techniques� it can be shown that� subject to the servo�loop compensator ����	�� the
optimal command a�t� that minimizes E �h��Ha� ��Hai� is given by

a�t� � �R��BS�� � �I �R��AS��G��GTSG���GTS���y�t�������

where

R �� HT�H�����
�

B �� HT�E ��yT ��������

S �� E �yyT ��������

Although the matrix

M � R��BS�� � �I � R��AS��G��GTSG���GTS��

given in ������ is optimal� it is not necessarily practical for computation because of the
inverses involved� One simple alternative� while still satisfying the constraint �������
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Fig� ���� Time line for a ��cycle delay AO system

is to use model ����� where the slope measurement s�t� is replaced by the temporally
ltered slope measurement y�t�� i�e� �����

a�t� � �GTG���GTy�t��������

The performance of this least squares solution that minimizes ky�Gak�� for a temporally
ltered slope measurement y�t� is yet to be evaluated�

Control �� Because of the latency problem in AO systems� one must deal with the
predicament of determining how to adjust the current actuator commands to correct
the future phase prole � which is not known at present� To illustrate the idea� we
consider the case when there is a ��cycle delay�

Let �t denote the time between successive WFS measurements �and also the time
between successive adjustments to the DM actuator commands�� Assume the AO
system is operating in the following sequence of events� The photons which measure
�s�t� are actually integrated on the WFS system over the interval �t�	���t� t�	���t��
The WFS information is then read out as slowly as possible to minimize the detector
read noise over the interval �t� 	���t� t� ����t�� The calculation of estimating ���t�
from �s�t� begins as soon as the rst pixels are digitized shortly after t � 	���t� but
cannot be completed until the entire information has been read out just before t�����t�
At that point the command a�t � ��t� is computed� sent to the DM� and remains in
e�ect until before t � ����t� The time line for these series of events is depicted in
Figure ����

The new command a�t � ��t� is usually computed by an autoregressive moving
average �ARMA� process

a�t� ��t� ��
pX

k��

cka�t� ��� k��t� �
qX

j��

bjMj�s�t� j�t������	�

where the coe�cients are derived to lter out some of the noise in the WFS measure�
ments and to improve the stability of the control loop in the presence of latency and
modeling errors� At this point� the computation of a�t � ��t� becomes a classical
single�input� single�out control problem�

�	



surface positions n � �
number of actuators m � �
number of subapertures � � �
size of random samples z � ��		
H � rand�n�m�
W � rand��� n�
G � WH

L� � rand�n� n�
L� � diag�rand��� ���
�� � zeros�n� ��
�� � zeros��� ��

Table ���

Parameters used in simulation

It is interesting to note that the simplest lter� for example� is

a�t� ��t� � a�t��t� � b�M��s�t��������

that uses the command a�t��t�� which was computed using information available just
before t� 	���t� as well as the most currently available s�t�� Note that ������ is quite
similar to ������ Our speculation in ����� appears to indicate that this is a reasonable
approach�

�� Numerical Simulation� Thus far we have presented a simple framework re�
lating the main components in a general AO system� We have also described various
models for estimating the wavefront proles and for issuing the DM actuator com�
mands� In this section� we want to demonstrate numerically how an AO system would
behave using these models� We do not intend to give a comprehensive performance
analysis� Our goal is simply to illustrate the formal mathematics behind these ideas�
Therefore only Monte Carlo simulation of some small size problems is presented� In
reality� the dimensions of authentic data are in hundreds�

For simulation purposes� we assume that both ��t� and ��t� are stochastically
independent random variables with normal distributions� The parameters used for our
simulation are listed in Table ��� where� for convenience� we use the MATLAB syntax
rand�n�m� to denote an n � m matrix with random entries chosen from a uniform
distribution on the interval �	� ��� Likewise� randn denotes a normally distributed
random variable with mean zero and variance one in the sequel� Dene

� � �� � ones��� z� � L� � randn�n� z��

where � denotes standard matrix to matrix multiplication� Then we obtain z random
samples for the multivariate normally distributed wavefront phase prole � with mean

�



�� and covariance matrix V� � L�L
T
� � In a similar way� the WFS measurement noises

are simulated by
� � �� � ones��� z� � L� � randn��� z��

We remark that the covariance matrices in our simulation are derived from randomly
generated L� and L�� In realistic AO evaluation� the covariacne matrices can be com�
puted based on the turbulence models� See� for example� �
� ��� ���� Dene s�t�
according to model ������ It is easy to see that s�t� enjoys a multivariate normal
distribution with

�s � W�� � ���

Vs � WV�W
T � V��

We rst experiment with the estimators discussed in x�� To simulate the closed�
loop environment� we assume that the conguration a�t� of the DM actuator command
at present time is a�t� � randn�m� z�� i�e�� we assume each of them actuators is stochas�
tically independent and enjoys a normal distribution� The closed�loop simulation data
���t� and �s�t� are then generated by using ����� and ������ respectively� The results
of the various estimators discussed in Section � are plotted component by component
in Figure ���� For example� we compare the distribution of the minimum variance
estimator �� of � by using ����� with the original samples of � at the upper�left corner
of Figure ���� Likewise� the minimum variance estimator ��� of �� by using ����� is
compared with the original samples of �� at the upper�right corner of Figure ���� The
least squares estimator of �� using ������ and the estimator using ����	� are compared
with ��� respectively� at the lower graphs in Figure ���� We see from repeated random
simulations that all estimators proposed in this paper predict the original distribution
of � or �� reasonably well in the multivariate normally distributed case�

Next� we experiment with the actuator controls discussed in x�� Assume that we
have perfect knowledge of �� Then the control a � Hy� given by equation ����� should
produce a minimum residual phase error� Using this ideal case as the basis� we compare
in Figure ��� how other choices of control strategy will a�ect the resulting ��� For
each actuator command a� we plot the distributions of all n components of the resulting
�� in the same frame� Note that these components are statistically correlated� One
should notice from these graphs that while the control equation ����� minimizes k�sk��
it does not necessarily produce a good ��� Notice also that the control equation �����
should produce the smallest E �h���t�����t�i� among all possible controls in the form
of ������ On the other hand� the control equation ����� corrects �� almost to the same
e�ect as the ideal control equation ������

Finally� to simulate the control with a ��cycle delay� we assume that the distribution
of � stays stationary throughout the time interval when the iterations take place� We
use estimator ������ as the reconstructor matrix for ��� Together with ������ the matrix
M� in ������ becomes M� � HyW y� For simulation purpose� we set b� � 	�
� Reported

��
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Fig� ���� Estimating phase pro�les from WFS slopes

in Figure ��� is the dynamical behavior of means and variances of all n components
of �� when the ��cycle control ������ is used� To start out the iteration� two initial
actuator commands must be given� We purposefully make bad initial guesses� It is
encouraging to see that �� is eventually corrected to have mean approximately zero
with constant �and smaller� variance� Note that because components of � are internally
correlated to begin with� one should not expect that all components of the corrected
�� will have small variance simultaneously� The e�ect of the �	�th iteration of this
delay control on �� is plotted at the bottom in Figure ��� for comparison with other
types of controls�

�� Concluding Remarks� The randomness and time evolution of the atmo�
spheric inhomogeneities make imaging through turbulence a di�cult and challenging
problem� Adaptive optics techniques a�ord a mechanical means of sensing and correct�
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Fig� ���� E�ects on �� with di�erent controls

ing for turbulence e�ects as they occur� A simple mathematical framework connecting
the major components of an AO system is outlined in this paper� From this framework�
we set forth essential concepts of adaptive optics in terms of mathematical expressions�
The discussion presented here integrates disparate viewpoints� notation� and analysis
techniques� In particular� we describe the derivation of phase reconstruction matrices
based on di�erent types of objective criteria� It appears from repeated numerical sim�
ulations that all estimators proposed in this paper predict the original distribution of
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Fig� ���� Convergence of �� with ��cycle delay control ������

� or �� reasonably well� at least in the multivariate normally distributed case� Cost
e�ectiveness� not addressed in this paper� might become another important factor to
be considered in real AO systems� On the other hand� under the situation where only
closed�loop WFS information is available� the delay control scheme ����	� appears to
be able to correct the residual phase error �� competitively with any other controllers�
provided coe�cients in the scheme are properly selected�
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