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Abstract. The wave front field aberrations induced by atmospheric turbulence can severely de-
grade the performance of an optical imaging system. Adaptive optics refers to the process of removing
unwanted wave front distortions in real time, i.e., before the image is formed, with the use of a phase
corrector. The basic idea in adaptive optics is to control the position of the surface of a deformable
mirror in such a way as to approximately cancel the atmospheric turbulence effects on the phase of
the incoming light wave front. A phase computation system, referred to as a reconstructor, transforms
the output of a wave front sensor into a set of drive signals that control the shape of a deformable
mirror. The control of a deformable mirror is often based on a linear wave front reconstruction algo-
rithm that is equivalent to a matrix-vector multiply. The matrix associated with the reconstruction
algorithm is called the reconstructor matrix. Since the entire process, from the acquisition of wave
front measurements to the positioning of the surface of the deformable mirror, must be performed
at speeds commensurate with the atmospheric changes, the adaptive optics control imposes several
challenging computational problems.

The goal of this paper is twofold: (i) to describe a simplified yet feasible mathematical framework
that accounts for the interactions among main components involved in an adaptive optics imaging
system, and (ii) to present several ways to estimate the reconstructor matrix based on this frame-
work. The performances of these various reconstruction techniques are illustrated using some simple
computer simulations.

1. Introduction. Imaging through turbulence is a challenging task that has signif-
icant impacts on many important applications in defense, engineering and science. The
presence of atmospheric turbulence, for example, has especially frustrated astronomers.
In the absence of any correction to the turbulence, no design or optical quantity of a
telescope can improve the degraded image. Atmospheric turbulence exists by simple
factors such as mixing of warm and cold air layers that results in changes in air density.
This non-uniformity of air density then slows the light wave forms by different degrees
and hence distorts the image [18].

Researchers in science and engineering are actively seeking to overcome the degra-
dation of astronomical image quality caused by the effects of atmospheric turbulence
and other image degradation processes. FExciting technological breakthroughs are
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rapidly coming to the aid of scientists attempting to de-blur atmospheric images, see
the survey articles [3, 10, 16]. New optical imaging methods are now being developed
to give vital tools for ground-based, air-to-air, and air-to-ground imaging. Among
these, one interesting approach is to perform turbulence compensation using mechan-
ical means, now generally referred to as adaptive optics (AO). A quick briefing about
the AO applications as well as current research activities in this area can be found
in a recent STAM News article [5]. Some more technical background can be found in
[6, 7,12, 19, 20] and the many references contained therein. The purpose of this paper
is to recast some of the estimation methodology used in AO under a simple, unified
mathematical framework.

In modern imaging facilities using AO technology, the improvement in optical
image quality is most often attempted in two stages: The first stage involves real-
time adaptive deformable mirror (DM) control. The idea is that at approximately the
same time when the observed image is initially formed, optical systems also detect the
distortions using either a natural guide star or a guide star artificially generated using
range-gated laser backscatter. A wave front sensor (WFS) measures the optical phase
distortions which can then be partially nullified by deforming a flexible mirror in the
imaging system. Deformable mirrors operating in a closed-loop adaptive-optics system
can partially compensate for the degradation effects of atmospheric turbulence. To be
effective, these corrections have to be performed at real-time speed.

The second stage consists of off-line post-processing steps to restore the images.
These steps involve the removal or minimization of noise or blur in an image using
a priori knowledge about the degradation phenomena. This inverse problem, usually
ill-posed and large-scaled, is generally solved by deconvolution techniques [2, 5, 18].
The study of post-processing image restoration needed for this second stage for recon-
structing and restoring optical images is itself an area full of exciting and active math-
ematical research. The progress made is broad and significant. The power of these new
techniques is very impressive. Some ongoing research subjects include regularization
techniques, total variation techniques, phase diversity techniques, blind deconvolution
methods, and many other articles presented in this conference.

The work in this paper concerns mainly the AO reconstructor problem involved
in the first stage. The problem includes the determination of an optimal reconstructor
matrix for phase reconstruction as well as a set of commands that control the surface
of a DM. For ease of explanation, we sketch the main components of a closed-loop
AO system in Figure 1.1. These include the deformable mirror, the wave front sensor,
and the actuator command computer. Light in a narrow spectral band approaching
the atmosphere from a distant light source, such as star, is usually modeled by a
plane wave. When traveling through the atmosphere that does not have a uniform
index of refraction, light waves are aberrated and no longer planar. In the closed-loop
AO system depicted in Figure 1.1, this aberrated light is first reflected from the DM.
Some of this light is focused to form an image, and some is diverted to the WFS that
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Fic. 1.1. A simplified closed-loop AO system with main components.

measures the wave front phase deformations. These WFS measurements are then fed
to the actuator command computer that maps them into real time control commands
for the DM. These control commands are used to adjust the DM actuators so as to
compensate the wave front distortions. The underlying task is to somehow translate
the atmospheric measurements to the actuator controls of the deformable mirrors. How
this translation is done depends on the criterion selected, see [6, 11]. In this paper,
several different types of linear estimators and their performances are discussed.

The basic problem in adaptive optics is thus to control the position of the surface
of a deformable mirror in such a way as to approximately cancel the atmospheric
turbulence effects on the phase of the incoming light wave front. A phase computation
system, referred to as a reconstructor, transforms the output of a wave front sensor into
a set of drive signals that control the shape of a deformable mirror. The control of a
deformable mirror is often based on a linear wave front reconstruction algorithm that is
equivalent to a matrix-vector multiply. The matrix associated with the reconstruction
algorithm is called the reconstructor matriz.

The paper is organized as follows: We begin in Section 2 with a description of
the dynamics associated with an AO system. We briefly discuss how the wave front
phase is measured in terms of wave front slope, how the actuator command corrects the
wave front phase and hence affects the wave front slope measurements, and how the
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measurements are gathered in a closed-loop AO system. The mathematics connecting
these quantities sets forth several basic relationships that play fundamental roles in
the reconstructor problem. Since wave front phase profiles normally are not available
for real time processing, we discuss in Section 3 different approaches to estimate the
wave front profile from observed wave front slope information. In Section 4, we discuss
various algorithms to update the actuator control system using currently measured
atmospheric conditions. These algorithms differ on the type of objective criterion
selected. An important issue to be considered is the availability of information required
by a particular objective criterion. If such required information is not available then
the algorithm may incur higher computational cost. Finally, in Section 5 we illustrate
and compare the performance of these various approaches via some simple computer
simulations.

Although classical image restoration has been extensively studied [1, 2, 4, 13], aero-
optics imaging through the atmosphere is a very difficult task. Some of the challenges
in imaging processing through atmospheric turbulence include [3, 10, 11, 16, 22]:

1. The real-time measurement of the atmospheric turbulence. The statistical in-
formation of the atmosphere varies on time scales of minutes and will never
be known exactly. The associated parameters therefore have to be estimated
adaptively for optimal performance.

2. The use of the atmospheric measurements to actuate the control systems of
the deformable mirrors. Since these measurements are time-varying and are
only an estimate, the degree of validity that this information can be used in
the communication among actuator, sensor, and control computer needs to be
carefully identified, managed, and evaluated.

3. The fast performance of large-scale data processing and computations. In the
first stage, the statistical information of the atmospheric turbulence needs to be
processed in real-time to alter the shape of the DM to counteract distortions.
In the post-processing stage, gigabytes of data need to be analyzed in order to
enhance the image partially corrected by the earlier AO procedure [2, 5, 18].

In this paper, we limit ourselves to mathematical and statistical models only. Readers
are referred to the excellent books by Roggemann and Welsh [18] and Hardy [11] for a
discussion on factors that contribute to the limitations that keep an AO system from
achieving its ideal performance.

2. Basic Relationships. For convenience, we shall denote the turbulence-induced
phase profile at position 7 in the telescope aperture plane, determined by the primary
mirror, at time ¢ by ¢(Z,t). Likewise, the deformable mirror command issued at time ¢
for the ith DM actuator is denoted by a;(t). The wave front slope sensor measurement
obtained from the kth subaperture of the WEFS with no correction at time ¢ is denoted
by sk(t). The goal in positioning the DM surface via commands a;(¢) is to represent an
approximate conjugate of the turbulence-induced field ¢(Z,t) so that the field reflected
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from the DM will have the aberration somewhat canceled and more closely approximate
the field when no atmosphere turbulence is present. In this section we discuss the
mathematical models representing these quantities.

The mirror surface is controlled by a number of actuators that basically push and
pull on the mirror surface to cause it to deform. Assuming that there are m actuators
and that the actuators response linearly to the commands, the DM surface can be
modeled by

m

2.1) B 1) = X ault)ri(D),

i=1
where r;(Z), called the influence function on the DM surface at position Z, denotes
the response of the i¢th actuator to a unit adjustment. Suppose we sample the DM
surface at n surface positions 7j, j = 1,...n, then the relationship between the surface
position and the actuator command can be described aS

(2.2) 3(t) = Hal(t).

In the above, the n dimensional vector ¢(t) = [¢p(), 1), ..., H(Z,,t)]" represents the
discrete corrected phase profile at time ¢. The n x m DM configuration matriz H,
whose ith column is the vector [r;(Z1),. .., r;(%,)]7, is independent of time.

The wave front sensors usually do not measure the wave front phase ¢(t) directly.
Instead, the spatial gradient of ¢(t), commonly referred to as the wave front slope, is
estimated. Without given specific details, we shall use the Hartman WFS (H-WFS) in
this discussion. Readers are referred to [18] for more details on the physical configu-
ration a H-WF'S. In brief, the H-WFS spatially segments the incident wave front with
an array of £ small regions in the telescope pupil. Each array element, referred to as a
subaperture, focuses a spot onto an array of detectors in the focal plane. The average
wave front slope associated with the kth subaperture given by

su(t) = / dTW,(Z)V (7, 1)

(2.3) S / dEVWi(7) (T, 1),

where Wy (Z) is the kth subaperture weighting function, accounts for the H-WF'S slope
measurement. Upon approximating the integral in (2.3) by some quadrature rules at
designated positions #;, j = 1,...n, together with possible measurement noises, a
linear relationship between wave front phase and the H-WFS slope measurement can
be described as

(2.4) s(t) = Wol(t) + e(t).

In the above, ¢(t) = [¢(Z1,1),..., (T, t)]T represents the discrete phase profile at
time ¢, the matrix W = [wy;] € R®™ where wy; denotes the jth quadrature weight of
the integral (2.3) at abscissa Z;, and €(t) accounts for any measurement error or noise.
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~ The corresponding H-WF'S slope measurement of the corrected wave front phase
¢(t) can be measured as follows:

st =3 (= [ W)@ ) as0)
i=1 _

2

~

Gi
Once again, upon discretization, we can write
(2.5) 5(t) = Ga(t)
where the matrix G = [G};] € R®™ must satisfy the relationship
(2.6) WH =(G.

It should be noted that the DM actuators are not capable of producing the exact wave
front phase ¢(Z,t) due to their finiteness of degrees of freedom. So § = Ga is never an
exact measurement in practice.

In a closed-loop AO system such as the one demonstrated in Figure 1.1, the wave
front that arrives at either the H-WF'S or the image plane detector is the one that
has been reflected from the DM. Thus the information obtained at the image plane
detector is actually the residual phase error

(2.7) Ag(t) == 6(t) — Halt).

That is, after the AO correction, A¢(t) is the observable instantaneous wave front
distortion at time t. Likewise, the information available at the H-WEFS is the feedback
applied to s(t) by DM actuator adjustment

(2.8) As(t) == s(t) — Ga(t).

This is the observable H-WF'S slope measurement at time ¢. Given the relationship
(2.4), it is easy to see that an identical linear relationship

(2.9) As(t) = WAQ(t) + €(t)

holds between the residual phase error A¢(t) and and the feedback H-WFS slope
measurement As(t).

3. Minimum Variance Estimator. The ultimate goal in an AO system is to
retrieve sufficient information about the turbulence-induced wave front phase ¢(t) in
order to determine the actuator command vector a(t) to control the shape of the DM.
In this section, we present four possible ways to estimate the wave front phase based
on the mathematical framework outlined in §2.
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Fi1G. 3.1. A close-loop AO control model

We are dealing with atmospheric turbulence that is usually random in nature. It is
convenient to adopt the conventional notation and terminology from statistics for the
discussion in the sequel. That is, let £[z] denote the mathematical expectation from
the underlying distribution function p(x) of a random variable x. Define the mean
pz = Elx], the covariance V, := E[(x — p,)(x — p,)"], and so on [15].

The problem at hand is equivalent to finding a mapping from H-WFS measure-
ments to the actuator control so as to result in the desired system performance. A
schematic control-loop diagram corresponding to the AO system discussed in §1 is
sketched in Figure 3.1. We have already described how a given actuator command a(t)
affects the residual phase error A¢(t) and the feedback H-WF'S slope measurement
As(t). The gray region in Figure 3.1 is meant to highlight the reconstructor problem
of interest. Extensive research efforts are still ongoing in this direction [11, 20].

The spatial variations induced by the atmosphere in the optical path length be-
tween the object and telescope are generally recognized as the physical origin of the
aberration. The primary function of deformable mirrors is to mechanically adjust the
optical path length so as to partially compensate for this aberration before light is
focused into an image. Therefore, it seems intuitive that the change a(t) should be
“proportional” (via the transformation H) to the residual phase error A¢(t). However,
in most AO systems the residual phase error A¢(t) is not available directly, either be-
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cause that such a quantity is not measurable from an image plane detector or because
that its relationship to the image is highly nonlinear and cannot presently be inverted
in real time. Indeed, the only actual measurement that is available in real time is
As(t). In fact, because of the delay needed to read out the H-WFS detectors, even
the value of As(t) itself is an integrated measurement of the average of the turbulence
over the time interval [t — %, t+ %] where At is the time between successive H-WF'S
measurements. For the purpose of deriving the deformable mirror actuator command
from A¢(t) in real time, it becomes necessary to effectively estimate Ag(t) from As(t)
based on the model (2.9).

We first present a classical result that plays a fundamental role throughout the
discussion. The proof can be found in [14, 15]

THEOREM 3.1. Suppose that the observation z is related to two uncorrelated ran-
dom vectors 3 and n by the linear form

(3.1) 2= Bf+n.

Assume that p, = 0. Then the vector

(3.2) B = pg+ A(z — Bug),
where .
(3.3) A= [B"V,'B+V;'| BTV,

is the best unbiased, linear minimum variance estimate of (5 in the sense that £[||5—3|2]
1S5 mainimaized.

The obvious advantage of the above estimator B is that a full probabilistic descrip-
tion such as the distribution function for 3 or 7 is not required. Only the first and
second statistical moments of 4 and 1 are needed. Knowledge about these moments
often can be gathered from enough experimental samples. The disadvantage of this
approach is that, in practice, it is fairly difficult to evaluate the inverses involved in
the closed form (3.3) of the reconstructor matrix A.

The following result is an alternative way to evaluate the reconstructor A. In
particular, it avoids information of moments about 1 and allows us to estimate the
matrix A adaptively, with the arrival of any additional measurements.

COROLLARY 3.2. Under the same assumption as in Theorem 3.1, the unbiased,
linear minimum variance estimator 3 given in (3.2) can be computed equivalently from

(34)  B=ps L8 - 1)z — 1) (€N — 1)z — 1)) (2 - o).

Proof. 1t is easy to see that
El(B — ps)(z — )] = E[(B — ) (B(B — pg) +n)"]
= V3B"
8



and that

Elz = ) (z = p2)"] = ENB(B = ps) +n)(B(B = pg) +n)")
= BV3V{ B" +V,,

The matrix identity
VsB" (BVVIB" +V,) " = [B"V;' B+ vy '] BTV

is easily established by postmultiplying by BVzV{ B" + V, and premultiplying by
B'VI'B+ V'O

If it is known a priori that the variables involved are Gaussian, then the density
functions are completely determined by the information of the first two moments. In
this case, the following theorem offers another interesting interpretation [15].

THEOREM 3.3. Suppose the variables 3 and n in (3.1) are Gaussian. Then the
linear minimum variance estimatorB defined in (3.2) is the optimum when compared
with any other linear or nonlinear estimators of 3. Furthermore,

—1
(3.6) Vo = [B"V, "B+ V']

Thus the estimator 3 mazimizes the likelihood function p(B|2), i.e., the conditional
density function of B for observation z.

In the context of optical imaging, the random quantities involved often are Gaus-
sian variables. The minimum variance estimator given by Theorem 3.1 therefore offers
considerable tractability for wave front reconstructor problems. We now describe sev-
eral possible approaches to the reconstructor problem:

Estimator 1. In the open-loop AO system, shown in Figure 3.2, where the
received s(t) is first measured in its uncorrected state, an estimate of ¢(t) can be
computed from wave front slope information s(¢) based on the model (2.4). From
Theorem 3.1, the minimum variance estimator of ¢ at a fixed time ¢ is given by

(3.7) ¢ = s+ A(s — W)
with .
(3.8) A= [WIVoW v W

This is the ideal situation when the open-loop measurement s is available and when
the stochastic information on the first two moments of ¢ and € is known. Once the
turbulence-induced wave front is estimated, the required corrections can then be com-
puted and fed to the wave front compensation device. Obviously, the time required
for the measurement and correction process must be less than the time change of the
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wave front. Also, this “one-shot” signal process requires that the correction loop be
calibrated accurately; otherwise, any error in these components will show up directly
in the optical output [11].

In a closed-loop environment, one possible scenario is that if simultaneous mea-
surements As, A¢, and a are all available, then the open-loop information might be
computed in principle from, for example, relationships such as (2.7) and (2.8). We
may then proceed using (3.7) to retrieve information about ¢. However, one should be
cautious that, since G, H, and a(t) are only known approximately, there might exist
some long-term drifts and biases in the system. Some schemes more sophisticated than
merely using (2.7) or (2.8) should be used instead, as we shall begin to describe below.

Estimator 2. As mentioned earlier, the residual phase error A¢(t) is generally
not available in real time. In a closed-loop environment using the H-WFS model, the

relationship (2.9) can be used in a similar way as Estimator 1 to estimate A¢(¢) from
As(t), i.e.,

(3.9) Ad = pag + A(As — Wag),
where
(3.10) A=WV W V] W

provided piag and Vay are known.

In practice, the covariance matrices needed in (3.10) are not known a priori [6, 7, 8].
The dimensionality of observable data ranging from hundreds to thousands also makes
it impractical to compute A using its closed form (3.10). Thus the challenge is to
compute the reconstructor A in real time using measured data.
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One possible approach is to employ recursive least squares techniques to estimate
A. The following formulation was suggested to us by Ellerbroek [9]. A similar esti-
mation can be established for the open-loop calculation required in (3.8). In order to
afford the possibility of following the statistical variations of the observable data in a
nonstationary environment such as the atmosphere, we define ensemble averages over
the measurements by

(311) n — ¢n—1 + a(A¢n - A—¢n—1)7
(3.12) As, = As,_1 + a(As, — As,_1),

£

where « € (0,1) plays the role of the so called forgetting factor [12]. We also define
ensemble covariance and ensemble variance matrices, respectively, by

(3.13) B, =(1-0) [a(A¢, — A, 1)(Asy — s, 1) + By,
(3.14) Co = (1= 0) [a(As, — A5, 1)(Asy = B, 1) +Cra).

In the case of a stationary environment, we have the following results. The proofs
are straightforward with tedious algebraic manipulation.

THEOREM 3.4. Suppose {As;} and {Ad;} are random samples, respectively, from
some stationary distributions for As and A¢. Then

S[A¢n] = HAg,
g[ASn] = HAs,
lim Vi = ——V,
n—0o0 Ad)n B 2_a Ad),
(6
li As, — L)
Vs, =5

i.e., the ensemble averages A¢, and As, are unbiased estimates of A¢ and As, but
carry a considerable size of variances even as n goes to infinity.

THEOREM 3.5. Under the same assumption as in Theorem 3.4, the expected value
of ensemble covariance matriz of A¢ and As converges, i.e.,

lim £[B,] = 2L e (A6 — p1a) (A5 — 1))

n—00 2 —

(3.15)

THEOREM 3.6. Under the same assumption as in Theorem 3.4, the expected value
of ensemble variance matrix of As converges, i.e.,

(3.16) lim £[c,] = 20 =)

n—oo (2 —_ a)Q

5[(AS - :U/As)(AS - /‘LAS)T]'
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Theorems 3.5, 3.6 together with Corollary 3.2 imply that, in a stationary environ-
ment, the reconstructor matrix A given in (3.10) is given by

2 —2a\ . 1

(3.17) A= ( . ) Tim £[B,](E[C]) .
This relationship suggests that it might be reasonable to approximate the reconstructor
matrix A from the product B,C,!. The point to make is that the rank-one update
of C), defined in (3.14) makes it possible to employ the Sherman-Morrison formula to
facilitate the computation of its inverse.

Estimator 3. It is sometimes reasonable to assume that the elements in the noise
vector € are independent. Thus assuming V, = 021, we reduce (3.8) to

(3.18) A=[W'W + oV |'w'.

This approach corresponds to some of the earliest techniques for the reconstructor
problem, i.e., the reconstructor matrix A is essentially reduced to the Moore-Penrose
generalized inverse W1 of W. Here, the residual phase error is estimated from

(3.19) Adp=(WTW)"'WAs,

the solution to the least squares problem where ||[As — WA®||2 is minimized. From
(3.18) we see that (3.19) is essentially valid when the noise variance 0®I decreases to
zero, i.e., no noise, or when no a priori information about the variable A¢ is known,
Le., VA}} =0.

Estimator 4. Suppose we want to estimate the residual phase error using an

equation of the form X
(3.20) A¢p = FAs,

for some reconstructor matrix F. For the estimate to remain unbiased, it is necessary
to require
(3.21) EW =1.

Let A stand for the wvector space of actuator commands, S stand for the wvector
space of H-WFES slope measurements, and ® stand for the wvector space of phase pro-
files. The diagram shown in Figure 3.3 clarifies the relationship between the various
transformations involved. Recall that we already have the relationship WH = G. It
follows that
(3.22) EG =H.

It is known that WV is an orthogonal projection operator onto the range space
of W. Define

(3.23) os = (I — WWT)As,
(3.24) 6 = A — WTAs.
12



FiG. 3.3. Diagram of mutual relationship

Then ¢s may be interpreted as the orthogonal component of As in the direction perpen-
dicular to the range space of W. Note also that d¢ is precisely the difference between
A¢ and its nominal least squares approximation AQAS given by (3.19) in Estimator 3. Tt
is easy to see from the model (2.9) that the relationship

(3.25) ds =Wip+e

holds between ds and d¢. Therefore, using a recursive least squares procedure similar
to that described in Estimator 2, we can compute a reconstructor matrix F |,

(3.26) E, = £[(60)(05)"] (£[(65)(05)71) .
The theory asserts that the quantity
(3.27) 5 = E, bs
is the best, possibly biased, linear minimum variance estimate of d¢ in the sense that
(3.28) ENIEL6s — 562
is minimized [14]. Now define
(3.29) E:=Wl4+E (I-Wwwh.
It is clear that condition (3.21) is satisfied. Furthermore,
A¢— EAs =A¢ — (W4 EL(T - W) As
= (A¢p — WTAs) — EL (I —WWTHAs
(3.30) =0¢p — E,0s.
13



From (3.28) we see that with the reconstructor E defined in (3.29), the quantity
(3.31) EllAg — EAs|l3]

is minimized. This approach is significant in reducing the cost of computing £, and
still maintaining an unbiased, linear minimum variance estimator for A¢. This is a
slight modification of the approach due to Ellerbroek and Rhoadarmer [8].

4. Actuator Control. In the preceding section we discussed several ways to es-
timate A¢(t) (or ¢(t) in an open-loop environment.) Suppose an estimate to this
quantity A¢(t) is available. The question now is how this estimate should be utilized
to obtain the actuator command vector a(t). To measure the performance of the esti-
mator, we assume that the vector space ® of phase profiles is a Hilbert space with the
weighted inner product
(4.1) (f,9) = f"Qg
where €2 is a symmetric and positive definite weighting matrix. In this section, we
address several possible strategies for this critical control issue.

Control 1. The ultimate goal of DM control is to minimize the residual phase
error A¢(t). Assume first that we know the wave front phase ¢(¢). Then the most
intuitive control computation based on the model (2.4) would be

(4.2) a(t) == (H'QH)""H"Q¢(t),

which minimizes (A¢, A¢) as an actuator command.

Control 2. In an open-loop environment where noise is present in the measure-
ment ¢(t), one can consider using either the estimator ¢(¢) defined in (3.7) to configure
the DM, or computing the control command a(t) directly based on the WES slope
measurement s(t). The former approach is similar to the closed-loop control which will
be discussed later. We explore the latter idea as follows.

The problem is to compute a reconstructor matrix M to formulate an actuator
command vector in the form

(4.3) a(t) = Ms(t).

See Figure 3.3 for the role of M. In some simple models, it might be feasible to consider
using the least square solution

(4.4) a(t) == (GTG)'GTs(t)

that minimizes ||As||3 as an actuator command. More generally, however, it is desired
to issue a command a(t) so that the residual phase error E[(A¢(t), A¢(t))] is minimized.
Observe that

o*(M) = E[{¢p — HM s, ¢ — HMs)]
El(p, #)] — 2(H"QE[ps"), M) + (ME[ss" |M", H'QH)
14
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where we have used (-, ) to denote the Frobenius inner product for matrices. It is
easy to see that the gradient of o?(M) is given by

(4.6) Vo?(M) = —2HTQE[¢s"] + (HTQH)ME[ss™].
It follows that the optimal command vector a(t) is given by
(4.7) a(t) = (H™QH) " (H"Q€[6s")) (E[ss™) " s(2).

Obviously, to implement the above actuator control system requires detailed knowl-
edge of statistics for both ¢(t) and s(t). This could prove to be a major drawback in
practice.

Control 3. In a closed-loop environment, A¢ represents the residual error after
the correction by the current DM command, which we denote by a.. To improve the
image, we expect that the new DM command ay should help to reduce the residual
error. Suppose that the phase profile ¢(¢) has been stationary, then ideally we would
like have Ha, = ¢ and hence
(4.8) HAaq = A¢

where Aa = a, — a.. This motivates us to consider the problem of minimizing the
quantity (HAa — A¢, HAa — A¢). If we have perfect knowledge of A¢, then the new
command is given by

(4.9) a; = a.+ (H'QH) "HTQA¢.

This formulation is analogous to (4.2). One must realize, however, that in a closed-loop
system the measured wave front slope is As(¢) and that A¢ is generally not available.
Even so, we shall see below that (4.9) provides important insights into how the actuator
command a(t) should be updated.

Control 4. Thus far, we have assumed that the actuator control system would
respond instantaneously to the the WFES slope measurements s(t). In reality, there
is a finite temporal delay due to the servo control loop, including, for example, time
needed to read out the WFS information and to process the wave front data. Any time
delay between the measurement and correction of a wave front disturbance results in
a temporal error. Thus, when applying the next actuator command, one should also
somehow try to compensate the effects of time delays. This is done in principle by
predicting what the wave front structure will be at the time it is compensated. Since
the correlation of atmospherically distorted wave fronts decays with time, one simple
way of prediction is to use the current value of the wave front, with a decay factor,
as the best estimate of the next sample. In AO systems, this idea is implemented
using a temporal integrator or low-pass filter. We first explore the temporal integrator
approach for a closed-loop system.

Recall that in a closed-loop system A¢ is generally not available. Realizing that
the change of the DM command should still maintain a relationship similar to (4.9),
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we assume that the DM actuator command a(t) follows the control law

(4.10) % — kAG = EM(s — Ga)

where M is a constant matrix and k£ is a constant scalar. The differential equation
is meant to serve as a servo-loop compensator because a(t) is “filtered” before it is
applied to the deformable mirror [6]. To be physically feasible, one has to assume that
all eigenvalues of the matrix product MG have positive real part. See Figure 3.3 again
for the role of M. It follows that the steady-state solution is given by

(4.11) a(t) = /0 T e M MOTEM (¢ — 1) dr.

In [6], the linear constraint
(4.12) MG =1

was imposed. In this case, we obtain

(4.13) a(t) = My(t),
where
(4.14) y(t) = /0 T e hs(t — 1) dr

can be interpreted as the temporally filtered version of the slope measurements s(t).
The model (4.13) is exactly in the same format as (4.3) with y(¢) replacing s(t), except
that in (4.13) M must satisfy the constraint (4.12). Upon applying Lagrange multiplier
techniques, it can be shown that, subject to the servo-loop compensator (4.10), the
optimal command a(t) that minimizes £[(¢p — Ha, ¢ — Ha)] is given by

(4.15) a(t) = (RT'BS™ + (I — R7'AST'G)(G" SG)'GT S~ Hy(t)
where

(4.16) R:= H"QH,

(4.17) B := HTQE[py"],

(4.18) S = Elyy"].

Although the matrix
M=R'BS'+(I-R 'S 'G)(GTSG)'GTs!

given in (4.15) is optimal, it is not necessarily practical for computation because of the
inverses involved. One simple alternative, while still satisfying the constraint (4.12),
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estimate A¢ (t)

b d A

measure A s(t) command a(t+2A t) active

Fic. 4.1. Time line for a 2-cycle delay AO system

is to use model (4.4) where the slope measurement s(¢) is replaced by the temporally
filtered slope measurement y(t), i.e. [18],

(4.19) a(t) = (GTG)"'GTy(t).

The performance of this least squares solution that minimizes ||y—Gal|3 for a temporally
filtered slope measurement y(t) is yet to be evaluated.

Control 5. Because of the latency problem in AO systems, one must deal with the
predicament of determining how to adjust the current actuator commands to correct
the future phase profile ¢ which is not known at present. To illustrate the idea, we
consider the case when there is a 2-cycle delay.

Let At denote the time between successive WFS measurements (and also the time
between successive adjustments to the DM actuator commands.) Assume the AO
system is operating in the following sequence of events: The photons which measure
As(t) are actually integrated on the WFS system over the interval [t —0.5A¢, t40.5A¢].
The WEFS information is then read out as slowly as possible to minimize the detector
read noise over the interval [t + 0.5A¢, ¢ + 1.5A¢t]. The calculation of estimating A¢(¢)
from As(t) begins as soon as the first pixels are digitized shortly after ¢ + 0.5A¢, but
cannot be completed until the entire information has been read out just before t+1.5A¢.
At that point the command a(t + 2At) is computed, sent to the DM, and remains in
effect until before ¢ + 2.5A¢. The time line for these series of events is depicted in
Figure 4.1.

The new command a(t + 2At) is usually computed by an autoregressive moving
average (ARMA) process

(4.20) a(t + 2At) == Zp: cra(t + (1 — k)At) + Xq: b M;As(t — jAL),

k=0 §=0
where the coefficients are derived to filter out some of the noise in the WFS measure-
ments and to improve the stability of the control loop in the presence of latency and
modeling errors. At this point, the computation of a(t + 2At) becomes a classical
single-input, single-out control problem.
17



surface positions n = 5)
number of actuators m = 4
number of subapertures ¢/ = 3
size of random samples z = 2500
H = rand(n,m)
W = rand(¢,n)
G = WH
L, = rand(n,n)
L. = diag(rand((,1))
e = zeros(n, 1)
[he = zeros(l, 1)
TABLE 5.1

Parameters used in simulation

It is interesting to note that the simplest filter, for example, is
(4.21) a(t + 2At) = a(t + At) + by MyAs(t),

that uses the command a(t+ At), which was computed using information available just
before ¢ + 0.5A¢t, as well as the most currently available s(t). Note that (4.21) is quite
similar to (4.9). Our speculation in (4.8) appears to indicate that this is a reasonable
approach.

5. Numerical Simulation. Thus far we have presented a simple framework re-
lating the main components in a general AO system. We have also described various
models for estimating the wavefront profiles and for issuing the DM actuator com-
mands. In this section, we want to demonstrate numerically how an AO system would
behave using these models. We do not intend to give a comprehensive performance
analysis. Our goal is simply to illustrate the formal mathematics behind these ideas.
Therefore only Monte Carlo simulation of some small size problems is presented. In
reality, the dimensions of authentic data are in hundreds.

For simulation purposes, we assume that both ¢(¢) and €(t) are stochastically
independent random variables with normal distributions. The parameters used for our
simulation are listed in Table 5.1 where, for convenience, we use the MATLAB syntax
rand(n,m) to denote an n X m matrix with random entries chosen from a uniform
distribution on the interval (0,1). Likewise, randn denotes a normally distributed
random variable with mean zero and variance one in the sequel. Define

¢ = pp * ones(1, z) + Ly * randn(n, z),

where x denotes standard matrix to matrix multiplication. Then we obtain z random
samples for the multivariate normally distributed wavefront phase profile ¢ with mean
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fty and covariance matrix Vy = L¢L£. In a similar way, the WFS measurement noises
are simulated by
€ = pe x ones(1,z) + Le x randn(¢, z).

We remark that the covariance matrices in our simulation are derived from randomly
generated Ly and L.. In realistic AO evaluation, the covariacne matrices can be com-
puted based on the turbulence models. See, for example, [6, 17, 21|. Define s(t)
according to model (2.4). It is easy to see that s(t) enjoys a multivariate normal
distribution with

ps = Wiip + fhe,
Vi =WV,WT + V..

We first experiment with the estimators discussed in §3. To simulate the closed-
loop environment, we assume that the configuration a(t) of the DM actuator command
at present time is a(t) = randn(m, z), i.e., we assume each of the m actuators is stochas-
tically independent and enjoys a normal distribution. The closed-loop simulation data
A¢(t) and As(t) are then generated by using (2.7) and (2.8), respectively. The results
of the various estimators discussed in Section 3 are plotted component by component
in Figure 5.1. For example, we compare the distribution of the minimum variance
estimator qz of ¢ by using (3.7) with the original samples of ¢ at the upper-left corner
of Figure 5.1. Likewise, the minimum variance estimator A¢ of A¢ by using (3.9) is
compared with the original samples of A¢ at the upper-right corner of Figure 5.1. The
least squares estimator of A¢ using (3.19) and the estimator using (3.20) are compared
with A¢, respectively, at the lower graphs in Figure 5.1. We see from repeated random
simulations that all estimators proposed in this paper predict the original distribution
of ¢ or A¢ reasonably well in the multivariate normally distributed case.

Next, we experiment with the actuator controls discussed in §4. Assume that we
have perfect knowledge of ¢. Then the control a = H¢ given by equation (4.2) should
produce a minimum residual phase error. Using this ideal case as the basis, we compare
in Figure 5.2 how other choices of control strategy will affect the resulting A¢. For
each actuator command a, we plot the distributions of all n components of the resulting
A¢ in the same frame. Note that these components are statistically correlated. One
should notice from these graphs that while the control equation (4.4) minimizes ||As||?,
it does not necessarily produce a good A¢. Notice also that the control equation (4.7)
should produce the smallest E[(Ap(t), Ap(t))] among all possible controls in the form
of (4.3). On the other hand, the control equation (4.9) corrects A¢ almost to the same
effect as the ideal control equation (4.2).

Finally, to simulate the control with a 2-cycle delay, we assume that the distribution
of ¢ stays stationary throughout the time interval when the iterations take place. We
use estimator (3.19) as the reconstructor matrix for A¢. Together with (4.9), the matrix
My in (4.21) becomes My = H'W. For simulation purpose, we set by = 0.6. Reported
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Distributions of each component of ¢ and its minimum-variance estimator (3.7) Distrubituion of each component of A¢ and its minimum-variance estimator (3.9)
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Fia. 5.1. Estimating phase profiles from WFS slopes

in Figure 5.3 is the dynamical behavior of means and variances of all n components
of A¢ when the 2-cycle control (4.21) is used. To start out the iteration, two initial
actuator commands must be given. We purposefully make bad initial guesses. It is
encouraging to see that A¢ is eventually corrected to have mean approximately zero
with constant (and smaller) variance. Note that because components of ¢ are internally
correlated to begin with, one should not expect that all components of the corrected
A¢ will have small variance simultaneously. The effect of the 20-th iteration of this
delay control on A¢ is plotted at the bottom in Figure 5.2 for comparison with other
types of controls.

6. Concluding Remarks. The randomness and time evolution of the atmo-
spheric inhomogeneities make imaging through turbulence a difficult and challenging
problem. Adaptive optics techniques afford a mechanical means of sensing and correct-
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Distribution of A¢ with ideal control equation (4.2)
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Fia. 5.2. Effects on A¢ with different controls

ing for turbulence effects as they occur. A simple mathematical framework connecting
the major components of an AO system is outlined in this paper. From this framework,
we set forth essential concepts of adaptive optics in terms of mathematical expressions.
The discussion presented here integrates disparate viewpoints, notation, and analysis
techniques. In particular, we describe the derivation of phase reconstruction matrices
based on different types of objective criteria. It appears from repeated numerical sim-
ulations that all estimators proposed in this paper predict the original distribution of
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Mean of A¢ through 20 Iterations with 2-cycle delay control
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FiG. 5.3. Convergence of A¢ with 2-cycle delay control (4.21)

¢ or A¢ reasonably well, at least in the multivariate normally distributed case. Cost
effectiveness, not addressed in this paper, might become another important factor to
be considered in real AO systems. On the other hand, under the situation where only
closed-loop WFS information is available, the delay control scheme (4.20) appears to
be able to correct the residual phase error A¢ competitively with any other controllers,
provided coefficients in the scheme are properly selected.
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