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Abstract. The notion of adjoint plays a fundamental role in many applications and across different fields. This note studies the notion
of adjoint when a multi-dimensional array is regarded as the representation of a linear transformation between tensor spaces. A variety of
associated concepts such as symmetry, orthogonality, best approximation of outer product factorization, and rank reduction formula are
discussed.
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1. Introduction. To convey the idea more easily, we shall concern ourselves in this paper with real-valued
tensors only. By taking into account the conjugate symmetry, generalization to complex tensors can be done
similarly. A tensor of order-k is typically represented by a k-way array

T = [τi1,...,ik ] ∈ RI1×I2×...×Ik ,

where elements ti1,...,ik are accessed via k indices. When I1 = . . . = Ik, we say that T is a square tensor. An
order-k square tensor T is said to be super-symmetric [2, 3, 5, 8] if

τi1,...,ik = τiσ(1),...,iσ(k) (1.1)

with respect to all possible permutations σ over the integers {1, . . . k}. Such a well-rounded super-symmetry,
totally immune to permutations of indices, seems to be a natural generalization of the symmetric matrices.
However, we shall argue that this straightforward structural emulation, interesting in itself and is equivalent to
homogeneous polynomials [2, Section 3], does not carry a similar meaning of a self-adjoint operator and the
associated properties.

In linear algebra, the transpose A> of a (real-valued) matrix A is precisely the matrix representation of
the adjoint of the linear transformation being represented by A. Because a matrix involves only two indices,
its adjoint operator can easily be obtained by merely swapping the order of the indices. If we think of a
multi-dimensional array as the representation of a linear transformation between tensor subspaces, how the
transposition should be addressed? The purpose of this paper is to explore the notion of adjoint of a tensor
and to understand how the many important concepts already studied in matrix theory, such as orthogonal
transformation, Gram-Schmidt process, rank reduction and so on, can be and should be generalized to multi-
dimensional arrays.

2. Tensor as a linear transformation. For convenience, the set of integers {1, . . . n} for a given n will
be abbreviated to the symbol JnK henceforth. Suppose that the set JkK is partitioned as the union of two disjoint
nonempty subsets α = {α1, . . . , αs} and β = {β1, . . . , βt}, where s + t = k. Elements in these subsets will
be used as pointers of locations throughout this paper. The reason for employing pointers is because there is
no easy way to visualize high-order tensors as matrices. Choosing various ways to partition JkK offers us a
convenient tool to dissect a high-dimensional T and exam its cross-sections from different perspectives.

An element in the tensor T will be marked as τ (α,β)
[I|J ] where I := (i1, . . . , is) and J := (j1, . . . , jt)

contain those indices at locations α and β, respectively. Each index in the arrays I and J should be within the
corresponding range of integers, e.g., i1 ∈ JIα1

K and so on. Since α and β are merely sets, any permutation
of their elements and the corresponding shuffle of indices in I and J should not alter the tensor element they
are representing. If the reference to a specific partitioning (α,β) is clear, then without causing ambiguity we
abbreviate the element as τ[I|J ]. For example, if α = {2, 4} and β = {1, 3, 5, 6} are fixed and known, then
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τ2,3,1,5,6,4 = τ[3,5|2,1,6,4]. There is no preference of α over β, so τ (α,β)
[I|J ] = τ

(β,α)
[J |I] for any fixed partitioning

JkK = α∪β. Such a symmetry with respect to the partitioning does not indicate any symmetry with respect to
the indices at all.

Given a fixed partitioning JkK = α ∪ β, we shall regard an order-k tensor T ∈ RI1×...×Ik as a "matrix
representation" of a linear operator mapping order-s tensors to order-t tensors [9]. Specifically, we identify T
with the map

Tβ : RIα1×...×Iαs → RIβ1×...×Iβt , (2.1)

where, for any A ∈ RIα1
×...×Iαs , we have

Tβ(A) := T~β A =
[
〈τ[:|J ], A〉

]
∈ RIβ1×...×Iβt . (2.2)

In the above, τ[:|J ] = τ[:|j1,...,jt] denotes the (j1, . . . , jt)-th “slice" in the β direction of the tensor T , that is, the
index j` ∈ JIβ`K occurs at the β`-th location in the array JkK for ` = 1, . . . t, whereas the notation ":" represents
a wild card at the (α1, . . . , αs) location and

〈τ[:|J ], A〉 :=

Iα1∑
i1=1

. . .

Iαs∑
is=1

τ[i1,...,is|J ]ai1,...,is (2.3)

is the Frobenius inner product generalized to multi-dimensional arrays. Indeed, (2.3) can be abbreviated as

(Tβ(A))J =
∑
I
τ[I|J ]aI , (2.4)

where the summation of I runs through appropriate ranges of the indices i1, . . . , iαs . In terms of this multi-
index notation, the tensor-to-tensor operation ~β defined in (2.2) generalizes the usual matrix-to-vector multi-
plication. At first glance, the expression (2.4) may seem awkward because in the matrix-to-vector multiplication
Ax we usually write the jth entry as (Ax)j =

∑
i ajixi. Such a distinction between rows and columns is now

replaced by the locators α and β. For instance, we may unambiguously rewrite the summation in (2.4) as

(Tβ(A))J =
∑
I
τ
(β,α)
[J |I] aI , (2.5)

which is more analogous to the classical matrix-to-vector multiplication.
When dealing with multi-dimensional arrays, it is no longer realistic to visualize them in the shapes we

prefer to make out. It might be more practical to have a unified and systematic way to store the data as a one-
dimensional array. Indeed, that is precisely how a computer stores an array in the memory. Using the Matlab
as an example, the rule of composing this 1-D array is to enumerate data column by column, each appended to
the last. More specifically, the entry τi1,...,ik of an order-k tensor T ∈ RI1×I2×...×Ik is saved at the location

(ik − 1)Ik−1Ik−2 . . . I1 + (ik−1 − 1)Ik−2 . . . I1 + ...+ (i2 − 1)I1 + i1 (2.6)

of the linear array. In the subsequent discussion, we shall comply with this rule whenever we want to fold or
reshape a tensor. For example, to emulate the usual matrix representation, it might be convenient to rearrange T
in the way that elements are read in the order [β1, . . . , βt, α1, . . . , αs]. We say that the operator Tβ is represent
by the tensor Tα

β generated by the Matlab command

T_beta_alpha = permute(T,[beta,alpha])
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where [beta,alpha] indicates the order of the subscripts to be accessed when identifying a particular ele-
ment. If elements of Tα

β are renamed as tj1,...,jt,i1,...,is for (j1, . . . , jt) ∈ JIβ1
K× . . .× JIβtK and (i1, . . . , is) ∈

JIα1
K× . . .× JIαsK, then

(Tβ(A))j1,...,jt =

Iα1∑
i1=1

. . .

Iαs∑
is=1

tj1,...,jt,i1,...,isai1,...,is , (2.7)

which is equivalent to (2.5).

3. Adjoint operator. The adjoint of Tβ should be a linear transformation

T ∗β : RIβ1×...×Iβt → RIα1
×...×Iαs (3.1)

such that the Lagrange’s identity [7]

〈Tβ(A), B〉 =
〈
A,T ∗β (B)

〉
(3.2)

is satisfied for all A ∈ RIα1×...×Iαs and B ∈ RIβ1×...×Iβt .
LEMMA 3.1. Given an order-k tensor T and a fixed partitioning JkK = α ∪ β, then

T ∗β = Tα. (3.3)

The representation of T ∗β therefore is the tensor Tβ
α .

Proof. Observe that

〈Tβ(A), B〉 =
∑
J

(∑
I
τ[I|J ]aI

)
bJ =

∑
I

(∑
J
τ[I|J ]bJ

)
aI .

It follows that

(T ∗β (B))I =
∑
J
τ[I|J ]bJ . (3.4)

Recall that τ[I|J ] = τ
(α,β)
[I|J ] = τ

(β,α)
[J |I] . By the definition of (2.2), the action in (3.4) is the same as that of Tα.

In the case k = 2 and T ∈ Rm×n, then T1 : Rn → Rm and its matrix representation is precisely T , while
T2 : Rm → Rn and is represented by T>. It is clear that T2 = T ∗1 = T>. Note that the 2-D arrays T and
T> contain the same set of data. Their structural difference is only a matter of being perceived from different
perspectives as rows and columns. Lemma 3.1 conveniently generalizes the notion of adjoint to tensors — The
"transpose" of a tensor T , viewed from the β point of view, is the very same T viewed from the α point of
view, and vice versa. For matrices, there are only two ways to orient the data, i.e., by rows or by columns. For
high-order tensors, the notion of an adjoint is (α,β) dependent.

Example 1. It might be illustrative to display these structures by an order-3 tensor, although such an
attempt to visualize higher-order tensors is infeasible (and useless). Consider the partitioning with α = {1, 2}
and β = {3}. The order-3 tensor T may be visualized as an I3 × 1 block matrix of which each block is an
I1 × I2 matrix, whereas the action ~3 is a 2-dimensional contraction defined by

T3(X) ≡


τ:,1

τ:,2

...
τ:,I3


︸ ︷︷ ︸

T

~3X = [〈τ:,j , X〉] ∈ RI3 ,
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for X ∈ RI1×I2 . The adjoint T ∗3 = T1,2 can be visualized as an I1 × I2 block matrix of which each block is
an I3 × 1 column vector with action defined by

T1,2(X) ≡


τ1,1,: τ1,2,: · · · τ1,I2,:

τ2,1,: · · · τ2,I2,:

...
...

τI1,1,: τI1,I2


︸ ︷︷ ︸

T∗

~12x = [〈τi,j,:,x〉] ∈ RI1×I2 ,

for x ∈ RI3 . Both T and T ∗ contain the same set of entries but are organized differently, depending on (α,β).
Under the context of operators, a self-adjoint tensor therefore should be such that

Tα = T ∗α . (3.5)

In turn, by Lemma 3.1, we need Tα = Tβ. It thus becomes necessary that α and β have the same cardinality,
say, s, and Iα` = Iβ` , for ` = 1, . . . , s. It follows immediately that an odd order tensor can never be self-adjoint
regardless how the partitioning is taken. Two important remarks are due. First, the notion of super-symmetry
does allow odd order tensors, so it does not agree with the conventional concept of adjoint. Second, the super-
symmetry can happen only in square tensors, but there is no such a restriction on self-adjoint tensors. For
self-adjoint tensors, the condition (3.5) requires that

〈τ (α,β)
[:|J ] , A〉 = 〈τ (β,α)

[:|J ] , A〉 (3.6)

for all order-s tensorsA ∈ RIα1×...×Iαs and all multi-indices J ∈ JIα1
K×. . .×JIαsK. Therefore, a real-valued

order-2s tensor T is "symmetric" with respect to the partitioning (β,α) if and only if

τ
(α,β)
[I|J ] = τ

(β,α)
[I|J ] = τ

(α,β)
[J |I] (3.7)

for all multi-indices I,J ∈ JIα1
K× . . .× JIαsK. Once a tensor T is permuted into Tα

β and Tβ
α , which is easy

to do computationally, we can check the symmetry by examining whether

Tα
β = Tβ

α . (3.8)

Example 2. Consider the order-4 tensor T ∈ R2×3×2×3 which we lay out as the "matrix" of 2× 3 blocks
of 2× 3 matrices depicted below,

T =


τ1111 τ1211 τ1311
τ2111 τ2211 τ2311

τ1112 τ1212 τ1312
τ2112 τ2212 τ2312

τ1113 τ1213 τ1313
τ2113 τ2213 τ2313

τ1121 τ1221 τ1321
τ2121 τ2221 τ2321

τ1122 τ1222 τ1322
τ2122 τ2222 τ2322

τ1123 τ1223 τ1323
τ2123 τ2223 τ2323

 ,

where τi,j,k,` is located at the (i, j)-th entry of the (k, `)-th block. Then, by (3.7), T is symmetric with respect
to the partitioning α = {1, 2} and β = {3, 4} if τi,j,k,` = τk,`,i,j . We pair these relationships in colors, except
that each of the six entries in black stands alone. We may rearrange the very same entries of T in the order

S= permute(T,[2,4,1,3])
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as a tensor S ∈ R3×3×2×2. Lay out S as a 2× 2 block matrix of 3× 3 blocks

S = [σi,j,k,`] =



τ1111 τ1112 τ1113
τ1211 τ1212 τ1213
τ1311 τ1312 τ1313

τ1121 τ1122 τ1123
τ1221 τ1222 τ1223
τ1321 τ1322 τ1323

τ2111 τ2112 τ2113
τ2211 τ2212 τ2213
τ2311 τ2312 τ2313

τ2121 τ2122 τ2123
τ2221 τ2222 τ2223
τ2321 τ2322 τ2323


.

It is interesting to observe that the symmetry of the tensor T implies that the flattened S shown above is a sym-
metric matrix. To further check whether S is symmetric with respect to the partitions of either ({1, 3}, {2, 4})
or ({1, 4}, {2, 3}), we really should check if σi,j,k,` = σj,i,`,k. For example, σ1312 = τ1123 = τ2311 = σ3121.
It turns out that in this case, S is still symmetric. The visual display here is deceiving and is actually useless
for high-order tensors. Our point is that the way the data are organized can affect their interpretation, so much
so that even the symmetry might have different meaning.

4. Orthogonal tensor. An orthogonal transformation is a linear transformation on a real inner product
space that preserves the inner product. With the availability of its transpose, a square matrix Q ∈ Rn×n is said
to be orthogonal if Q>Q is equal to the identity matrix In. Equivalently, the “columns" of Q are mutually
orthonormal. Many important properties follow from orthogonal transformations. A natural question to ask is
what is meant by an orthogonal tensor. Which “columns" of a tensor should be mutually orthonormal?

Without any presumption except that a partitioning (α,β) is given, we first consider the composition

RIα1
×...×Iαs Tβ−→ RIβ1×...×Iβt Tα−→ RIα1

×...×Iαs . (4.1)

It is desired that Tα(Tβ(A)) = T~α (T~β A) = A for every A ∈ RIα1
×...×Iαs . With respect to any given

multi-index I ∈ JIα1K× . . .× JIαsK, observe that

(Tα(Tβ(A)))I =
∑
J
τ[I|J ]

∑
K
τ[K|J ]aK =

∑
K

(∑
J
τ[I|J ]τ[K|J ]

)
aK. (4.2)

We therefore want ∑
J
τ[I|J ]τ[K|J ] = δIK, (4.3)

where δIK is the Kronecker delta notation applied to the multi-indices I and K at the locations indicated by α.
The relationship (4.3) is analogous to QQ> = In, except that the matrix-to-matrix multiplication should be
interpreted as the composition Tα ◦ T ∗α = Iα where Iα denotes the identity map over RIα1×...×Iαs . Also,
if we interpret the order-t subtensor τ[I|:] ∈ RIβ1×...×Iβt as the I-th row of Tα

1, then (4.3) is saying that the
rows of Tα are mutually orthonormal. Likewise, we want to see that Tβ(Tα(B)) = T~β (T~α B) = B for
every B ∈ RIβ1×...×Iβt . This relationship

(Tβ(Tα(B)))J =
∑
I
τ[I|J ]

∑
K
τ[I|K]bK =

∑
K

(∑
I
τ[I|J ]τ[I|K]

)
bK (4.4)

implies that ∑
I
τ[I|J ]τ[I|K] = δJK. (4.5)

1In view of (2.5), it is natural to interpret τ[I|:] as the I-th column of Tβ .
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The summation involved in (4.5) is equivalent to T ∗α ◦ Tα = Iβ and is the analogue of Q>Q = In. The
order-s subtensor τ[:|J ] ∈ RIα1×...×Iαs is interpreted as the J -th column of Tα.

A tensor T is said to be orthogonal with respect to the partitioning (α,β) if its representation Tα satisfies
both (4.3) and (4.5). What is interesting is that Tα need not be a square tensor to be orthogonal as we shall
demonstrate in the following example.

Example 3. Consider the setting similar to Example 1 with the partitioning α = {2, 3} and β = {1}.
Then (4.3) becomes

I1∑
j=1

τj,i2,i3τj,k2,k3 = δ(i2,i3),(k2,k3) (4.6)

which means that "columns" τ:,i2,i3 ∈ RI1 should be mutually orthonormal. There are a total of I2I3 many
such columns. Obviously, such an orthogonality is impossible if I1 < I2I3. Similarly, (4.5) becomes

I2∑
i2=1

I3∑
i3=1

τj,i2,i3τk,i2,i3 = δjk (4.7)

which means that "blocks" τi,: ∈ RI2×I3 are mutually orthonormal. If I1 > I2I3, then the number of blocks
will be greater than the dimension of the ambient space. In short, a necessary condition for both (4.6) and
(4.7) to hold simultaneously is that I1 = I2I3. The special case when I1 = I2 = n and I3 = 1 corresponds
precisely to the orthogonal matrices which form an n(n−1)

2 -dimensional manifold. For the general case when
I1 = I2I3 = n, the condition (4.6) corresponds to the phenomenon that the flatten n× n matrix

Ω := [τ:,1,1, τ:,1,2, . . . τ:,1,I3 , τ:,2,1, . . . τ:,I2,I3 ] ,

where each τ:,i2,i3 is an n-dimensional column vector, is orthogonal. Additionally, by folding each row of Ω
into an I2 × I3 matrix, then (4.7) is automatically satisfied. It is interesting to note that, in contrast to the fact
that an orthogonal matrix is always a square matrix, the order-3 tensor satisfying both (4.6) and (4.7) is not a
square tensor. The condition I1 = I2I3 is a generalization of an orthogonal matrix being square. The following
lemma asserts such an observation is true in general.

THEOREM 4.1. Given a partitioning α = {α1, . . . , αs} and β = {β1, . . . , βt}, a necessary condition for
both (4.6) and (4.7) to hold simultaneously is that

s∏
i=1

Iαi =

t∏
j=1

Iβj . (4.8)

In this case, (4.6) holds if and only if (4.7) holds.
Proof. The reason for (4.8) to hold is parallel to what we have already argued in Example 3. We shall prove

only one direction. For each I ∈ JIα1
K× . . .× JIαsK, τ[I|:] is a tensor in RIβ1×...×Iβt . For these tensors τ[I|:]

to be mutually orthonormal with respect to the Frobenius inner product, as is dictated by (4.3), it is necessary
that

∏s
i=1 Iαi ≤

∏t
j=1 Iβj . A similar argument works for the other direction.

Suppose now that (4.3) holds. Vectorize each tensor τ[I|:] into a
∏t
j=1 Iβj -dimensional column vector

according to (2.6). There are a total of
∏s
i=1 Iαi many such vectors. The matrix obtained by assembling these

vectors column-wise is a square matrix by (4.8) and is orthogonal by (4.3). As such, its rows which fold into
τ[:|J] are also mutually orthonormal.

5. QR decomposition. There is no need to reiterate the theory and the applications of the QR decompo-
sition of any given matrix. Can an order-k tensor be factorized in a similar way? What is meant by an "upper
triangular" tensor?
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6. Approximation of outer product factorization. There are many ways to define multiplication be-
tween tensors [6]. We have seen the operator type of multiplication ~β earlier in (2.2). The so called outer
product is perhaps the most fundamental operation. Give an order-m tensor F ∈ RI1×...×Im and an order-n
tensor G ∈ RJ1×...×Jn , the tensor product P = F ⊗G is an order-(m+ n) tensor defined by

pi1,...,im,j1,...,jn := fi1,...,imgj1,...,jn , (6.1)

or simply put,

pIJ = fIgJ (6.2)

where I ∈ JI1K × . . . × JImK and J ∈ JJ1K × . . . × JJnK. The outer product of two column vectors a ∈ Rm
and b ∈ Rn is the rank one matrix ab> ∈ Rm×n. The outer product for tensors can be calculated in a similar
way if F and G are "vectorized" properly. With the conversion described in (2.6), the outer product can be
calculated effectively in the following way.

% Matlab command numel(A) returns the number of elements in array A

f = reshape(F,numel(F),1);
g = reshape(G,1,numel(G));
p = f*g;
P = reshape(t,[size(F),size(G)]);

Regarding (6.2) as a factorization of P , we are curious about the converse of the outer product by. Given
an order-(m + n) tensor P ∈ RI1×...×Im×J1×...×Jn , when can it be factorized as the tensor product of two
lower order tensors F and G of fixed m and n? There might not be an easy answer. If the factorization is not
possible, then what is its best approximation as the tensor product of two lower order tensors F and G of fixed
m and n? The latter is the minimization problem

min
F∈RI1×...×Im ,G∈RJ1×...×Jn

‖P − F ⊗G‖F . (6.3)

For matrices, this is the classical problem of the best rank-1 approximation. The answer is known precisely.
The absolute minimizer is given by left and right singular vectors associated with the largest singular value.
For tensors, this is an interesting nonlinear approximation with fixed facets. We can solve it in a similar way
which we outline below.

Since m and n are specified, define c(F ) :=
∏m
i=1 Ii and c(G) :=

∏n
j=1 Jj . These are the cardinalities of

elements expected in F and G, respectively. Flatten the given P as a c(F )× c(G) matrix, denoted by flat_P .
There should be no confusion in this flattening process if we follow the rule specified in (2.6), that is, P is first
recorded as a column vector and then reshaped into a matrix. Let f ∈ Rc(F ) and g ∈ Rc(G) be the left and
right singular vectors of flat_P corresponding to the largest singular value s. Define F and G by reshaping
the columns sf and g into an order-m tensor in RI1×...×Im and an order-n tensor in RJ1×...×Jn , respectively.
In this way, the above procedure can be coded as follows.

% Given a tensor P and desirable m, n

sizeP = size(P);
sizeF = sizeP(1:m);
sizeG = sizeP(m+1:end);

totalP = prod(sizeP);
totalF = prod(sizeF);
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totalG = prod(sizeG);

flat_P = reshape(P,totalF,totalG);

[f,s,g] = svds(flat_P,1);
F = s*reshape(f,sizeF);
G = reshape(g,sizeG);

LEMMA 6.1. With F and G constructed in the way described above, F ⊗ G is the best outer production
approximation to P .

Proof. Let I = (i1, . . . , im) ∈ JI1K × . . . × JImK and J = (j1, . . . , jn) ∈ JJ1K × . . . × JJnK denote the
general multi-indices of size m and n, respectively. Then the corresponding linear indices are

i = i1 +

m−1∑
s=1

(is+1 − 1)

s∏
t=1

Is,

j = j1 +

n−1∑
µ=1

(jµ+1 − 1)

µ∏
ν=1

Jµ

respectively. The (i, j)-entry of flat_P therefore should have the linear index

` = (j − 1)c(F ) + i

=

((
j1 +

n−1∑
µ=1

(jµ+1 − 1)

µ∏
ν=1

Jµ

)
− 1

)
m∏
i=1

Ii +

(
i1 +

m−1∑
s=1

(is+1 − 1)

s∏
t=1

Is

)

=

n−1∑
µ=1

(jµ+1 − 1)

µ∏
ν=1

Jµ

s∏
t=1

Is + (j1 − 1)

s∏
t=1

Is +

m−1∑
s=1

(is+1 − 1)

s∏
t=1

Is + i1

which corresponds to the multi-index (i1, . . . , im, j1, . . . , jn). We therefore can write

‖P − F ⊗G‖2F =

(I1,...,Im)∑
I=(1,...,1)

(J1,...,Jn)∑
J=(1,...,1)

|PIJ − FIGJ |2

=

c(F )∑
i=1

c(G)∑
j=1

|(flat_P )ij − sfigj |2 = ‖flat_P − sfg>‖2F ,

whereas the last quantity is optimal by the Eckart-Young Theorem.
Question: Can this procedure be generalized to three or more factors? Indeed, if we can do it for three

factors, then we can do it consecutively and obtain the best rank-1 tensor approximation.

7. Wedderburn rank-1 reduction formula. Given an arbitrary matrix A ∈ Rm×n, suppose that x ∈ Rn
and y ∈ Rm are arbitrary vectors such that y>Ax 6= 0. The Wedderburn rank-1 reduction formula asserting
that the matrix

B := A− Axy>A

y>Ax
(7.1)

has rank exactly one less than the rank ofA plays a significant role in matrix factorization. It is demonstrated in
[1] that perhaps all known matrix factorizations can be derived from such a formula with appropriately chosen
x and y. When considering a given tensor T as a linear transformation as we have discussed earlier, what
should be the analogue of the rank reduction formula [4]?
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To answer this question, we must first clarify the meaning of a rank. There is an array of various definitions
for tensor ranks2, so much so that the nomenclature of ranks associated to different fields might have entirely
different meaning. Here we consider T as a linear transformation, so by the rank we refer to the dimension of
the range space and the Fredholm alternative theorem holds. In this context, it is certain that this number is
(α,β) dependent and is not the same as the so called tensor rank3. We first describe a specific combination of
two tensor products.

LEMMA 7.1. Give arbitrary order-m tensors F ∈ RI1×...×Im and order-n tensor G,H ∈ RJ1×...×Jn ,
then with respect to β = {1, . . .m} the identity

(F ⊗G)~β H = 〈G,H〉F (7.2)

holds.
Proof. Recall that P = F ⊗ G is an order-(m + n) tensor in RI1×...×Im×J1,×...,×Jn . Considering P as

the matrix representation of the linear transformation

Pβ : RJ1,×...,×Jn → RI1×...×Im ,

we should have

P~β H =

 J1∑
j1=1

. . .

Jn∑
jn=1

fi1,...,imgj1,...,jnhj1,...,jsn

 =

[
fI
∑
J
gJ hJ

]
. (7.3)

The summation over J is precisely the Frobenious inner product 〈G,H〉.
We claim that the Wedderburn rank one reduction formula for tensors should be written in the following

way.
LEMMA 7.2. Given an order-k tensor T ∈ RI1×I2×...×Ik , let it represent the linear transformation

Tβ : RIα1×...×Iαs → RIβ1×...×Iβt with respect to a prescribed partitioning JkK = α ∪ β. Let T> denote the
representation of the adjoint operator Tα : RIβ1×...×Iβt → RIα1×...×Iαs . Suppose thatX ∈ RIα1×...×Iαs and
Y ∈ RIβ1×...×Iβt are arbitrary tensors such that 〈T~βX,Y 〉 6= 0. Then, with respect to the same partitioning
JkK = α ∪ β, the linear transformation Sβ represented by the tensor

S := Tα
β −

(T~β X)⊗ (T>~α Y )

〈T~β X,Y 〉
. (7.4)

has rank exactly one less than the rank of Tβ.
Proof. We know that F = T~β X is in RIβ1×...×Iβt and G = T>~α Y is in RIα1

×...×Iαs . Since
X ∈ RIα1

×...×Iαs , it follows from Lemma 7.1 that Sβ(X) = S~β X = 0, showing that the operator Sβ has
one extra "vector" in its null space than Tβ.

What is interesting about (7.4) is not only about its semblance to (7.1), but also about the complexity of
multiplications when high-dimensional data are involved. For example, when starting that the order-k tensor
(T~βX)⊗ (T>~α Y ) has a null space that is orthogonal to the order-s tensor T>~α Y , we must also state the
null space is with respect to the operator ~β from RIα1

×...×Iαs to RIβ1×...×Iβt and that orthogonality is with
respect to the Frobenious inner product over RIα1

×...×Iαs .
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