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1. INTRODUCTION 

WHEN studying a nonlinear spring chain composed of finitely many mass points on a line 
subject to the influence of exponential repulsive forces, one can rewrite the associated 
Hamiltonian system after F’laschka’s transformation as the following matrix equation [4, 71, 

where 

L=[L,B]=LB-BL 

is a Jacobi matrix (with positive off-diagonal entries) and 

(1.1) 

is a skew-symmetric matrix. Equation (1.1) is known as the Toda lattice. Among many of its 
interesting properties which have been studied [2-4, 7, 111, probably the most important 
features are the isospectral property-starting with any initial value L(0) = Lo, the solution 
flow L(f) of (1.1) has the same spectrum for all r, and the global asymptotic convergence 
property-the solution flow L(t), while preserving the tridiagonal form for all t, converges to 
a diagonal matrix. 

Recently the significance of this dynamical system was further underscored by the discovery 
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of the close relation between its flow and important QR-algorithm in numerical analysis [2, 
3, 111. Roughly speaking, one step in the QR-algorithm applied to the initial matrix cxp(~+) 
gives the same matrix as the Toda flow sampled at integer times. 

The equation (1.1) has been generalized to the most extent in a previous paper [2] where 
the following initial value problem was studied. 

1 

X = [X, &(G(X))l 

X(0) = x,. 
(1.2) 

In this problem, X is a general complex-valued matrix, G(X) is the matrix-valued contour 
integral 

G(X) = +--,I G(A)((AZ -X)-l dA (1.3) 
r 

where G(z) is an analytic function defined on a domain C? containing the spectrum of X. 
r C 22 is any contour surrounding the spectrum of X, and I&( G(X)) is the unique skew- 
Hermitian matrix in the splitting of G(X) as the direct sum of an upper triangular matrix with 
real diagonal entries and a skew-Hermitian matrix. It is clear from the commutator form of 
(1.2) that the solution flow X(t) still has the isospectral property. Indeed we have proved the 
following properties in [2] which are analogous to (but more general than) results in [3. 81. 

LEMMA 1.1. The solution X(t) of (1.2) is given by 

X(r) = Q*(WoQW 

where Q(f) solves the initial value problem 

i 

Q(r) = Q(t) . (~o(WW>) 

Q(o) = I 

and Q* means the adjoint of Q. 

(1.4) 

(1.5) 

LEMMA 1.2. The matrix Q(r) in (1.5) is exactly the unitary matrix involved in the QR- 
decomposition [5. 9, 121 of the matrix eiGCxil). namely 

e’G@‘ni = Q(t)R(r) (1.6) 

where R(t) is an upper triangular matrix with real nonnegative diagonal entries. 

Furthermore, the Toda flow is related to the QR-algorithm (for general matrices) by the 
following lemma [2]. 

LEMMA 1.3. Suppose X(t) solves problem (1.2) and for 
QR-decomposition 

ec(x(k)) = Q(k)@“, 

Then 

k = 0, ‘_ 1, 22, . . . , eG(X(k)) has the 

(1.7) 

(1.8) 
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In other words, choosing G(z) = In z. we recover the classical QR-algorithm from the Toda 
flow. It is also clear that the QR-algorithm with shifts is equivalent to the choice G(z) = 
ln(z - c). 

Unfortunately, not very much is known about the global asymptotic behavior of X(f) for 
this general Toda lattice (1.2). For partial results, see e.g. [l-3,8]. The analysis apparently 
is much harder than that for (1.1). In this expository paper we shall study the dynamics of 
X(r) only under the following assumptions: 

(Al) X(0) = X0 E R”“” is diagonalizable; 
(A2) G(z) = z; 
(A3) X0 is an irreducible upper Hessenberg matrix. 
One should note that the assumption (A3) is not restrictive at all, but rather ought to be 

the way to proceed if one is really interested in numerical work because it can be shown [2] 
that the resulting X(t) is also irreducible and upper Hessenberg for all t. 

By Schur’s theorem. there exists a unitary matrix Uo such that 

X,, = U;TIJo (1.9) 

where T is an upper triangular matrix. From (1.4) it follows that 

X(f) = U*(t)TU(t) (1.10) 

with 

u(t) = uo<QW>. (1.11) 

Suppose also that the matrix T is diagonalized by P, i.e. 

T = PAP-’ 

where A = diag{&, . . , ii,}. Our major result is stated as follows. 

(1.12) 

THEOREM 1.1. If. in addition to assumptions (Al), (A2) and (A3), the matrix XO also satisfies 

(A4) all eigenvalues are real and hr > A2 > . . . > A,,,, then as t+ cc 

(1) the matrix X(t) converges to an upper triangular matrix, 
(2) the matrix L’(t) converges to the matrix obtained by orthonormalizing the columns of 

P. and 
(3) the matrix P-‘U(t) converges to an upper triangular matrix. 

The case when X0 is a Jacobi matrix (and hence a general symmetric matrix by a standard 
tridiagonalization algorithm) has been studied extensively and its asymptotic behavior is well 
known [3,8. 111. In [l] we have shown the global convergence property for normal matrices. 
All these results are special cases of our current presentation. Although part of the results in 
this paper can be obtained using standard techniques (as in [3] and [8]), we find that O.D.E. 
approaches do offer better insight into old results. 

This paper is organized as follows. Some preliminary facts are considered in Section 2. The 
most important one is a new representation of the first column vector of the transformation 
U(t). This turns out to be crucial in describing the total dynamics. In Section 3 we analyze the 
dynamics of the transformation U(r) with the aid of the results in Section 2. As will be seen, 
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the idea of invariant subspaces of a certain transformation matrix manifests the whole structure 
of the *limit set of the underlying differential system. Finally, we conclude this paper with 
a brief discussion when complex-conjugate eigenvalues appear. 

2. PRELIMINARIES 

Notice that, by (1.5) and (l.ll), U(t) solves the problem 

( 

U(f) = U(r) * l-I&(t) 

U(0) = ul). 

Let us denote the matrix U(t) in (1.11) as 

U(r) = [W(f), . . . 7 %I(91 

where u;(t) is the ith column of U(t). Then (1.10) implies 

(2.1) 

(2.2) 

xII’ x12 ’ -----xln 
\ 

x21 1 x229 \ I 

\ I 

[UI’ ] . . . ,u, x32 ’ 

0 
\‘\\ 1 \ \ \ ’ xn,n-I , 1X’ nn 

L - 

The equality 
k+l 

2 XikUi = Tuk 

IT. [u, 1 *.* ,U”]. (2.3) 

(2.4) 

obviously holds for each k = 1, . . . , n with the notation u,+r = x,+ l.n = 0. It is also true that 

Xij = (Ui, TU,) (2.5) 

for all i and j where (. , a) is the inner product in C”. 
From (2.1), (2.4) and (2.5), it is hard to see 

LEMMA 2.1. The first column ur(t) of U(r) satisfies the equation 

rir = Tu, - (Ur, Tur)ur. (2.6) 

This equation is known as the Moser’s formula and was found in [3]. Direct computation also 
shows 

LEMMA 2.2. The solution to (2.6) is given explicitly by 

where u. is the first column of UO. 

(2.7) 
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Suppose now the matrix P in (1.12) is written as 

p = [P&x, = [PI,. . .,pnl (24 

with each column vector P, being normalized. Then the ith component u,,(f) of u,(t) is given 

by 
n 

(2.9) 

where 

p-&l= [PI,. * ., Pnl’ (2.10) 

are the coordinates of uo on the basis of columns of P. 
It is really nice to have the explicit expression (2.9) for the exact solution u,(t). It turns out 

this is sufficient to determine the matrices X(t) and U(t) completely because of the following 
important inverse algorithm [9]. 

THEOREM 2.1. Suppose B is an irreducible upper Hessenberg matrix with positive subdiagonal 
elements and Q is a unitary matrix, then Q and B are uniquely determined by the first column 
of Q, provided A is given and B = Q*AQ. 

For our application, we shall replace A by T, Q by U and B by X. From (l.lO), (2.9) and 
the above theorem, we know that X(t) and U(t) are completely determined. The detailed 
analysis is presented in the next section. 

3. ASY,MPTOTIC ANALYSIS 

Primarily we shall be concerned about the case when (A4) is true. 
Then from (2.9), we know 

$I Pjk e(*‘-“)‘pk 

uil(t) = n n 

1 I 

2 v2 
,z kz* Pik e(A’-il)rpk / } 

-api, 
IPll 

as t--, cc. More precisely we shall write 

II u*(t) - f$pl = O(e@-A1)r). II 

(3.1) 

(3.2) 

For simplicity of presentation, we shall denote &pl by the same letter pl. Then by (2.5), 
IPII 

(3.3) 
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and by (2.1). 

(3.1) 

From the computational point of view, when XJ,([) is small enough, one would perform the 
obvious deflation and continue the calculation on the resulting submatrix. In this paper. 
however. we would like to show rigorously the exact dynamic behavior of X(t). From the 
equality 

Xl?Ul + ~22~12 + ~32~0 = Tu, (3.5) 

we realize that verifying that x3?(r) converges to zero is equivalent to verifying that the subspace 
{u,, ~1) spanned by u1 and ul converges to a subspace invariant under T. To achieve this, we 
define 

Ui = P-‘U, (3.6) 

foreachi=l,..., n. Then (2.4) implies 

XllUl + Xz1Uz = Au,. (3.7) 

Equivalently, on the ith component we have 

XllU,I + xz1uiz = AJJ,I. (3.8) 

It then follows for each i and j that 

(3.9) 

Thus for i. j > 2, it is true that 

!G = O(e”J.‘-‘.,“) 
Ui2 

(3.10) 

as t + x. In particular, for all i S 3 

/viz1 6 O(e(A’-i.‘)‘) (3.11) 

because v:,(r) is bounded for all t and AZ # Al. So the vector u2 has been shovvn to converge 
to a vector of the form [x,x, 0,. . ,O]’ where the x’s represent some values uhich will be 
actually determined later. From (3.6), u2(t) converges to a vector in the subspace bp.p:} 
spanned by eigenvectors p1 and p? of T, which certainly is invariant under T. Furthermore. 
since II? is orthogonal to u1 (and hence pJ, ~2 must converge to the normalized vector of 
either pz - (p1,p2)p1 or its negative. This will determine the limits of u12(t) and v22(t) (and 
hence x12(r) and x??(r)) completely. In fact, from (2.5) and (3.11), it is not hard to see that 

/x22 - AZ/ = 0(e”3-i.L’?. (3.12) 

Notice that (3.11) also implies 

_Q2 = O(e(b-;.‘)‘)~ (3.13) 
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From (3.8) and (3.4). for i 2 2 

(3.14) 

To apply induction, let us now assume that with a fixed M 5 3 we have shown for all 
k s m - 1 the following relations 

O(e (At-+) for i, j 2 k (3.15) 

vlk = O(e(hk-l-*k)f) for i > k (3.16) 

(3.17) 

k-l 

c xrku,r 
r=l = O(e’h-““‘) for j 2 k 

u,k 

(3.18) 

(3.19) 

We want to show how the same relations hold for k = m. From (2.7), we have 

Xl.m-lvl + . . , + Xm-l,~-lVm-l fXm.m-1vm = Turn-,. (3.20) 

so 
m-2 

v,, (Ai - Xm-1,m-l)Ui,m-1 - rTl xr,m-lutr 

-= 
m-2 

‘jrn (Aj -Xm-l.m-1)Vj,m-l - ,F; X~.?TI-l”/~ 

vi.m-1 _ 
(Ai -&I-l.m-I) - (~~~x~.,;,.~,v~.,-,~ 

v’.m-l 0, -.%I-l.rn-1) - (~~~x~.~-~v,~,v,.,-lj 

It follows from (3.15) and (3.18) that for i,j 2 m 

But then 

for i > m and also 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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Now for i 2 m, observe 

m-l 

c XnfPir 
r=l 

= 

xm,m-l (~,*xrmuir) 

ulm 
m-2 

(Ai - Xm-l,m-l)Ui,m-1 - Zl Xr,m -1uv 

(3.25) 

i 

m-l 

X m.m-1 ,=* XrmUir/Ui,m-l lx 

) 

= Cni -Xm-l.m-1) - (~~~~,,~-~~i,,~i,--,) 

= qe(L-dmb) 

where we have used facts (3.20), (3.18) and (3.24). The relation (3.23) shows that the subspace 
{&, * . *, u,,,} spanned by UI, . . . , u, converges to the invariant subspace (PI, . . . , pm} spanned 
by eigenvectors ~1, . . . , pm of T. Hence u, converges to the vector obtained by orthonor- 
malizing pm with respect to the limits of ad, . . . , ~,_~(t) as I+ m. By (2.5) and (3.23), it 
is not hard to show 

l&m - A,[ = O(e(*~+l-W?. (3.26) 

Thus by mathematical induction, we have established the major result of theorem 1.1. 

Remark. The above theorem can be proved alternatively from a well-known result in numerical 
analysis concerning the convergence of the QR-algorithm together with the fact of continuous 
dependence of the initial data for the system (1.2), see [2]. But what we have done above is 
the really interesting point of this paper-we obtained the asymptotic behavior of the flow 
using O.D.E. techniques. The details that we present here clearly offer certain insights into 
the dynamics involved in the old results. 

To study what can happen when complex-conjugate pairs of eigenvalues appear, we replace 

(A4) by 
(A.5) all eigenvalues are real except Al = 12 = a + bi with b # 0 and also a > A3 > . . . > A,,. 
Then we have 

[ 

elb*h e+b’m 
1 

T 

h(d - --&p--@ T..., 0 

as t- ~0 where 

B(t) = [,i lpj* eib’pl + p,2 e-ib@212}li2. 

(3.27) 

(3.28) 

It is clear that the vector ul(t) keeps rotating in the plane (pl,pz} and does not converge at 
all. If X,_J is a normal matrix, then T can be chosen to be a diagonal matrix and the following 
convergence 

can be shown to exist [l]. If X0 is a nonnormal, then it may happen that the above block 
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becomes oscillaxory instead of convergent. The simplest example can be found in [2] where 
we shorted the existence of such a periodic solution. In either case, however, by using the 
argument that led to (3.9) and (3.10), we are still able to show (3.11) and, in fact, (3.16) for 
k > 2. In other words, under assumption (A5), we may say that matrix converges essentially 
(in the sense of [lo]) to a quasi-upper triangular matrix which is the real-valued version of 
Schur’s theorem, see [6]. 
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