
1

Integer Matrix Factorization and Its
Application

Matthew M. Lin, Bo Dong, Moody T. Chu

Abstract—Matrix factorization has been of fundamental importance in modern sciences and technology. This work
investigates the notion of factorization with entries restricted to integers or binaries, , where the “integer” could
be either the regular ordinal integers or just some nominal labels. Being discrete in nature, such a factorization
or approximation cannot be accomplished by conventional techniques. Built upon a basic scheme of rank one
approximation, an approach that recursively splits (approximates) the underlying matrix into a sum of rank one
matrices with discrete entries is proposed. Various computational issues involved in this kind of factorization, which
must take into account the metric being used for measurement, are addressed. The mechanism presented in this
paper can handle multiple types of data. For application purposes, the discussion emphasizes mainly on binary-
integer factorizations. But the notion is readily generalizable with slight modifications to, for example, integer-integer
factorizations. Applications to cluster analysis and pattern discovery are demonstrated through some real-world
data. Of particular interest is the result on the ordering of rank one approximations which, in a remote sense, is
the analogy for discrete data to the ordering of singular values for continuous data. As such, a truncated low rank
factorization (for discrete data) analogous to the truncated singular value decomposition is also obtained.

Index Terms—matrix factorization, clustering, classification, pattern discovery

F

1 INTRODUCTION

MATRIX factorization has been of funda-
mental importance in modern sciences

and technology. In the past decades, theory
and numerical methods for matrix factorization
have been extensively studied. In an interest-
ing appraisal of the two purposes of matrix
factorization, Hubert, Meulman, and Heiser [1]
commented that, on one hand,

“Matrix factorization in the context of
numerical linear algebra (NLA) gener-
ally serves the purpose of rephrasing
through a series of easier subproblems
a task that may be relatively difficult to
solve in its original form.”

Thus, the factorization of a square matrix A as
the product of a lower triangular matrix L and

• Matthew M. Lin is with Department of Mathematics, North
Carolina State University, Raleigh, NC 27695-8205.
Email: mlin@ncsu.edu.
This research was supported in part by the National Science
Foundation under grant DMS-0505880.

• Bo Dong is with Department of mathematics, Dalian Univer-
sity of Technology, Dalian, Liaoning, 116024.
Email: dongbodlut@gmail.comThis work is partially supported
by Chinese Scholarship Council and DLUT(Dalian University
of Technology) under grands 3004-893327 and 3004-842321.

• Moody T. Chu is with Department of Mathematics, North
Carolina State University, Raleigh, NC 27695-8205.
Email: chu@math.ncsu.edu.
This research was supported in part by the National Sci-
ence Foundation under grants CCR-0204157 and DMS-
0505880, and NIH Roadmap for Medical Research grant 1 P20
HG003900-01.

an upper triangular matrix U , for example, “has
no real importance in and of itself other than as
a computationally convenient means for obtain-
ing a solution to the original linear system.” On
the other hand, regarding a matrix A ∈ Rm×n

as a data matrix containing numerical observa-
tions on m objects (subjects) over n attributes
(variables), or possibly B ∈ Rn×n representing,
say, the correlation between columns of A, they
made the point that

“The major purpose of a matrix fac-
torization in this context is to obtain
some form of lower-rank (and there-
fore simplified) approximation to A (or
possibly to B) for understanding the
structure of the data matrix, particu-
larly the relationship within the objects
and within the attributes, and how the
objects relate to the attributes.”

Thus, in the context of applied statis-
tics/psychometrics (AS/P), “matrix factoriza-
tions are again directed toward the issue of sim-
plicity, but now the actual components making
up a factorization are of prime concern and
not solely as a mechanism for solving another
problem.” We prefer to be able to “interpret the
matrix factorization geometrically and actually
present the results spatially through coordinates
obtained from the components of the factoriza-
tion”. In such a factorization can be achieved,
we might better understand the structure or
retrieve the information hidden in the original

2

data matrix.
There are at least three different ways to for-

mulate matrix factorization, depending on the
types of constraints imposed on the factors. The
most conventional notion is that the matrix A
is equal to the product of two or more factors.
In this case, the factorization can be considered
as the sum of rank-one matrices. Indeed, a
remarkably simple rank-one reduction formula
due to Wedderburn is able to unify several
fundamental factorization processes under one
framework. It was shown in the review paper
by Chu, Funderlic and Golub [2] that almost all
matrix decompositions known in NLA could be
obtained via this mechanism. Perhaps not noted
to the NLA community, the conception of rank
reduction, including the now well recognized
singular value decomposition, has been preva-
lent for many decades in the AS/P community.
See, for example, discussions in [3], [4], [5], [6],
[7], [8] and also the time line for the appearance
of the rank reduction results in [1]. The data
involved in this type of calculation are mostly
from the real or complex field of numbers.

There are situations in applications, including
text mining [9], [10], image articulation [11], [12],
bioinformatics [13],micro-array analysis [14] ,
cheminformatics [15], [16], air pollution research
[16], and spectral data analysis [17], where the
data to be analyzed is nonnegative. As such, the
low rank data are also required to be comprised
of nonnegative values only in order to avoid
contradicting physical realities. This demand
brings forth the notion of the so called nonneg-
ative matrix factorization (NMF). That is, for a
given nonnegative matrix A ∈ Rm×n and a fixed
integer k, we are interested in the minimization
problem [15]

min
U∈Rm×k

+ ,V ∈Rk×n
+

‖A− UV ‖F , (1)

where R+ stands for the half-arry of nonnega-
tive real numbers. Note that the equality A =
UV may never be true, but the two matrices
U, V are still termed as low rank “factors” of A
in the literature. Classical tools cannot guaran-
tee to maintain the nonnegativity. Considerable
research efforts have benn devoted to develop
special techniques for NMF. See, for example,
the multiplicative update algorithm by Lee and
Seung [11], [18], the gradient methods [19], [20],
and alternating least square methods [21], [22],
[23], [24], [16]. Additional discussions can be
found in [25], [26], [27], [28], [29], [30], and the
many references contained therein.

The two types of factorizations mentioned
above and their approaches are of distinct na-
ture. The data they intend to handle, however,

share a common feature in that they are from
a continuum domain. To motivate the discrete
type of data considered in this paper, envisage
the scenario of switch manufacturing in the
telecommunications industry [31]. Suppose that
each switch cabinet consists of n slots which
can be fitted with only one type of specified
board options. Assume that there are ti different
board types for each slot. In all, there are

∏n
i=1 ti

different models. It might be desirable to first
build a few basic models so that, corresponding
to different custom orders, we might meet a spe-
cific configuration more efficiently. The question
is how many and what basic models should
be built. One plausible approach is to “learn”
from past experiences, that is, we try to obtain
the basic model information from the matrix
of past sales. Labeling each board type in slot
by an integer (or any token) while the same
integer for different slots (columns) may refer
to different attributes, the data representing past
m customer orders form an integer matrix of
size m× n. Let it be stressed again that, in this
setting, entries in the data matrix are of discrete
values and that these values may or may not
reflect any ordinal scale. A factorization of such
a data matrix therefore must be subject to certain
specifically defined arithmetic rules, which is
the main thrust of this paper.

Without causing ambiguity, let Z denote either
the conventional set (or subset) of integers when
ordinal scale matters, or the set of all possible
tokens which are not totally preordered, for the
system under consideration. For the simplicity
of discussion, we shall assume that the entries
of the given matrix A are from the same set
Z. In practice, different columns of A may be
composed of elements from different subsets of
Z. Even the same element in Z may have differ-
ent meaning in different columns. If a compari-
son between two observations (rows) is needed,
entries at different locations in the rows might
need to be measured differently. Before we can
perform the factorization, a properly defined
metric for the row vectors, such as the metric
for the product space (of individual entries),
therefore must be in place, which then induces
a metric d to measure the “nearness” between
two matrices. With this in mind, we define our
integer matrix factorization (IMF) as follows.

(IMF) Given an integer matrix A ∈
Zm×n, an induced metric d, and a pos-
itive integer1 k < min{m,n}, find a
binary matrix U of size m× k with
mutually orthogonal columns and V ∈

1. The determination of such a rank k is itself an important
question which thus far has no satisfactory answer yet.

3

Zk×n so that the functional

f(U, V) := d(A,UV), (2)

is minimized.
Each entry aij in A denotes, in a broad sense,

the score obtained by entity i on variable j;
the value of ui`, being dichotomous, indicates
whether entity i is influenced by “factor” `; and
v`j marks the attribute of variable j to the factor
`. Take the sale record of a certain electronic
device as the matrix A, for example. Then rows
of A denote the specifications by m customers
with respect to the n different slots in the device;
rows of V represent the basis models to be
built; and the mutual exclusion of columns of
U implies that each customer order corresponds
to exactly one possible basic model. The factors
in this case represent some abstract concepts by
which the customer orders are divided into k
clusters. Clearly, this is a typical classification
problem written in factorization form. We also
see that the number k plays an important role
in the low rank approximation. In practice, we
prefer to have as few factors as possible while
keeping the objective value f(U, V) low.

In the special case when the set Z is made
of Z2 := {0, 1}, i.e., binaries, a nonorthogonal
binary decomposition by recursive partitioning
has recently been proposed in [32]. The recur-
sion continues until either the Hamming dis-
tance within a cluster is less than a preset thresh-
old or all members within a cluster have reached
homogeneity. The code PROXIMUS, written in
the C language, takes into account efficient
data structure, storage, and movement within
the system. In this article, we generalize that
method to handle integer matrices in general.

Needless, the metric d for measuring nearness
or similarity plays critical roles. We need to
carefully discern whether variables are ordinal
(totally ordered) or nominal (unordered) to the
categories. For the former, we also need to de-
cide whether the spacing between the (catego-
rial) values is the same across all levels of the
variables or not. If the values are not equally
spaced, using integers to represent these val-
ues has the advantage of numerically scaling
in the spacing disparities. The commonly used
Hamming distance or Euclidean distance can
be refined to reflect the different situations. We
limit our discussion in this paper to these two
metrics, although our concept can easily be gen-
eralized to other means of measurement.

This presentation contains several interesting
applications of IMF, but it is the details on the
computational aspects of IMF that deserve our
attention. To make our approach effectual, we
need to analyze several essential components

separately first before putting them to work in
conjunction. We thus organize this paper as fol-
lows: We begin in Section 2 with a basic scheme
that does alternating direction search for rank-
one approximation. We show that in each alter-
nating direction an optimal solution is attainable
in closed form. This scheme serves as a building
block by which we construct in Section 3 a
divide-and-conquer strategy that ultimately fac-
torize the given matrix A. The method gradually
breaks down the data matrix to submatrices in
a recursive way. Although it seems that we are
dealing with numerals, our method actually can
handle categorical variables. A suitable crite-
rion for assessing the validity of the proposed
splitting, therefore, must also be addressed. A
prototype code is sketched in Algorithm 3 to
demonstrate how these components should be
assembled together. In practice, the code needs
to be modified to reflect the different nature
of the underlying data and the metric, but the
general concept is the same. We have experi-
mented our method with quite a few real-world
data sets. We select to report only a few in
Section 4. Our numerical experiences seem to
suggest that our approach is easy to program,
converges considerably fast even with a large
data matrix, and can handle multiple types of
data.

2 BASIC RANK-ONE APPROXIMATION

Our IMF algorithm is built upon a series of
rank-one approximations. In this section we de-
scribe how such an approximation is achieved.
Suppose that, after taking into account the data
type, a metric d is already given. The general
idea for computing the rank-one approximation
is to employ the notion of alternating direction
iterations (ADI) as follows:

Algorithm 1 Rank-one approximation with gen-
eral metric d

Given matrix A ∈ Zm×n, and initial vector v ∈
Z1×n.
return Vectors u ∈ Zm×1

2 and v ∈ Z1×n that
minimize d(A,uv).
repeat

For the fixed v, find u ∈ Zm×1
2 to minimize

d(A,uv)
For the fixed u, find v ∈ Z1×n to minimize
d(A,uv)

until convergence

Obviously, the iterations can also start with an
initial vector u ∈ Zm×1

2 . Note that Algorithm 1 is
a descent method and that an optimal solution
at each step can be found since there are only

4

finitely many choices for u and v. Thus the real
issue at stake is to effectively find the minimizer
in each step. We analyze the computation with
regard to two commonly used metrics.

2.1 Approximation with Hamming metric

The Hamming distance between two arrays of the
same length is defined as the minimum number
of substitutions required to transform one array
into the other. Here, we apply the same notion to
measure the number of different entries between
two matrices.

With respect to the Hamming metric, the fol-
lowing two results show that for each given
vector v (or u), the optimal solution u (or v)
for minimizing d(A,uv) can be found in closed
form. For convenience, we introduce three op-
erators, match(x,y), zeros(x) and mode(x), to
count the number of matching elements be-
tween vectors x and y, the number of zero
entries in the vector x, and the most frequent
entry of the vector x, respectively. Also, we
adopt the notation A(i, :) for the ith row of a
matrix A.

Theorem 1: Given A ∈ Zm×n and v ∈ Z1×n,
then among all possible u ∈ Zm×1

2 the Hamming
metric d(A,uv) is minimized at u∗ whose ith
entry u∗i , i = 1, . . . ,m, is defined by

u∗i :=
{

1, if match(A(i, :),v) ≥ zeros(A(i, :)),
0, otherwise.

(3)

Proof: For any u ∈ Zm×1
2 , observe that

d(A,uv) =
m∑

i=1

d(A(i, :), uiv). (4)

Thus minimizing d(A,uv) is equivalent to min-
imizing each individual term d(A(i, :), uiv) for
i = 1, 2, · · · ,m. From the relationships that
match(A(i, :),v) = n − d(A(i, :),v) whereas
zeros(A(i, :)) = n − d(A(i, :),0), it is clear that
the choice in (3) is optimal.

Theorem 2: Given A ∈ Zm×n and u ∈ Zm×1
2

with u 6= 0, then among all v ∈ Z1×n the
Hamming metric d(A,uv) is minimized at v∗

whose jth entry v∗j , j = 1, . . . , n, is defined by

v∗j := mode(A2(:, j)), (5)

where A2 is the submatrix composed of all
A(i, :) whose corresponding ui is 1.

Proof: With permutations if necessary, we
may assume without loss of generality that

u =
[

u1

u2

]

with u1 = [0, · · · , 0]>1×s and u2 =
[1, · · · , 1]>1×(m−s). Divide A accordingly into
two parts

A =
[
A1

A2

]
with A1 ∈ Zs×n and A2 ∈ Z(m−s)×n. For any
vector v ∈ Z1×n, observe that

d(A,uv)
= d(A1,u1v) + d(A2,u2v)
= d(A1,0v) +

∑n
j=1

∑m−s
i=1 d(A2(i, j), vj),

Minimizing d(A,uv) is equivalent to minimiz-
ing

∑m−s
i=1 d(A2(i, j), vj) for each j = 1, . . . , n.

The optimal choice for vj is certainly the most
frequently occuring entry in the jth column of
A2.

It is worth noting that in both theorems above,
the optimal solutions may not be unique if there
is a tie. For instance, we may assign u∗i = 0 in-
stead of 1 when match(A(i, :),v) = zeros(A(i, :
)). It will not affect the optimal objective value
d(A,u∗v) in Theorem 1. Likewise, there will be
multiple choices for v∗j in Theorem 2 when there
are more than one most frequent entries in the
jth column of A2.

Equipped with the formulas described in The-
orems 1 and 2, the rank-one approximation with
the Hamming metric as the measurement of
nearness is now taking shape in the form of
Algorithm 2. We name this algorithm VOTE
because the choice of u (and v if A is a binary
matrix) is a matter of majority rule between the
dichotomy of zeros and matches. A function
similar to the command find in Matlab, where
ind = find(x) locates all nonzero elements of
array x and returns the linear indices of those
elements in the vector ind, proves handy in the
coding.

In the event that A is a binary matrix, we now
argue that the definition (5) for v is equivalent
to the formula (3), if the roles of u and v and
of rows and columns are interchanged, respec-
tively. More precisely, we make the following
observation whose proof is essentially the same
as that for Theorem 1.

Lemma 1: Suppose A ∈ Zm×n
2 . Given u ∈

Zm×1
2 , Then among all v ∈ Z1×n

2 the Hamming
metric d(A,uv) is minimized at v∗ whose jth
entry v∗j is given by

v∗j =
{

1, if match(A(:, j),u) ≥ zeros(A(:, j)),
0, otherwise.

(6)

Another view of the equivalence between
Theorem 2 and Lemma 1 is through the rela-

5

Algorithm 2 Rank-one factorization with Ham-
ming metric: [u,v] = VOTE(A)

Given matrix A ∈ Zm×n.
return Vectors u ∈ Zm×1

2 and v ∈ Z1×n such
that d(A,uv) is minimized.
v ← randomly selected from one row of ma-
trix A
z← numbers of zeros in A per row
repeat

vold← v
m ← numbers of matches between v and
each row of A
if mi ≥ zi then
ui ← 1

else
ui ← 0

end if
if u = 0 then

v← 1
else

ind← find(u)
vi ← mode(A(ind, i))

end if
until vold = v

tionships

match(A(:, j),u)
= match(A1(:, j),0) + match(A2(:, j),1),
zeros(A(:, j))
= zeros(A1(:, j)) + zeros(A2(:, j)),

whereas it is obviously that match(A1(:, j),0) =
zeros(A1(:, j). Thus the choice of mode(A2(:, j))
in Theorem 2 is again a majority rule between
match(A2(:, j),1) and zeros(A2(:, j)).

Based on Lemma 1, we claim that the method
VOTE applied to binary data is theoretically
equivalent to the existing code PROXIMUS which
has already been demonstrated to have a wide
range of important applications [32]. To see
the equivalence, recall that the basic rank-one
approximation in PROXIMUS is based on the
mechanism of minimizing the Euclidean dis-
tance ‖A− uv‖2F . Upon rewriting

‖A− uv‖2F = ‖A‖2F − 2u>Av> + ‖u‖22‖v‖22,

we see that the functional

f(u,v) = 2u>Av> − ‖u‖22‖v‖22 (7)

needs to be maximized. It is not difficult to
conclude (see the proof for Theorem 4) that,
given a binary vector v, the optimal entries u
must be defined by

ui :=
{

1, if 2(Av>)i − ‖v‖22 ≥ 0,
0, otherwise , (8)

whereas, given a binary vector u, the optimal
entries v is given by

vi :=
{

1, if 2(u>A)i − ‖u‖22 ≥ 0,
0, otherwise . (9)

Both (8) and (9) happen to be the rules adopted
by PROXIMUS. On the other hand, observe that

match(A(i, :),v)− zeros(A(i, :))
= {n− (v −A(i, :))(v −A(i, :))>}
−{n−A(i, :)A(i, :)>}
= −vv> + 2A(i, :)v>

= 2(Av>)i − ‖v‖22,

(10)

and
match(A(:, i),u)− zeros(A(:, i))
= {m− (u−A(:, i))>(u−A(:, i))}
−{m−A(:, i)>A(:, i)}
= −u>u + 2u>A(i, :)
= 2(u>A)i − ‖u‖22,

(11)

implying that VOTE and PROXIMUS are em-
ploying exactly the same basic rank-one ap-
proximation in each sweep when dealing with
binary data. However, note that our method
is computationally simpler than PROXIMUS be-
cause VOTE avoids matrix-vector multiplica-
tions needed in (8) and (9). Furthermore, our
approach VOTE can handle more general poly-
chotomous data.

2.2 Approximation with Euclidean metric
In many applications, it is essential to differ-
entiate the true discrepancies among variable
values. That is, the values that a variable takes
signifies levels of priority, weight, or worth. If
the data are somehow represented in the Eu-
clidean space, then the real distance between
two points is meaningful and makes a difference
in the interpretation. Under such a setting, we
discuss in this section the rank-one approxima-
tion when the Euclidean metric is used as the
measurement for nearness. For demonstrate, Z
denotes all regular integers in this section.

Given v, even if it is not binary, the definition
(8) for u remains to be the optimizer. For com-
pletion, we restate the following theorem, but
provide a slightly different proof.

Theorem 3: Given A ∈ Zm×n and v ∈ Z1×n,
then among all u ∈ Zm×1

2 the minimal value of
‖A − uv‖2F is attained at u∗ whose ith entry is
defined by

ui =
{

1, if 2(Av>)i − ‖v‖22 ≥ 0,
0, otherwise. (12)

Proof: Since

‖A− uv‖2F =
m∑

i=1

‖A(i, :)− uiv‖22,

6

it is clear that in order to minimize each individ-
ual term in the summation we should choose

ui :=
{

1, if ‖A(i, :)‖22 ≥ ‖A(i, :)− v‖22,
0, otherwise ,

which is equivalent to (12).
Let round(x) denote the operator that rounds

every entry of x to its nearest integer. Given u,
the next result nicely generalizes the selection
criterion in PROXIMUS for general integer vector
v.

Theorem 4: Given A ∈ Zm×n and u ∈ Zm×1
2

with u 6= 0, then among all v ∈ Z1×n, the
minimal value of ‖A − uv‖2F is attained at v∗

defined by

v∗ := round
(

u>A
‖u‖2

)
. (13)

Proof: We rewrite (7) as

2u>Av> − ‖u‖22‖v‖22
=
∑

i

[
−‖u‖22

(
vi − (u>A)i

‖u‖2

)2

+
(

(u>A)i

‖u‖2

)2
]
.

(14)

It is now clear that the only option for v to
minimize ‖A−uv‖2F while keeping v an integer
vector is the definition (13).

It takes only some slight modifications in the
code VOTE to reflect the Euclidean metric, so we
shall skip the particulars here. Also, in the event
that Z is restricted to only a subset of integers,
the operator round might return a value outside
Z. Instead, we can use (14) to define a proper
value vi ∈ Z that is nearest to (u>A)i

‖u‖2 .
We conclude this section with two remarks.

Firstly, in the event that u = 0, we can simply
assign v arbitrarily, say, v = 1, without affecting
the iteration. Secondly and most importantly,
the reason we insist on restricting u to Zm×1

2

is only for the purpose of establishing mutu-
ally exclusive clusters, as we shall see in the
next section. Our emphasis in this paper is on
the binary-integer matrix factorization. How-
ever, the proof of Theorem 4 certainly can be
applied to u if u is to be an integer vector.
In this case, the optimal integer vector u for
minimizing ‖A − uv‖2F with a fixed v is given
by

u∗ := round
(
Av>

‖v‖2

)
. (15)

If we continue building a sequence of integer
rank-one approximations to A in the same way
as the IMF algorithm to be described in the next
section, the term “integer matrix factorization”
is then justified.

3 ALGORITHMS OF IMF
We now describe the procedure for constructing
the IMF of a given matrix A. The main idea
is to compose A via a sequence of rank-one
approximations, but not in the traditional sense
of additive manner as we shall explain in this
section. Three essential issues must be resolved
before we can move this idea forward. These
are — how to assess the quality of an approxi-
mation, how to recursively deflating the matrix,
and how to determine the optimal rank. We
address each issue separately in the sequel.

For the convenience of reference, after a rank-
one approximation uv for A is established, we
say collectively that those rows A(i, :) of A
corresponding to ui = 1 are active and call v
the pattern vector or representative of these active
rows.

3.1 Communal rule
Although in each sweep of our Algorithm 1
we are able to find the “global” minimizer in
each direction, the product of the one-sided
minimizers does not necessarily give rise to the
global minimizer for two-sided objective func-
tion. The quality of a rank-one approximation
A ≈ uv depends highly on the initial value. This
dependence limits the ADI to find only local
interpretable patterns. It is therefore reasonable
to set up a checking criterion to decide whether
active rows are adequately represented by the
pattern vector v.

To put it differently, the assignment of ui for
each i = 1, . . . ,m thus far is based solely on a
comparison of A(i, :) individually with v. The
active rows themselves have not been juxta-
posed with each other. Qualifying A(i, :) into the
active group by self-justification has the danger
that the differences between the pattern vector
and corresponding active rows of A might vary
immensely and, thus, the homogeneity within
the collective of all active rows cannot be war-
ranted. To exclude outliers, the conventional ap-
proach by fixing a neighborhood around v is not
effective because v is not necessarily the mean
and every single active row, though preliminar-
ily counted as active, could be far away from v.
Instead, we propose to check the communality
of the active rows more dynamically by using a
simple statistical rule.

Firstly, let the vector r denote the collection
of “distances” between active rows of A and v,
that is,

rj = d(A(ij , :),v), (16)

whenever uij
= 1. Secondly, we calculate the

mean µ and standard deviation σ of r. For a

7

fixed β > 0, we adopt a communal rule that
whenever

|rj − µ| > βσ, (17)

the membership of A(ij , :) is rejected from the
cluster by resetting uij

= 0. It is possible that
all active rows will be rejected based on (17),
leading to the so called cluster death and causing
the algorithm to break down. To avoid such a
situation, we keep ui`

= 1 whenever r` = min r.
The parameter β in (17) serves as a threshold

which can affect the ultimate partitions of data
matrix. The larger the threshold β is, the more
inclusive the cluster become, and the less the
number of partitions of A will be. For data with
large noises, for instance, increasing β lead to
fewer representatives for the rows of A which,
in turn, might rid of some of the unwanted
substances in the data. On the other hand, if
pairwise matching is more important than pair-
wise distance, we might decrease the β value
to increase the uniformity. In our algorithm, the
user can adjust the parameter value β according
to the need.

3.2 Recursive decomposition
The purpose of the rank-one approximation is to
separate rows of A into two mutually exclusive
clusters according to innate attributes of each
row while trying to find a representative for
the active rows. The motive of a filtering by
the communal rule is to further refine the active
rows to form a tighter cluster. These objectives
are repeatedly checked through the following
divide-and-conquer procedure:

Step 1. Given a matrix A, assess a possible cluster
u of active rows and its representative v.

Step 2. Based on available u, deflate the matrix
A into two submatrices composed of all
active and inactive rows, respectively.

Step 3. Recursively apply Step 1 to each submatrix
in Step 2 until no more splitting is possible
or a predesignated number of iteration is
reached.

Step 4. Whenever an action in Step 3 is termi-
nated, record the corresponding u and v
as an extra column and row in the matrix
U and V , respectively.

Algorithm 3 sketches how a simple integer
factorization A ≈ UV can be executed through
VOTE without controlling the size p in the final
output matrices U ∈ Zm×p

2 and V ∈ Zp×n.
Strictly speaking, this is not the IMF we have
defined in (2) because the ultimate p obtained by
Algorithm 3 could be exceedingly large, but it
does represent an exhaustive search for factors.
In the extreme case, each cluster contains only

one member, that is, we have U = I and V = A,
which of course is of little interest.

Algorithm 3 Integer matrix factorization by
VOTE: [U, V] = IMFVOTE(A, active, β)

Given
A = matrix in Zm×n to be decomposed,
active = array of indices identifying

submatrices of A being analyzed,
β = threshold for communal rule.

return Matrices U ∈ Zm×p
2 and V ∈ Zp×n for

some integer p such that A ≈ UV .
A← A(active, :)
u,v ← VOTE(A)
% Check the communality
uactive← find(u)
for each row A(i, :) of A(uactive, :) do

if A(i, :) does not meet communal rule then
uuactivei ← 0

end if
end for
% Keep decomposing matrix
ZeroCheck ← find(u = 0)
if ZeroCheck is not empty then
active1← active(find(u = 1))
if actove1 is not empty then

IMFVOTE(A, active1, β)
end if
active0← active(ZeroCheck)
IMFVOTE(A, active0, β)

else
Augment u and v in U and V as a column
and a row, respectively

end if

A few remarks about Algorithm 3 are worth
noting. Observe that the splitting of A according
to u automatically guarantees that the result-
ing matrix U has mutually orthogonal columns,
which also means that each row of A is assigned
to one and only one group. Observe also that the
code IMFVOTE invokes itself recursively. Such
a feature, allowable in most modern program-
ming languages, makes the code particularly
efficient. Finally, be aware of the selection mech-
anism embedded in the code that determines
the final membership u and representative v
through multiple levels of screening.

3.3 Optimal low rank approximation

In the application of low rank approximations,
one of the most challenging issues even to
this date is the predetermination of the low
rank k. Algorithm 3 calculates an approximation
A ≈ UV without any restriction on the sizes of

8

U ∈ Zm×p
2 and V ∈ Zp×n. Suppose that such a

factorization is now at hand. It is natural to ask
whether there is a way to pick up two subma-
trices Uk ∈ Zm×k

2 and Vk ∈ Zk×n from U and V
such that A ≈ UkVk and k < p. In this section,
we make an interesting observation on how to
choose the best pair of submatrices (Uk, Vk) so
that d(A,UkVk) is minimal among all possible
submatrices of compatible sizes. Although this
is a postscript to the main computation already
done by Algorithm 3, it sheds a remarkable in-
sight into the optimal low rank approximation.

Denote the columns and rows of U and V by

U = [u1,u2, · · · ,up] , V =

v1

v2

...
vp

 ,
respectively. Note that these rank-one approx-
imations uivi are found, say, by Algorithm 3,
successively without any specific ordering. For
` = 1, . . . , p, define S` to be the collection

S` :=

(i1, . . . , i`)
∣∣∣ d
A, [ui1 , · · · ,ui`

]

 vi1
...

vi`

= min(j1,··· ,`) d

A, [uj1 , · · · ,uj`
]

 vj1
...

vj`

 ,

(18)

where d is either the Hamming or the Euclidean
metric and the `-tuple (j1, . . . , j`) is made of
distinct indices from {1, . . . , p}. The folliwng
nesting effect among S`’s is rather surprising.

Theorem 5: Suppose that the matrix A ∈ Zm×n

has been factorized into A ≈ UV with U ∈ Zm×p
2

and V ∈ Zp×n by Algorithm 3. Then every
element in Ss must appear as a segment in some
element of St, if s < t.

Proof: It suffices to prove the assertion for
the case s = 1 and t = 2. The following
argument can be generalized to other cases.
Suppose that there exists an integer i1 ∈ S1 but
{i1, i2} 6∈ S2, for any i2 ∈ {1, 2, · · · , p}. Given
any {j1, j2} ∈ S2, then we have

d

(
A, [uj1 ,uj2]

[
vj1

vj2

])
< d

(
A, [ui1 ,uj2]

[
vi1

vj2

])
.

(19)

We want to prove that a contradiction arises.
Note that the numeral “1” appears at mu-

tually disjoint positions within the vectors ui1 ,
uj1 and uj2 . Simultaneously permuting rows
if necessary, we may assume without loss of

generality that rows of A have been divided into
four blocks

A1

A2

A3

A4

 (20)

where rows of A1, A2 and A3 correspond to
1’s in ui1 , uj1 and uj2 , respectively, and A4

corresponds to the common zeros of all ui1 , uj1

and uj2 . Then it becomes clear that

d(A,ui1vi1 + uj2vj2) = d(A1,vi1) + d(A2, 0)
+ d(A3,vj2) + d(A4, 0),

d(A,uj1vj1 + uj2vj2) = d(A1, 0) + d(A2,vj1)
+ d(A3,vj2) + d(A4, 0),

d(A,ui1vi1) = d(A1,vi1) + d(A2, 0)
+ d(A3, 0) + d(A4, 0),

d(A,uj1vj1) = d(A1, 0) + d(A2,vj1)
+ d(A3, 0) + d(A4, 0).

Upon substitution, it follows from (19) that

d(A,uj1vj1) < d(A,ui1vi1),

which contradicts with respect to the assump-
tion that i1 ∈ S1.

An application of the preceding theorem en-
ables us to generate a reduced version of the UV
approximation of A. The procedure is outlined
in the following theorem.

Theorem 6: Suppose that the matrix A ∈ Zm×n

has been factorized into A ≈ UV with U ∈ Zm×p
2

and V ∈ Zp×n by Algorithm 3. Sort through
the rank-one approximations and rearrange the
rows if necessary, assume that

d(A,u1v1) ≤ d(A,u2v2) ≤ · · · ≤ d(A,upvp).
(21)

Then, for k = 1, 2, · · · , p, the product UkVk

where Uk and Vk are submatrices of U and V
given by

Uk := [u1,u2, · · · ,uk] , Vk =

v1

v2

...
vk

 , (22)

is the best possible approximation to A in the
sense that the k-tuple (1, 2, · · · , k) is in Sk.

Proof: We prove the assertion by induction
on k.

Obviously, the case k = 1 is already done due
to the rearrangement specified in (21). Assume
therefore that (1, 2, · · · , k − 1) ∈ Sk−1. We want
to show that (1, 2, · · · , k) ∈ Sk. The following
argument is essentially parallel to that in Theo-
rem 5, except that we work on blocks.

9

By Theorem 5, there exists an integer q ∈
{k, k + 1, · · · , p} such that (1, 2, · · · , k − 1, q) ∈
Sk. If q = k, then we are done. Assume, by
contradiction, that q 6= k. Consider the pair of
submatrices

Ũk := [Uk−1,uq] , Ṽk :=
[
Vk−1

vq

]
.

Still, columns of Ũk are mutually exclusive. Be-
cause (1, 2, · · · , k − 1, k) 6∈ Sk, we know

d(A, ŨkṼk) < d(A,UkVk),

which is equivalent to

d(A,Uk−1Vk−1 + uqvq) < d(A,Uk−1Vk−1 + ukvk).
(23)

Again, without loss of generality, we may par-
tition A into blocks such as that in (20) where
rows of A1, A2 and A3 correspond to 1’s in Uk−1,
uq and uk, respectively, and A4 corresponds to
the common zeros of all Uk−1, uq and uk. Then,
clearly we have the following expressions:

d(A,Uk−1Vk−1 + uqvq)
= d(A1, Vk−1) + d(A2,vq) + d(A3, 0) + d(A4, 0),
d(A,Uk−1Vk−1 + ukvk)
= d(A1, Vk−1) + d(A2, 0) + d(A3,vk) + d(A4, 0),
d(A,uqvq)
= d(A1, 0) + d(A2,vq) + d(A3, 0) + d(A4, 0),
d(A,ukvk)
= d(A1, 0) + d(A2, 0) + d(A3,vk) + d(A4, 0).

It follows from (23) that

d(A,uqvq) < d(A,ukvk),

which contradicts the assumption that

d(A,uqvq) ≥ d(A,ukvk),

for q ∈ {k + 1, · · · , p}.
In short, even though we still do not know

how to find the overall optimal rank, the above
discussion suggests that something meaningful
can be done after we have “completely” factor-
ize A as A ≈ UV . That is, by ranking the rank-
one approximations as in (21), we can build
some lower rank approximations in a controlled
way. This byproduct is interesting enough that
we summarize it in Algorithm 4.

4 NUMERICAL EXPERIMENTS

In this section, we report some interesting ap-
plications of our IMF techniques. We carry out
experiments on five data sets, two of which
related to cluster analysis are well documented
in the literature, another two demonstrate the
ability of our algorithms in discovering latent
patterns, and the last one is randomly generated
to assess the overall performance.

Algorithm 4 Low Rank Optimization: [U, V] =
LOWRANKAPPROX(A, k)

Given matrix A ∈ Zm×n
2 and integer k.

return Low rank factors U ∈ Zm×k
2 and V ∈

Zk×n.
U, V ← IMFVOTE(A, active, β)
for all i from 1 to p do

r← [r; match(A,U(:, i)V (i, :))]
end for
index rankings← sort(r)
U ← U(:, index rankings(1 : k))
V ← V (index rankings(1 : k), :)

4.1 Cluster analysis
The general purpose of cluster analysis is to par-
tition a set of observations into subsets, called
clusters, so that observations in the same cluster
share some common features. The most difficult
part in cluster analysis is the interpretation of
the resulting clusters. Our purpose here is not
to compare the performance of our method with
the many cluster analysis algorithm already
developed in the literature. Rather, we merely
want to demonstrate that IMFVOTE naturally
produces clusters and their corresponding in-
teger representatives. If needed, we can also
employ LOWRANKAPPROX to pick up the most
relevant low rank representation of original data
set.

We report experiments on two real data sets,
mushroom and Wisconsin breast cancer (origi-
nal), from the Machine Learning Repository main-
tained by the Computer Science Department at
the University of California at Irvine [33]. To
gauge the effectiveness of our algorithm, we em-
ploy four parameters, RowErrorRate, Compres-
sionRatio, Precision, and Recall whose mean-
ings are outline below [34].

RowErrorRate, defined by

RowErrorRate :=
d(A,UV)

m
, (24)

refers to the average difference per row between
the retrieved data UV and the original data A.
This value reflects how effective row vectors in
V are representing the original matrix A.

CompressionRatio [35], defined by

CompressionRatio
:=] of entries in matrices U and V

] of entries in matrices A

= (m+n)k
mn

(25)

measures how efficiently the original data A has
been compressed by the low rank representation
UV . It is hoped that through the compression,
less relevant data or redundant information is
removed.

10

Precision and Recall, defined by

Precision := relevant data∩retrieved data
retrieved data ,

Recall := relevant data∩retrieved data
relevant data ,

compute the percentages of the retrieved data
that are relevant and relevant data that are
retrieved, respectively. In the context of infor-
mation retrieval, “relevant data” usually refer
to documents that are relevant to a specified
inquiry. Since our task at present is simply to
divide observations into disjoint clusters based
on innate attributes, we do not know the ex-
act meaning of each cluster. In other words,
we do have at hand a representative for each
cluster, but we do not have an interpretation
of the representative. Still, considering points
in a cluster as retrieved data relative to their
own representative, it might be interesting to
compare the corresponding Precision and Recall
with some known training data. In this way, a
high correlation between a particular cluster and
the training data might suggest an interpretation
for the cluster.

Mushroom Data Set. This Agaricus and Le-
piota Family data set consists of biological for
8124 hypothetical species of gilled mushroom.
Each species is characterized by 23 attributes
such as its cap shape, cap surface, odor, and
so on. Each attribute has different nominal val-
ues. For example, the cap shape may be belled,
conical, convex, flat, knobbed, or sunken, while
the cap surface may be fibrous, grooved, scaly,
or smooth. To fit into our scheme, we convert
the attribute information into a list of integer
values. These integers should not be regarded
as numerals, but only labels. Since attributes are
independent of each other, the same integer for
different attributes has different meanings. Our
input data A is an 8124 × 23 integer matrix.
Of particularly noticeable is its first column
which is dichotomous and indicates whether the
mushroom is edible or poisonous. The Ham-
ming metric is more suitable than the Euclidean
metric for this problem.

In our first experiment, we simply want to
investigate how different β values affect the
quantities of approximation. As is expected, a
smaller β value would lead to a larger number
p of rows in the matrix V after a complete
factorization. For mushroom data set, we find
that corresponding to β = 1, 2, 3 the numbers
of rows in V are p = 1418, 15, 1, respectively.
For each β, construct Vk according to Theorem 6
after sorting the corresponding V . We plot in
Figure 1 the value RowErrorRate versus k. Note
the rapidly decreasing behavior, especially in
the cases β = 1, 2, suggesting that the sorting

in LOWRANKAPPROX is capable of identifying
the first few most important clusters and their
representatives. A comparison with the Com-
pressionRatio≈ 0.0436k in this case is also worth
noting. To achieve RowErrorRate= 9.6128, we
just need one pattern vector with β = 3, but
we will need many more representatives with
β = 1 or 2. On the other hand, with β = 3 we
cannot possibly improve the RowErrorRate, but
with more restrictive β values there is a chance
to improve the RowErrorRate.

0 500 1000 1418
0.00

7.50

12.50

17.50

22.00

2.39

k

R
ow

E
rr

or
R

at
e

β = 1

0 5 10 15

9.50

10.00

10.50

11.00

8.98

k

R
ow

E
rr

or
R

at
e

β = 2

0 1 2

9.61

k

R
w

oE
rr

or
R

at
e

β = 3

Fig. 1. Performance of algorithms on the mush-
room data set

In our second experiment, we apply
LOWRANKAPPROX to the 8124 × 22 submatrix
after removing the first column from A.
Rather surprisingly, by deleting merely one
column of A, the resulting IMF behaves
very differently. With β = 2, for example,
the complete factorization returns only three
clusters with RowErrorRate= 9.4623. In an
attempt to provide some meaning to these
clusters, we construct the so called confusion
matrix in Table 1 with respect to the attribute of
whether the mushroom is edible or poisonous.
As is seen, the first cluster represented by v1

contains large amounts of mushrooms in both
kinds, resulting in relative high Recall rates.
But the Precision values by v1 are about the
same as the distribution rates in the original
data, indicating that the cluster by v1 does not
differentiate edible mushrooms from poisonous
ones. The exact meaning of these clusters is yet
to be understood.

Wisconsin Breast Cancer Data Set. In a sim-
ilar way, we experiment our method the Breast
Cancer Wisconsin Data. This data set A contains
699 samples, with 458 (65.5%) benign and 241
(34.5%) malignant cases. Each sample is char-
acterized by 11 attributes. The first attribute
is dichotomous with labels 2 or 4, indicating
benign and malignant tumors. The remaining
ten attributes are of integer values ranging from
1 to 10, but some entries in this part of A have
missing values for which we assign the value
0 in our computation. It is commonly known
that aspects such as the thickness of clumps or

11

Retrieved data set
v1 v2 v3

Edible 4128 80 0
Poisonous 3789 119 8

Cardinality of vi 7917 199 8

Precision of edible mushrooms 0.5214 0.4020 0
Recall of edible mushrooms 0.9810 0.0190 0

Precision of poisonous mushrooms 0.4786 0.5980 1
Recall of poisonous mushrooms 0.9676 0.0304 0.0020

TABLE 1
Precision and Recall of edible or poisonous

mushrooms

the uniformity of cell shape affect the prognosis.
Thus the ordinal of values in attributes matters.
It is more appropriate to use the Euclidean
metric.

Again, we try out three different communal
rules by varying β. With CompressionRatio≈
0.1125k, meaning a reduction of 11% memory
space per one less cluster, we plot RowErrorRate
versus k in Figure 2. It is seen for this breast
cancer data that increasing k would improve
RowErrorRate only modestly. Since the Row-
ErrorRate is already low to begin with, a low
rank IMF should serve well in approximating
the original A.

0 111 222
0.11

0.20

0.30

0.40

0.50

k

R
ow

E
rr

or
R

at
e

β = 1

0 6 12
0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

k

R
ow

E
rr

or
R

at
e

β = 2

0 6 12
0.20

0.21

0.22

0.23

0.24

0.25

0.26

0.27

k

R
ow

E
rr

or
R

at
e

β = 3

Fig. 2. Performance of algorithms on Wisconsin
breast cancer data set

We then apply LOWRANKAPPROX with β = 3
to the 699× 10 submatrix by removing the first
column of A. A complete factorization returns
11 pattern vectors with most samples being
included in the first two clusters. We construct
the confusion matrix with respect to the first
attribute of A in Table 2. Judging from the
Recall and Precision values, we have high level
of confidence that the two patterns v1 and v2

should be good indicators of whether the tu-
mor is malignant or benigh, respectively. Such
a classification of the original 699 samples into
2 major indicators will be extremely useful in
medical science.

4.2 Pattern discovery

Most modern image processing techniques
treats images as a two-dimensional array com-
posed of pixels. A digital image is an instruction
of how to color each pixel. In a gray scale image,
for example, the instruction for every element is
an integer between 0 and 255 (or a nonnegative
decimal number between [0, 1] which requires
more storage and often is converted to integers)
indicating the intensity of brightness at the cor-
responding pixel. In this section, let A ∈ Zm×n

denote a collection of n images each of which
is represented by a column of m pixels. Con-
sider the scenario that images in this library are
composite objects of many basic parts which are
latent at present. The factorization A = UV then
might be suggested as a way to identify and
classify those “intrinsic” parts that make up the
object being imaged by multiple observations.
More specifically, columns of U are the basis
elements while each row of V can be thought
of as an identification sequence representing
the corresponding image in A in terms of the
basis elements. This idea has been extensively
exploited by NMF techniques. See the many
references mentioned earlier. The point to make,
nonetheless, is that the NMF techniques cannot
guarantee the resulting images to have integer-
valued pixels whereas our IMF can.

Needless to say, the same idea can be applied
to an extended field of applications, such as
the quantitative structure-activity relationship
(QSAR) discovery in chemoinformatics. Due to
space limitation, we shall illustrate the pattern
discovery ability of IMF by using images.

Swimmer Data Set. The ”Swimmer” data set
characterized in [26] contains a set of black-
and-white stick figures satisfying the so called
separable factorial articulation criteria. Each figure,
placed in a frame of 32 × 32 pixels, is made
of ”torso” of 12 pixels in the center and four
”limbs” of six pixels. Each limb points to one
of four directions at its articulation position, so
totally there are 256 figures in the collection.
Sample images from the Swimmer data set are
depicted in Figure 3.

After vectorizing each image into a column,
our target matrix A is of size 1024 × 256. The
original data matrix contains only two integer
values, 0 and 255, which we convert without
loss of generality to binaries. The question is
whether we are able to recover the 17 basic
parts that make up these swimmers. Taking
everything into account, we should also expect
one additional part for the background. Such
an expectation of U ∈ Z1024×18

2 appears to be
problematic because the original matrix A has

12

Fig. 3. 80 sample images from the swimmer
database.

numerical rank of only 13. In this context, the
notion of “low” rank approximation to A really
is not appropriate.

After using the Hamming metric and β = 0.5
in our code IMFVote to carry out a complete
factorization, we reshape the 18 columns of
the resulting binary U into 32 × 32 matrices.
We recover all 16 limbs, one torso, plus the
background as depicted in Figure 4. Note that
these 17 recovered “body” parts are completely
disjointed from each other and suffer from no
blurring at all — a result cannot be accom-
plished by NMF techniques. In fact, the factors
U and V returned from our IMF satisfy A = UV
exactly.

Fig. 4. Basic elements recovered from the swim-
mer data set.

Block Matrix Data Set. To demonstrate that
our method can recognize patterns more com-
plicated than one-dimensional sticks, consider
a 5 × 5 block matrix with each block of size
5 × 5. Randomly select 2 out of the 25 blocks
and assign the value 1 to their entries while
keeping all other entries 0. Border this 25 × 25
matrix with 4 pixels on each side and call the
resulting 33× 33 matrix an image. Totally there
are 300 images. Collect these images into the
1089 × 300 binary matrix A with each column
representing a vectorized 33× 33 image. Apply

Fig. 5. Bases elements recovered from block
matrix data set.

IMFVOTE with Euclidean metric and β = 1 to
A. The resulting complete factorization returns
27 clusters shown in Figure 5. It is interesting
to note that 25 basic patterns containing exactly
one 5× 5 block are completely discovered. Ad-
ditionally, one pattern representing almost the
entire border except the point on the upper left
corner is found.

4.3 Random performance test

To further test the capability of the IMF in
recovering random clusters or patterns, for a
given triplet (m,n, k) of integers we randomly
generate W ∈ Zm×k

2 and H ∈ Zk×n
14 , where

columns of W are kept mutually exclusive and
Z14 = {0, 1, . . . , 13}. Define A = WH and apply
IMFVOTE with Euclidean metric and β = 1 to
A.

Let (U, V) denote the pair of factors returned
by our calculation. We wonder how likely (U, V)
would be the same as the original (W,H) af-
ter some permutations. When this happens, we
say that our method has reached its optimal
performance. Recall that the basic rank one
approximation in our scheme is only a local
minimizer. We expect that pushing our algo-
rithm, foredoomed just like most optimization
techniques for nonlinear problems, to reach its
optimal performance would be an extremely
challenging task.

For each given (m,n, k), we repeat the above-
described experiment 1000 times and tally the
rate of success, denoted by OptRate, in reach-
ing the optimal performance. We also mea-
sure the CPU time needed for each experi-
ment on a PC running Windows XP and Mat-
lab R2009a with Intel(R)Core(TM)2 Duo CPU
T8300@2.4GHz and 3.5GB of RAM. The average
CPU time, denoted by AvgTime, then serves as
an across-the-board reference for the computa-
tional overhead. Test results for a few selected
triplets are summarized in Table 3. It seems

13

possible to draw a few general rules from this
table. For problems of the same size (m,n),
larger k means more complexity and deeper
recursion which, in turn, reduce OptRate and
cost more AvgTime. For problems of the same
(m, k), increasing n costs only AvgTime, but has
modest effect on OptRate. For problem of the
same (n, k), increasing m also costs only Avg-
Time and effects little on OptRate. The overall
speed of our method seems reasonable, even
though our code is yet to be further polished for
efficiency by taking into account data structure,
storage, and movement within the system.

5 CONCLUSIONS
Matrix factorization has many important appli-
cations. In this paper, we investigate the no-
tion of factorization with entries restricted to
integers or binaries. Being discrete in nature,
such a factorization or approximation cannot be
accomplished by conventional techniques. Built
upon a basic scheme of rank one approximation,
we propose an approach that recursively splits
(or more correctly, approximates) the underlying
matrix into a sum of rank one matrices with
discrete entries. We carry out a systematic dis-
cussion to address the various computational
issues involved in this kind of factorization. The
ideas are implemented into an algorithm using
either the Hamming or the Frobenius metric, but
using other types of metrics is possible.

If the underlying data are binary, our idea is
in line with the existing code PROXIMUS. But
our formulation is readily generalizable to other
types of data. For example, for application pur-
poses we have mainly concentrated on binary-
integer factorizations, where the “integer” could
be either the regular ordinal integers or just
some nominal labels. If the underlying data are
regular integers, we have developed the mech-
anism to perform integer-integer factorizations.

Five different testing data are used to demon-
strate the working of our IMF algorithm. Of
particular interest is the result in Theorem 6
where we show how an optimal lower rank can
be selected after a simple sorting. We think, in
a remote sense, the ordering in (21) for discrete
data is analogous to the ordering of singular val-
ues for continuous data. Similarly, the truncated
product UkVk defined in (22) is analogous to the
truncated singular value decomposition.

We hope that our discussion in this paper
offers a unified and effectual avenue of attack
on more general factorization problem. There is
plenty of room for future research, including a
refinement of our algorithm for more efficient
data management and a generalization to more
complex data types.

ACKNOWLEDGMENT

The authors wish to thank Professor Robert E
Hartwig and Mr. Yen-Wei Li for helpful discus-
sions.

REFERENCES

[1] Lawrence Hubert, Jacqueline Meulman, and Willem
Heiser. Two purposes for matrix factorization: a his-
torical appraisal. SIAM Rev., 42(1):68–82 (electronic),
2000.

[2] Moody T. Chu, Robert E. Funderlic, and Gene H.
Golub. A rank-one reduction formula and its applica-
tions to matrix factorizations. SIAM Rev., 37(4):512–530,
1995.

[3] Louis Guttman. General theory and methods for matric
factoring. Psychometrika, 9(1):1–16, 1944.

[4] Louis Guttman. Multiple group methods for common-
factor analysis: Their basis, computation, and interpre-
tation. Psychometrika, 17(2):209–222, 1952.

[5] Louis Guttman. A necessary and sufficient formula for
matrix factoring. Psychometrika, 22(1):79–81, 1957.

[6] Paul Horst. Factor Analysis of Data Matrices. Holt,
Rinehart and Winston, New York, 1965.

[7] Harry H. Harman. Modern Factor Analysis. University
of Chicago Press, Chicago, 1976.

[8] Andrew L. Comrey and Howard B. Lee. A First
Course in Factor Analysis. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1992.

[9] C. Ding, X. He, and H.D. Simon. On the equivalence
of nonnegative matrix factorization and spectral clus-
tering. In In: Proceedings of the Fifth SIAM International
Conference on Data Mining, Newport Beach, CA, 2005.

[10] W. Xu, X. Liu, and Y. Gong. Document-clustering based
on non-negative matrix factorization. In In: Proceedings
of SIGIR03, pages 267–273, Toronto, CA, July 28–August
1 2003.

[11] D. D. Lee and H. S. Seung. Learning the parts of objects
by non-negative matrix factorization. Nature, 401:788–
791, 1999.

[12] A. Pascual-Montano, J. M. Carzzo, K. Lochi,
D. Lehmann, and R. D. Pascual-Marqui. Nonsmooth
nonnegative matrix factorization (nsnmf). IEEE
Transactions on, Pattern Analysis and Machine Intelligence,
28:403–415, 2006.

[13] Z. Chen, A. Cichocki, and T. M. Rutkowski. Con-
strained non-negative matrix factorization method for
eeg analysis in early detection of alzheimers disease. In
In IEEE International Conference on Acoustics, Speech, and
Signal Processing, ICASSP2006, Toulouse, France, 2006.

[14] M. Dugas, S. Merk, S. Breit, and P. Dirschedl. Mdclust-
exploratory microarray analysis by multidimensional
clustering. Bioinformatics, 20:931–936, 2004.

[15] P. Paatero and U. Tapper. Positive matrix factorization:
A non-negative factor model with optimal utilization
of error. Environmetrics, 5:111–126, 1994.

[16] P. Paatero. The multilinear engine–a table-driven, least
squares program for solving multilinear problems, in-
cluding the n-way parallel factor analysis model. J.
of Computational and Graphical Statistics, 8(4):854–888,
1999.

[17] Michael W. Berry, Murray Browne, Amy N. Langville,
Paul V. Pauca, and Robert J. Plemmons. Algorithms
and applications for approximate nonnegative matrix
factorization. Computational Statistics and Data Analysis,
52(1):155–173, 2007.

[18] D. D. Lee and H. S. Seung. Algorithms for non-negative
matrix factorization. In Advances in Neural Information
Processing Systems, volume 13, pages 556–562, 2001.

[19] M. Chu, F. Diele, R. Plemmons, and S. Ragni.
Optimality, computation and interpretation of non-
negative matrix factorizations. Available online
at http://www4.ncsu.edu/ mtchu/Research/Papers/nnmf.ps,
2005.

14

[20] Patrik O. Hoyer. Non-negative matrix factorization
with sparseness constraints. The Journal of Machine
Learning Research, 5:1457–1469, 2004.

[21] D. P. Bertsekas. Nonlinear programming (2nd). Belmont,
MA: Athena Scientific., 1999.

[22] Rasmus Bro and Sijmen De Jong. A fast non-negativity-
constrained least squares algorithm. Journal of Chemo-
metrics, 11(5):393–401, 1997.

[23] Hyunsoo Kim and Haesun Park. Nonnegative matrix
factorization based on alternating nonnegativity con-
strained least squares and active set method. SIAM J.
Matrix Anal. Appl., 30(2):713–730, 2008.

[24] Charles L. Lawson and Richard J. Hanson. Solving least
squares problems, volume 15 of Classics in Applied Mathe-
matics. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1995. Revised reprint of the
1974 original.

[25] Moody T. Chu and Matthew M. Lin. Low-dimensional
polytope approximation and its applications to non-
negative matrix factorization. SIAM J. Sci. Comput.,
30(3):1131–1155, 2008.

[26] D. Donoho and V. Stodden. When does nonnegative
matrix factorization give a correct decomposition into
parts? In Proc. 17th Ann. Conf. Neural Information
Processing Systems, NIPS, Stanford University, Stanford,
CA, 2003, 2003.

[27] P. K. Hopke. Receptor Modeling for Air Quality Manage-
ment. Elsevier, Amsterdam, 1991.

[28] Patrik O. Hoyer. Nonnegative sparse coding. In Proc.
IEEE Workshop Neural Networks for Signal Processing,
Martigny, 2002.

[29] T. Kawamoto, K. Hotta, T. Mishima, J. Fujiki,
M. Tanaka, and T Kurita. Estimation of single tones
from chord sounds using non-negative matrix factor-
ization. Neural Network World, 3:429–436, 2000.

[30] Suvrit Sra and Inderjit S. Dhillon. Nonnegative matrix
approximation: Algorithms and applications. Technical
report, Deptartment of Computer Sciences, University
of Texas at Austin, 2006.

[31] Shona D. Morgan. Cluster analysis in electronic man-
ufacturing. Ph.D. dissertation, North Carolina State Uni-
versity, Raleigh, NC 27695., 2001.

[32] Mehmet Koyutürk, Ananth Grama, and Naren Ra-
makrishnan. Nonorthogonal decomposition of binary
matrices for bounded-error data compression and anal-
ysis. ACM Trans. Math. Software, 32(1):33–69, 2006.

[33] A. Asuncion and D.J. Newman. UCI machine learning
repository, 2007.

[34] G. G Chowdhury. Introduction to modern information
retrieval. 2nd ed. facet publishing, 2004.

[35] Thomas M. Cover and Joy A. Thomas. Elements of
information theory. Wiley-Interscience [John Wiley &
Sons], Hoboken, NJ, second edition, 2006.

15

Retrieved data set

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

Benign 33 411 1 5 3 0 1 1 1 1 1

Malignant 225 13 0 0 1 1 1 0 0 0 0

Cardinality of vi 258 424 1 5 4 1 2 1 1 1 1

Precision of benign cancer 0.1279 0.9693 1 1 0.75 0 0.5 1 1 1 1

Recall of benign cancer 0.0721 0.8974 0.0022 0.0109 0.0066 0 0.0022 0.0022 0.0022 0.0022 0.0022

Precision of malignant cancer 0.8721 0.0307 0 0 0.25 1 0.5 0 0 0 0

Recall of malignant cancer 0.9336 0.0539 0 0 0.0041 0.0041 0.0041 0 0 0 0

TABLE 2
Precision and Recall of benign or recall patients

m 500 500 500 500 500 500 500 500 500 1000 1000 1000 1000 1000 1000

n 30 40 50 30 40 50 60 80 100 30 40 50 60 80 100

k 5 6 7 10 12 14 5 6 7 10 12 14 5 6 7

OptRate .5530 0.3200 .1820 0.0480 .0110 .0010 .5280 .3130 .1450 .0470 .0100 .0020 .5440 .3520 .1740

AvgTime .0133 .0158 .0178 .0167 .0196 .0224 .0177 .0213 .0252 .0468 .0524 .0575 .0529 .0627 .0724

TABLE 3
Global convergence rate and average time per factorzation (in seconds) on randomly generated

data sets.

