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Abstract. Gauging the distance between a mixed state and the convex set of separable states
in a bipartite quantum mechanical system over the complex field is an important but challenging
task. As a first step toward this difficult problem, this paper investigates the rank-1 approximation
of a bipartite system over the real field where the entanglement is characterized in terms of the
Kronecker product of density matrices. The approximation is recast in the form of a nonlinear
eigenvalue problem and a nonlinear singular value problem for which two iterative methods are
proposed, respectively. This study offers insight into and might serve as the building block for the
more complicated multipartite systems and higher-rank approximation problems. The main focus is
on the convergence analysis. Numerical experiments seem to suggest that these easily constructed
solvers have higher efficiency when comparing with some state-of-the-art optimization techniques.
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1. Introduction. Entanglement manifested in a system proves intricate but crit-
ical and is perhaps the most basic mode for characterizing a complicated phenomenon
that involves components interacting with each other. Entanglement arises in nature
and in almost all areas of disciplines whenever constituents, factors, parts, or sub-
groups interrelate with each other within the system.

Depending on how the parts in a system engage with each other, entanglement
appears in different forms. It could be as simple as a few matrix multiplications if
the rule of engagement is merely the causal nexus. In a Markov chain with memory
where the evolution of states and memory must respect the Kolmogorov axioms,
the entanglement involves more complicated tensor-tensor multiplications [38, 64].
Quantum entanglement, where particles in a composite quantum system generate,
interact, or share properties in ways such that the variation of quantum properties
of one particle will instantly change properties of another particle regardless of the
distance, is another particularly interesting phenomenon with significant importance
[22, 31]. Upon properly representing quantum states in terms of some suitable basis
over the complex field, the rule of engagement in a bipartite quantum mechanics
system can be cast as Kronecker products between density matrices of the subsystems.
Our work in this paper concerns this kind of entanglement.
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Quantum entanglement plays an increasingly important role in modern quantum
technologies. The extended lists of references in [22, 31] evince the vast research
endeavors in the field. We mention quantum informatics [5, 21, 29, 44, 51, 55, 62]
and quantum communication [3, 8, 25, 32| to exemplify applications that exploit
the entanglement for faster and more secure delivery of information than classical
algorithms. For better control of the underlying system, it is therefore of paramount
importance to quantify the amount of entanglement. Such an undertaking, however,
is known to be NP hard [24, 28]. Even so, there is one basic problem that can be
used as a building block to carry out more advanced calculations. The purpose of
this work is to investigate the mathematical formulation of this basic problem and its
convergence analysis.

Without delving into details, it might be informative to outline some quantum
mechanics background to motivate our problem. Even if only briefly, the following
introduction might appear long but should be helpful in grasping the essential con-
cepts. For a more formal and in-depth reading of the main ideas, we suggest [1, 30, 46]
and the classic book [48]. Readers who are familiar with quantum mechanics and the
notion of entanglement might skip to the next section immediately.

1.1. Density matrix. One of the basic postulates in quantum mechanics is that
each quantum mechanical system is associated with a complex Hilbert space 5. Any
unit vector in J# is referred to as a pure state which typically is denoted by the
Dirac’s ket notation |x). Two pure states |x) and |y) are considered equivalent if
|x) = cly) for some |c¢| = 1. The inner product of two unit vectors |x),|y) € 7 is
denoted as (x|y). The orthogonal projection |x) (x|z) of any |z) € J# onto a given
pure state |x) is an operator of significant importance. Such an operator D := |x) (x|
is called a density matrix. Phase equivalent pure states have the same density matrix.
A mixed quantum state is a probabilistic ensemble of finitely many pure states. Since
a mixed state can not always be described by a single ket vector, it is more convenient
to describe a general state p as the probabilistic mixture

(1.1) PIZZM Ixi) (%l Zliizl; pi >0,

of the density matrices of some pure states |x;) € . Therefore, the density matrix
p is a positive semidefinite operator with unit trace.

1.2. Bipartite system. Given two Hilbert spaces 74 and %3, the tensor prod-
uct space is defined to be the set

(1.2) IO Q I = Zu5®vt|use<%”1,vt€% ,

s,t

where the summation is formal over any index subset with finite support and the
symbol ® represents a notional linkage between states from 7] and 5%4. The only
property required of ® is its bi-linearity. We stress the formal double summation
because we have not limited the Hilbert spaces to finite dimension yet. We further
stress the bilinearity because, in the physics world, the two quantum mechanical
systems do not even have any shared relationship or common features. The bilinearity
is to emphasize that each space contributes to the mixture linearly. This is not to
be confused with the conjugate linearity required in the inner product of a complex
Hilbert space. An inner product can be induced via the relationship

(1.3) (x@ylzew) = (x|z) (ylw).
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Upon the completion (which is not needed over finite dimensional spaces), we may
assume that 4 ® 4 is a Hilbert space. In this way, we obtain the state space of a
bipartite system.

For simplicity, suppose 57 and %% are finite dimensional quantum mechanical
systems with orthonormal basis! states {e;}™; and {f; }] 1> respectively. Then, a
natural orthonormal basis for /4 ® 74 is {e; ® f;}. We shall enumerate the basis in
lexicographical order, i.e., 1 ®f;,e1 f;, ..., eaRf, €2 ®1;,..., e, ®f,. Elements in
J# and % can be interpreted as merely column vectors x € C™ and y € C" of their
coordinates in terms of the bases, respectively, whereas an element in the bipartite
system S ® 6 can be represented by a matrix? C € C™*". In particular, if x € C™
and y € C™, then the bilinear map among the coefficient vectors is equivalent to

(1.4) XQy=xy'

which is known as the outer product in the linear algebra literature. To distinguish
(1.4) from the Kronecker product, usually the notation x oy is preferred for the outer
product.

A pure state |C) in JA ® % is such that its matrix representation C' € C™*™ has
unit Frobenius norm. By the notion defined in (1.1), a mixed state p over J4 ® 9%
should be a density matrix of the form

(1.5) p= Zule ) (Cil Zuz—l pi >0,

where each |C;) represents a pure state in 54 ® 5. Since each |C;) (C;| is an operator
acting on matrices in C"™*", we can interpret p as an order-4 tensor represented by
an mn X mn matrix.

Example 1. Consider the case 2% = C2, i = 1,2, where the standard basis is
typically denoted by [0) = [3] and |1) = [9]. In quantum formalism, a tensor product
1) ® |}) is often abbreviated as [f|). A natural basis for the tensor product space
C?®C?%is

{l00),101) ,[10), [11)},

whose corresponding matrix representations by (1.4) are

ool Lol [vs] [60]

respectively. In quantum information science, however, a more commonly used basis
is the Bell states [4, 9, 48]

|+) = J5(|00) + [11)),
@) == Z5(|00) — [11)),
[wt) == I5(jo1) + [10)),
U= == 25(/01) — [10)),

IThe notion remains true over infinite dimensional Hilbert spaces with countable orthonormal
bases. In that case, the elements in 4 ® % can be represent by semi-infinite matrices. Recall
that a Hilbert space is said to be separable if and only if it has a countable orthonormal basis.
That topological “separability” is entirely different from the separability considered in the context
of quantum mechanics.

2For beginners, it might be easier to regard C as a column vector vec(C) € C™" and consider
the Hilbert space / = J# ® 7 as a monopartite system, whence the notions in section 1.1 can be
carried over.
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representing the simplest example of (maximally) quantum entanglement whose no-
tion will be explained in what follows. Note that the Bell states form an orthonormal
basis. In particular, they are pure states in C2 @ C2. In terms of the natural basis,
the matrix representations of |<I>+>, <I>_>7 \If+>, and |\I/_> are respectively given by

A7ro0)] L1 0] 1fo1] 1[0 1
V210 11720 —-1]"21 0] 2] -1 0]’
whereas the corresponding density matrices Plo+y = ‘<I>+> <<I>+‘ and so on should be

expressed respectively as

1 00 1 1 00 -1
.10 0 0 0 11 0 00 o0
20 000]” 2] 0 00 0 |
| 1.0 0 1 | | -1 0 0 1 |
[0 0 0 0] 0 0 0 0]
.10 110 .10 1 -1 0
210110} 2|0 -1 1 0
|0 0 0 O | |0 0 0 0|

If a pure state |¢) € 4 ® % can be expressed as
(1.6) 1) = 1) @ [9s),

where |1p,) € J, i = 1,2, are pure states, respectively, then we say that the pure state
|1p) is separable; otherwise, it is said to be entangled. A pure state in the composite
system can be entangled. For example, simple arithmetic shows that any of the Bell
states cannot be expressed as the tensor product of two pure states in C2. However,
a pure state can always be decomposed as a linear combination of separable states in
the following way, known as the Schmidt decomposition in quantum mechanics [20],
which is also readily recognizable as the singular value decomposition (SVD) from the
linear algebra viewpoint.

LEMMA 1.1. Any pure state |¢) € JA4 ® H5 can be written in the form

(1.7) ) = 0j ;) ®|v;),

J

where |uj> € A4 and ’vj> € J% are orthonormal vectors, o; > 0, and Zj O'JQ- =1.

From the linear algebra point of view, especially when it is over finite dimensional
spaces, the definition of a density matrix p in the form (1.5) and the decomposition of
a pure state |1) in the form of (1.7) are nothing but the spectral decomposition and
SVD, respectively. There are well-developed numerical algorithms for handling these
types of decompositions which, thus, do not impose computational difficulties. The
real challenge is at the separability of the density matrices, which we describe below.

1.3. Entanglement. Given linear operators A : 5 — 5 and B : 36 — 363,
there is a unique linear operation T : JA ® 4% — JA & 5 such that [30]

(1.8) T(e; @) == (Ae;) ® (Bf;).

If the basis {e; ® f;} of JA4 ® % is ordered lexicographically, then the matrix rep-
resentation of T is precisely the Kronecker product of the matrix representations of
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A and B. For this reason, we denote 7 = A ® B to stress that 7 can be split as the
tensor product of A and B in the sense of (1.8).

Different from the representation (1.5) where a mixed state density matrix p is
always a statistical ensemble of density matrices of pure states in s ® 4%, a more
intriguing but difficult question is to determine whether a given density matrix p over
J Q@ 5 can be decomposed as

(1.9) p=> mD @D, Sm=1, m >0,
k k

where {D,(fl)} and {D,(f)} are density matrices of the subsystems .4 and .74, respec-
tively. Note that the tensor product D,(fl) ® D,(f) is an operator in the sense of (1.8).

Note also that, by definition, each D,(Cl) or D,(f) is itself a probabilistic ensemble of
pure states in the form (1.1) but involves perhaps different numbers of terms and
states. Upon further regrouping and relabeling, we may rewrite the expression (1.9)
in the form

(1.10) p=">_0u(xe) (xe]) @ (|ye) (yel),
14

where x, € J and y, € J% are unit vectors, §, > 0 and ), 6, = 1. That is, a
density matrix p over the bipartite space is separable if and only if it is the convex
combination of tensor products of density matrices of pure states.

Entanglement detection and certification have been a subject attracting enormous
research endeavors. The literature is very rich. We mention only [10, 12, 33, 35, 54, 55]
that are appealing to our work. The three review articles [22, 27, 31] contain massive
collection of references. One necessary condition for separability that can conveniently
be checked by existent linear algebra techniques is the so-called realignment method
[10] described below.

LEMMA 1.2. Given a density matriz p € C™*™" et Z(p) € Cm**"* denote the
R-folding® of p [58, 59]. If p is separable in the sense of (1.10), then necessarily the
Ky Fan norm, i.e., the sum of all singular values of Z(p), is less than 1.

Example 2. We have already seen that the Bell state ®* is not separable in
the sense of (1.6). Its density matrix Plg+)s ON one hand, is defined via (1.5) as a

probabilistic mixture of density matrices of some pure states |C;) (itself this time)
in C?2 @ C? and is a 4 x 4 matrix. The Z-folding of the density matrix Pla+) is %14
whose Ky Fan norm is 2 since all singular values are 1. By Lemma 1.2, Pla+) is not
separable in the sense of (1.10). Similar arguments can be applied to show that none
of Plo-)s Plu+) and Plu-) is separable.

1.4. Approximation. If p is not separable, then seeking its nearest separable
approximation is a problem of practical importance [16, 31, 42, 56]. Because the
entanglement qualification depends on different operational paradigms and mathe-
matical techniques, various metrics for gauging the entanglement have been proposed
[11]. For example, the trace metric

1
Dr(p,0) i= 5 Try/(p—0)?

3Also defined in (2.2) in this paper.
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is often employed to measure the maximum probability of distinguishability between
two quantum states p and o. It is the quantum version of the well-known Kolmogorov—-
Smirnov test for comparing random samples. The Bures distance

Dg(p, o) = \/2 —2Try/\/po+/p

is used for parameter estimation of mixed quantum states based on repeated mea-
surements just as the Fisher information is used in classical statistics. It allows the
calculation of the minimum number of measurements to distinguish two different
states. In our work, we measure the Frobenius norm

1 1
Dr(p,o) = Slp—ollr = 5vVTr(p—0)?.
2 2

Not all distance formulas are easy to use for numerical computation. Taking the
positive square root of a positive definite matrix, for example, is expensive, especially
when it needs to be done repeatedly. There are theoretical discussions on comput-
ing the Bures formula without any diagonalization procedures [19]. Still, we find it
difficult to implement numerically, e.g., it is hard to calculate the gradients of Dp
and Dp. In contrast, using the Frobenius norm is perhaps the most convenient way
since the square root is for scalars and the gradient of Dp is readily available by
calculus. Different choices of metrics might lead to a different approximation result
and the associated interpretation. A numerical comparison of various measures is
worthy of further investigation but is beyond the scope of this paper. As a starter,
our convergence analysis is based on the Frobenius norm.

Using the Frobenius norm, the proximity of a mixed state p to the convex set of
separable states is estimated by [11, 43, 47, 50]

R
(1.11) min p— E Oe(xex0™) @ (yeye™)||
x0€C™, ||xe[l2=1 =
Ye€C™,|lyell2=1 ’
00>0,5" 1, 0,=1

F

where R is a predetermined positive integer and ® denotes the Kronecker product.
By the Carathéodory theorem, we need no more than (mn)? + 1 terms for the ap-
proximation, but often R is a much smaller number.

The quantum entanglement necessarily involves complex numbers [1, 36]. The
approximation problem described above involves the optimization of a real-valued
function over the complex field. This is a complicated task because, while we can
identify C = R?, the multiplications of complex numbers entail a twist of real and
imaginary parts, i.e., if x =u+w € C" and y = p +1q € C" with u,v € R™ and
P.q € R", then

x@y=(u@p-veq) +i(veap+tuxaq).

Thus, not only do we have to deal with four real-valued vectors per x € C™ and
y € C", but also we have to consider their intertwinement, which complicates the
cost function in (1.11).

1.5. Basic problem. It might be reasonable to consider the real analogue of the
original complex problem as the first stepping stone. That is, we consider a simplified
problem in the form
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R
(1.12) min p— Z ) (aga;) ® (bgb?) ,

agESmfl,ngS"*l,G@e]R*. =1
- F

where p € R™"X™" ig a given symmetric and positive definite matrix, S™! stands
for the unit sphere in R™, R denotes the half-array of nonnegative real numbers,
and the sum-to-one condition of 6, is relaxed. One possible way to tackle (1.12)
is through the greedy rank-1 update scheme that systematically adjusts one pair
(aj,b;), j =1,...,R, at a time [14, 15, 45, 57, 65]. Specifically, while advancing in
p, we consider a sequence of subproblems by successively finding the triplet

(1.13)
(a;p—i-l]’ bgp+1]’ 0j[p+1])
2
= arg min poH] —0; (ajajT) ® (bjbjT> , i=1,... R,
ajeSm—1,beSn1,0,€R, F
with
Jj—1 T
A= 3 gl ( 1]l >® (prHJbEpH] )
(=1
R
T T
-3 ( b > - (bgmbgp] > ,
{=7+1
where (agp],b 9[p) ¢ =j+1,..., R, are previously known and (apH] bEpH],GEpH]),

{=1,...,5 — 1, are newly updated.4 Thus, for each j and p with A := p
R™mnxmn - at the core is the basic rank-1 separability approximation problem

[p+1]
r S

. T V)12
(1.14) regmn, BB o [A=X(xx")® (yy')%-
Note that in this context, the target matrix A remains symmetric but may not be
positive definite. The focus of this paper is on solving this relatively simpler rank-1
problem (1.14) for a given symmetric matrix A.

For fixed unit vectors x and y, the optimal A for the objective function in (1.14)
is the component

(1.15) A y) = (4, (xoy)xey)")

of A in the direction of (x®y)(x®y)". Thus, the minimization in (1.14) is equivalent
to the task of maximizing |\(x,y)| over S™~1 x S"~1. However, unless A is positive
semidefinite,® it is possible that this component A is negative. In that case, the

4In practice, since such an iteration is to be repeated cyclically until convergence, it is not always
needed to obtain the minimizer (a[erl] b[p+1] p+1 ) to high precision per the subproblem.

5Definiteness over a tensor product space is a much more complicated notion than that over a
Euclidean space. If A is partitioned into m x m blocks A = [A;;] with each block A;; € R™*"™, then
we can write A\(x,y) = x' [y | A;;y]x. If A in positive semidefinite over R ® R™, then the matrix
[yTAijy] € R™*" should be positive semidefinite for all y € S*~1. Such a matrix A must be very
specific, including among others that all diagonal blocks A;; must be positive semidefinite.
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optimal value to the problem (1.14) is necessarily equal to [|A]|% with A = 0. For our
applications, because of the fact that

(1.16) AMx,y) = <A+cl, (x®}’)(x®y)T> —¢

we may shift A by a sufficiently large scalar matrix to ensure that A 4 ¢l is positive
definite without tampering with the optimizer (x,y) of the original objective function
A(x,y). For the purpose of computation, therefore, it suffices to assume that A is
symmetric and positive definite. Such an assumption also facilitates the convergence
analysis for the algorithms proposed in this paper.

1.6. Related rank-1 tensor approximation. The subject of low-rank tensor
approximation has been intensively studied in recent years with many accomplished
works [6, 15, 18, 34, 39, 40, 41, 57, 61, 65]. Most of the work, however, considers only
the case when the factors are made of single states. For models where the factors
themselves are high-order tensors, it is often necessary, and also for storage efficiency,
to first break down each tensor factor as the outer product of single states. In our
case, the basic problem (1.14) can be recast as a special type of rank-1 approximation
with “shared” factors

117 min A—Axoxoyoyl?
— x€Sm—1,yeSn—1 ARy | yoylle,

where o denotes the outer product and 21 € R"™*™X"X" ig g gpecial refolding of the
original A € R™™"*™" into an order-4 tensor. This specially structured problem can
still be handled by some conventional techniques, say, the Tensorlab toolbox [60]. In
contrast, in this paper, we propose two new rank-1 approximation methods specifically
for the bipartite systems. This is only a first step, but it plays an important role as a
building block for the more general problems such as (1.12). The convergence analysis
for the simplest bipartite systems is already quite involved and is of mathematical
interest in its own right. Equally important is that the numerical comparison of our
methods with various existing optimization packages as well as the different solvers
available from the Tensorlab toolbox shows the advantages of our approach.

Finally, we outline the organization of this paper as follows. In section 2, we
reformulate the rank-1 approximation problem as a nonlinear eigenvalue problem,
propose a power-like iteration scheme, and prove its convergence. The scheme modifies
one factor at a time. In section 3, we reformulate the approximation as a nonlinear
singular value problem in which two factors are modified concurrently. By employing
the conventional SVD as a black-box generating function, an abstract fixed-point
iteration is proposed. The limiting behavior of this more sophisticated SVD-based
scheme is also analyzed. We present experimental results in section 4 to demonstrate
the working of the algorithms.

2. Nonlinear eigenvalue formulation. The data stored in an order-4 tensor
T € RmaXn2Xmixm can be “visualized” in different ways. One way is to “flatten” an
order-4 tensor 7T as an m; x ng block matrix T" with blocks T;; € R™2*"2,

T Ti Tin,
Toy  Toy -+ Ty,

(2.1) T: c Rmympﬂzlng.
Tm11 Tm12 Tmlnl
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Another way is to define the so-called Z-folding of T via the rearrangement

vec(T11) "

vec(Ty) "
(2.2) A(T) := ) € Rmmxmanz

vec(Tryn, )"

where vec denotes the conventional vectorization of a matrix by its columns. Such a
rearrangement of T is particularly useful due to the following relationship [58, 59].
LEMMA 2.1. The Z-folding of T € R"™™2x"1n"2 gqtisfies the relationship that

(2.3) <T, d X ® Yk> = <%(T), > vec(Xk)vec(Yk)T>

k=1 k=1
for any X € R™*™ gnd Y), € Rm2*nz,

Our problem has the special structure that X, and Y are symmetric rank-1
matrices. We now exploit this structure by recasting the maximization of (1.15) as a
nonlinear eigenvalue problem.

2.1. Power-like iteration. Partition A € R™"*™" a5 m x m blocks with block
size n x n. Using (2.3), rewrite (1.15) as

(2.4) Ay) = (4, (xT) @ (yy 1)) = (Z(A)y 2 y), x @),
where Z(A) € R™ *"" | Define the bilinear operators

(2:5) </ (y,y) = reshape(Z(A)(y @), [m,m]),

(2.6) B(x,X) := reshape(Z(A)T (x ® %), [n,n]),

over the respective unit spheres. It can be checked that

A (y,y)=7,y)7,

(2.7)
B(x,X) = B(X,x)",

and that both &7 (y,y) and #(x,x) are symmetric. Since we have assumed that A is

positive definite, it can further be checked that <7 (y,y) and %(x,x) are also positive

definite if y # 0 and x # 0, respectively. We can use (2.4) to calculate the projected

gradients of A(x,y) onto S™~1 and S~ easily, from which we obtain the optimality

condition of \(x,y) as follows, resulting in a nonlinear eigenvalue problem.

LEMMA 2.2. The first-order necessary condition mazimizing A\(x,y) is that

{ A (y,y)x = AMx,¥)x,
B(x,x)y = \x,y)y-

We are thus motivated to propose a power-like iterative scheme to obtain the
(local) maximizer of A(x,y). Starting from an initial value (xI% yl%) we repeat the
following process:

(2.8)

X[p+1] L JZg(y[p]’y[p])x[p]
|| (ylel Ly lPh)x[Pl |5 0
(2.9) p+1] y[p+11y, (7] p=012....
ylo+1] s e ety

(|2 (x[P+1] x[P+1)y[PI]]; 2
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At first glance, the scheme resembles a conventional power method. We stress, how-
ever, that the matrices o7 (y P!, yP!) and 2(x[PT1, x[P*1]) are not stationary. They are
updated in a manner similar to the notion of the conventional Gauss—Seidel method.
If the iteration ever converges, the limit point is a fixed-point and satisfies precisely
the first-order optimality condition (2.8). When this happens, we have

Axy) =14 (y,y)xl2 = [ #(x,x)y]2 > 0.
It remains to study the dynamical behavior of this iterative scheme.

2.2. Convergence analysis. To facilitate the characterization of the dynamics
of (2.9), define the functional g : S~ x §m~1 x §n=1 x §n=1 R by

(2.10) 9(x. %y, y) = ((y,y)x,X).
Since
(o (y,7)%.%) = (2(A), xoX)(yoy)") = (A, (xx") @ (Fy ")),
we can also write
(2.11) 9(x,Xy,y) = (B(x,X)y,y).

Clearly,
Ax,y) = 9(x,%5y,y).

By (2.7), we see a symmetry in the sense that
9(x,Xy,y) = 9(X,x%¥,y).
We first establish a useful chain of variational relationships.

LEMMA 2.3. Assume that A is symmetric and positive definite. Then the sequence
{(x[P] yPh)} € §m=1 5 §7=1 generated by the scheme (2.9) satisfies the inequalities
(2.12)

g(x[p] , X[FL y[p] , y[p]) S g(x[p] , X[p+1] ; y[p] , y[p]) S g(X[p+1]’ X[p-‘rl] ; y[p] , y[p])
g(x[p+1]7x[p+1];y[p]7y[p+1]) < g(x[erl]’X[pH};y[p+1]7y[p+1]).

IN

The sequence {\(xP), yP)} converges.
Proof. The first inequality follows from the definitions of x[P+1]. That is,

g(x[pljx[p-irl];y[p]’y[p]) - <%(y[p]’y[p])x[p]7x[p+1]>
— ||%(y[p],y[p])x[p]||2 > g(x[P]’X[p];y[p]’y[p])

by the Cauchy-Schwarz inequality. Similarly, by the definitions of yP*!, the third
inequality also holds. Only the second and fourth inequalities need proof. We shall
argue for the second inequality only, as the argument for the fourth inequality is
similar.

Write

(2.13) AxPl — P+ o]
Then
g(Ax[p],x[p“];y[p],y[p]) - g(Ax[p},Ax[p];y[”],y[p]) + g(Ax[p},x[p];y[p],y[p]).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/02/22 to 152.14.136.32 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

S458 MOODY T. CHU AND MATTHEW M. LIN

The first term on the right side is nonnegative because o7 (y"!, y?!) is symmetric and
positive semidefinite. We rewrite the second term as
g(Ax[p],x[p];y[p},y[p]) — X[p]Tﬂ(y[p]’ y[p]) (X[p+1} _ X[p])

[p] v [Phx![P]
T ) oy [ L OPLYPOXT N T el eyl
X (y Y ) (H%(y[”],y[p])x[p”b X (y Y )X

_ (x[p]TM (v, y[p])x[p])% _ x[p]TM(y[pL y7)xlP!.
Observe that
<P o2 (y, y )] (X[p1Td(y[p17y[pl)x[p})2
— X[P]T%(y[,’ﬂ]’ yiP) (1 - X[mx[pf)%(y[p}?y[p])x[p] > 0.
We have thus proved that g(x[P, x[P+1l; ylPl ylPl)y < g(x[P+1 x[P+1]. y[P] yIPl) - Since

the monotone sequence {\(xP!, y")} is bounded, it must converge. |

We next argue that the gaps between successive iterates of {(x[p],y[p])} are di-
minishing to zero.

LEMMA 2.4. Suppose that A is symmetric and positive definite. Then AxP! and
Ayl converge to zero.

Proof. By using the first and the second inequalities in (2.12), we see that the
differences

g(x[p], X[p+1] ; y[p]’ y[p]) — g(x[p] , X[p], y[p] , y[p]) — <$Zf(y[p] , y[p])x[p]7 Ax[p]>7
g(x[p+1]’x[p+1];y[p]’y[p]) — g(x[p],x[p+1];y[p},y[p]) — <,Qy(y[p],y[p])AX[p],X[p+1]>

converge to zero. By the symmetry of o (y!!, y[!), the right side of the second
equation above can be replaced by

<4&7(y[1’],y[p])Ax[p],x[p+1]> — <4&7(y[1’],y[p])x{p+1],Ax[p]>.

Taking the difference, it follows that

(2.14) <£{(y[p]7 y[p])AX[p]’ Ax[p]> 0.
Similarly,
(2.15) (B (xPH xPH) Ayl Ayl .

By the assumption of positive definiteness, the increments AxP?! and Ay[?! converge
to zero. 0

It is well known in algebraic geometry that almost every square system of polyno-
mial equations over the complex field has finitely many solutions [23]. Furthermore,
if F(z;q) is a system of polynomials in both the variables z and the parameters q and
is square in z, then for almost all parameters q the number of isolated solutions® to

6Some clarification on the terminology “isolated solution” is due. Based on [37], a solution x = xg
of F(x) = 0 is said to be “isolated” if the Fréchet derivative F’(x¢) is nonsingular. The “isolation”
therefore is implicitly implied in [52, Theorem 7.1.1]. The solution xo is said to be “geometrically
isolated” if no other solution is in the neighborhood {x|||x — xo < €} for some ¢ > 0. Isolated
solutions are always geometrically isolated, but the converse is not true. A nonisolated solution, e.g.,
a double root, may also be geometrically isolated.
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this polynomial system is finite [52, Theorem 7.1.1]. The phrase “almost all” means
that those values of parameters that fail to produce finitely many and geometrically
isolated solutions constitute a nowhere dense and measure zero subset in the ambient
space. These cases of exceptions are referred to as “nongeneric.”

In our problem, observe that the optimality condition (2.8) constitutes a system
of polynomials in the variables (x,y) with highest degree 5. Any limit point of the
iteration (2.9), if it exists, is necessarily a solution to this polynomial system. The
system is not homogeneous but can be regarded as being parameterized by the matrix
A. Although the problem is structured, recall that the intersection of a nowhere dense
and measure zero subset with any other nonempty open subset remains nowhere dense
and measure zero. Therefore, we may claim that for almost all matrices A in our
problem” the corresponding set of limit points for the iterative scheme (2.9) contains
finitely many and geometrically isolated points. The following definition is for easy
reference later.

DEFINITION 2.5. We say that the matrix A satisfies Condition P if the corre-
sponding polynomial system (2.8) has finitely many and geometrically isolated real-
valued solutions.

THEOREM 2.6. Assume that A is symmetric, positive definite and satisfies Con-
dition P. Then the sequence of the iterates {(xP), yP1)} © S™=1 x §"=1 generated by
the scheme (2.9) converges to a single limit point which satisfies the system (2.8).

Proof. Tt has been established that if a bounded sequence {a;} of real numbers
has the properties that |as11 —as| — 0 as s — oo and that its accumulation points are
isolated, then the sequence {as} converges to a unique limit point. See [13, Lemma 4.3]
and [26, Lemma 2.6]. Under the assumption that A is generic, we already know that
the set of limit points is finite and isolated. We also see in Lemma 2.4 that the
difference between two consecutive iterates diminishes to zero. These two criteria,
i.e., finitely many isolated limit points and diminishing successive increments, are
enough to guarantee the convergence of {(x[?!, y")} to a single point. 0

3. Nonlinear singular value formulation. In the preceding section, the sys-
tem (2.8) has the appearance of an eigenvalue system, albeit the operators < (y,y)
and #(x,x) depend nonlinearly on the unknowns y and x, respectively. We now
consider an equivalent singular value formulation.

Define
(3.1) €(x,y) = reshape(A(x ®y), [n,m]) € R"*™.
Then
(3.2) )\(x,y) = <C€(x,y)x, y),

whose extreme values resemble the variational formulation for the singular values of
the matrix €(x,y). Not surprisingly, we should have the following characterization
of critical points.

"By the fundamental theorem of algebra, the closure of any infinite subset is always dense in
C under the Zariski topology. In particular, R is dense in C. The concept remains true in multi-
dimensional spaces. A real-valued matrix A that fails to produce finitely many and geometrically
isolated solutions is a member in the nongeneric set in the complex field. The collection of such
real-valued matrices is nowhere dense and of measure zero over the complex space. Regarding the
real space as a cross section of the complex space, such a subset is nongeneric over the real space
with respect to the induced measure. This can also be seen from the transversality theorem. In other
words, almost all real-valued matrices A are generic over the real space for our problem.
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LEMMA 3.1. The first-order necessary condition for mazimizing (3.2) under the
unit length constraints is that x and y are the right and left singular vectors of the
matriz € (x,y), respectively. The local minima to (1.14) are attained at singular vector
pairs of €(X,y).

Proof. Using (3.2), the partial gradients of A(x,y) projected onto the unit spheres
Sm=1 and S”~! are given by

(€(x,y) y — (y " €(x,y)x)x),

PI'OjSm—l% = X
(€(x,y)x — (y '€ (x,y)x)y),

2
Projgn-1 % 2

restrictively. Thus, a critical point (x,y) necessarily satisfies the relationship

?(x,y) 'y = (y €(x,y)x)x,

(3.3) .
C(x,y)x = (y ¢x,y)x)y,

which translates to the role of singular vectors for the matrix €' (x,y). At such a
critical point, we also see that A(x,y) plays the role of the dominant singular value
since (3.2) is being maximized. |

Define also the functional h: S™~1 x §"~1 x §m~1 x g~ 4 R by
(3-4) h(x,y;X,y) = (AxQy),x0y) = (€(x,y)X,y),

where the pair (X, y) will be referred to as parameters in the constrained maximization
of h(x,y;X,y). By the symmetry of A, we see that

(3.5) h(x,y;X,y) = h(X,¥;%,¥).
LEMMA 3.2. For anyx,X € S™ ! andy,y € 8" 1, the following identities hold:

h(xv Yy iv y) = g(xv i? Y, y)v
(3.6) C(x,y)xX = B(x,X)y,
C(x,y) ¥ =y, ¥)x.

Proof. The first equation is obvious from the definitions of g in (2.10) and h in
(3.4). We prove the third identity only. With respect to a given z € R™, observe that

(¢ (x, y)T§, z)=(A(x®Yy),zRy) = (A4, (sz) ® (?yT)>
—(R(A), (x22)(y©7)')) = (#(y,7)x,2).

Since z is arbitrary, the identity must hold. 0

It is now clear that, because of (3.6), the condition (3.3) is identical to (2.8). The
difference is that (3.3) is more like a singular value setting, whereas (2.8) is more
like an eigenvalue value setting. It is interesting to note that, though we already are
familiar with the relationship between eigenvalues and singular values of a matrix, in
the context of entanglement via the Kronecker product the equivalence between the
two settings is obtained by simply rearranging the order of multiplication.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 03/02/22 to 152.14.136.32 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

ITERATIVE SCHEMES TO BIPARTITE APPROXIMATION S461

LEMMA 3.3. Assume that A is symmetric, positive definite and satisfies Condi-
tion P. Then the limit point (X,y) of the sequence {(xP,yP)} c §m—1 x gn-1
generated by the power-like scheme (2.9) is a dominant singular vector pair of the
matriz € (X,¥).

To determine the exact number of critical points, i.e., real-valued solutions to the
polynomial system (3.3), is an interesting but challenging question in the realm of
real algebraic geometry. On the other hand, note that the dominant singular vectors
(x,y) of €(x,y) serve only as a local solution to (1.14) (equivalently, (1.15)). To
increase the likelihood of an absolute best approximation, we might need to resort to
some global optimization techniques, which will not be explored in this work. Just
like the nonlinear system (2.8), a solution to the first-order optimality condition (3.3)
is not readily available because the matrix € (x,y) itself depends on x and y. This is
a nonlinear singular value problem. We now propose an interesting numerical method
to handle it.

3.1. SVD-type iteration. The power-like iterative scheme (2.9) is developed
initially on the basis of (2.8). Through the interchangeable relationship (3.6), we can
rewrite the power-like iterative scheme as

X{p"'l] _ (g(x[P]yy[P])Ty[P]
T |E(xPlLyl) Tylpl|5
(3.7) 1] o] [t 1] p=0,1,2,...,
p+1] _— _F(x Y%
y = TPy <P, ?

on the basis of (3.3). Since the two iterative schemes are equivalent, we have exactly
the same dynamics. For instance, in terms of the function h, the first four inequalities
in (2.12) are readily translated to

(3.8)

h(x[p],y[p];x[p],y[p]) (x[p]’ ylPl x[P+1] y[p]) < h(x[pﬂ]’ ylPl x[pH1] y[p])

<h
< h(x[zﬂrl]’y[p];X[p+1]’y[p+1]) < h(x[zﬂrl]’y[p+1];x[p+1]’y[p+1]),
There is nothing new up to this point.

However, since the ultimate goal of the iteration (3.7) is to solve the SVD of
% (x,y), it is appealing to solve (3.3) by directly obtaining the dominant singular
value triplet at every step. That is, employing any dominant singular value triplet
finder, say, the MATLAB routine svds, as a black-box generating function, we propose
a fixed-point iteration

(3.9) (sgn(i[lpﬂ])?[pﬂ], Al sgn(f[lpﬂl)i[“l])
=svds(¢ (x7,¥"),1), p=0,1,2,...,

where sgn is meant to ensure the continuity by keeping the first entry f[lp U of glp+1]

positive. To distinguish the iterates from those power-like iterates described earlier,

we have denoted the SVD-like iterates by (X[P), §P!). It is interesting to note that we

can rewrite (3.9) as an implicit power-like iterative scheme:

Xl = ”;{f((y[“]’] ’y[[p:ll]]))il[?u = ”:Z(i[[?]’y[[?])):y[[pjll]]n ’
yPLyPTE)XP 2 xPLy\h) Ty 2
(3.10) %Pl zlp+1])3(p) <[Pl lplyxlp+1] p=012...,
y[p-i-l] - BxP xlrthylel gl glehxlr

[|B(xP] xlp+1ylrl||, T ||gxP yihx+1]y 0

in comparison with (2.9) and (3.7), respectively.
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The variational property indwelt in the conventional SVD certainly gives rise to
an optimality property for the scheme (3.9). Using the Berge’s maximum theorem,
we gain some additional insight which is characterized as follows. Regarding (X,y) as
parameters in (3.4), the maximum value function

(3.11) pEy) = max  h(x,y;Xy)
xeSm—1 yeSn—1

is well defined and continuous, and the so-called optimal policy correspondence
(3.12) EXY) = {(xy) € 5"t x S"Hh(x,y;X,¥) = p(X,¥)}

is nonempty, compact valued, and upper hemicontinuous.® Based on the variational
property of the SVD, the scheme (3.9) can be interpreted as a fixed-point iteration of
the two maps p and =:

A+ = (X[P] ,yPl ) ,

(3.13)
(i[pﬂ] , y[p+1]) c E(i[p],?[p]).

In fact, by the continuity property inherited in the SVD, we can choose the repre-
sentative (x,y) in Z(X,y) so that the pair of singular vectors (x(X,y),y(X,¥)) varies
continuously in (X,y). In this way, the set-valued correspondence = is interpreted as
a “map” of (X,y). Furthermore, for parameters (X,y) where the dominant singular
value u(X,y) of €(x,y) is simple, it can be proved that the singular value function
w(X,y) is analytic 7, 63].

We have already explained that the subset of matrices satisfying Condition P is
open and dense [23, 52]. It is also an established fact that symmetric matrices with
multiple eigenvalues form an algebraic variety of codimension 2 [17]. Together, we
conclude that matrices whose largest singular value is simple form an open and dense
subset. Thus, similar to Condition P, the matrices satisfying Condition S defined
below are generic.

DEFINITION 3.4. We say that the matriz A satisfies Condition S if the corre-
sponding polynomial system (3.3) has finitely many, isolated, real solutions and that
the associated € (x,y) has simple dominant singular value.”

We now concentrate on the action of = on the parameters (X,y) and the selection
of the parameters to maximize the maximum value function pu(X,y).

LEMMA 3.5. Under Condition S, the parameters that mazimize u(X,y) must sat-
isfy the system of equations:

CEXY)y=F"E(
CEXY)X = CERY)XY

w
w
S/Z
&
E

(3.14)

Proof. Under Condition S, we may assume that the optimal policy correspondence
E(X,y) is continuous. By the envelope theorem [2, 53], the change in the maximum

8That is, = is a set-valued correspondence that maps any sequence that converges to (X,y) to
a convergent sequence with its limit point in Z(X,y), but those sequences are not guaranteed to
produce all possible Z(X,y) as their limits.

9Corresponding to the same dominant singular value, the singular vectors can be the same or
antipode to each other. The sign check entailed in the algorithm ensures that antipode is ruled out.
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value function is given by the partial derivative of the Lagrangian with respect to the
parameters. Since the constraint S™~! x S”~! is independent of the parameters, we
conclude that the gradient of u(xX,y) is given by

IuEy) _ Oh(EREF) K, 2xy)'y
(3.15) o = SEGYEY — 6 (ER )Y
. A(XY) _ Oh(EEF)XF 2(X,¥))X

(ayy) _ on( 83? Y) - 4(E(%,5))X.

Taking into account the constraints that x € S™ 1 and y € S™~!, u(X,y) reaches
its maximum when its projected gradient vanishes, which is exactly the system of
equations given in (3.14). ad

COROLLARY 3.6. Under Condition S, suppose that (X,y) is a mazimizer of the
mazimum value function p. Then

(3.16) EE®Y) = %Y).
Proof. The optimality condition (3.14) for u(X,y) asserts that the pair (X,y)
itself is the dominant singular vectors of €(2(X,y)). ad

Recall that if A is symmetric, positive definite, and satisfies Condition P, then
the power-like scheme (2.9) is guaranteed to converge by Theorem 2.6. Its limit point
(X,¥), according to the reformulation (3.7), forms the pair of the dominant singular
vectors of €(X,y). It follows that

(3.17) Exy) = (%)
and that the criteria in Lemma 3.5 are met. In this case,
(3.18) n(x,y) = h(x,y;X,y)

is a maximal value.'® However, at the moment, we have proved only that the maxi-
mizer (X,y) of the maximum value function p satisfied the composition relationship
(3.16). It is not clear whether such a pair is a fixed-point for the map = alone because
the limiting behavior of the new SVD-based iteration (3.9) (or any of the equivalent
schemes (3.10) and (3.13)) has not been proven to converge yet.

3.2. Convergence analysis. In contrast to the power-like iterative scheme (2.9)
which is explicit, the sequence {(i[”],y[”])} satisfies an implicit relationship (3.10)
and is obtained through a black-box fixed-point iteration (3.9). Thus, it is even more
imperative to understand its limiting behavior. Similar to Theorem 2.6, we shall argue
ultimately that the positive definiteness of A plays a critical role.

Even without the positive definiteness of A, the convergence of the dominant
singular values is quite straightforward by using the properties of h.

LEMMA 3.7. Given any symmetric matriz A € R™™ ™" the sequence {\IP!} gen-
erated by the scheme (3.9) is monotone nondecreasing and, hence, converges.

Proof. Observe that for p > 0,

)\[p-‘rl] — ’u(i[iv]’y[l)]) — h(i[P-‘rl]7y[11+1];§[11]7y[1)])
(3.19) = h(i[p]7y[p];§[p+1]7y[p+1]) < M(f[l"‘rl]’y[lﬂ‘l]) = \lP+2]
Since {AP1} is bounded above by ||A| r, it must converge. d

10We remark that the maximum of the functional h occurs at the “diagonal” of its domain, i.e.,
the first set of variables is identical to the second set of variables. This is a special case of the
so-called symmetric criticality [49].
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If the equality APT1 = AlP+2 ever happens for the first time at a finite value
of p in (3.19), then the singular vector pair (i[p+2],?[p+2]) associated with the dom-
inant singular value APt2 of the matrix ¢(XP+1 §P+1) in (3.9) can be taken to
be the singular vector pair (i[P],yU’]) already in existence. Since the pair (i“’},y{p])
is used in € (P, §P1) to generate the next iterate (XPFU §lP+1) the iteration may
become cyclic between (XP!, 7?1) and (xlP+1 3P+ or stays invariant for any further
processes.

Still under the assumption that A is symmetric only, together with Condition S,
we observe the optimal values of the accumulation point as follows.

LEMMA 3.8. Suppose that A is symmetric and generic in the sense of satisfying
Condition S. If (Ro,¥o) is an accumulation point of the iterates {(XP), ¥P1)} gener-
ated by (3.9), then both (Xo,¥0) and E(Xo,¥o) are maximizers of the mazimum value
function u(X,y) with the same optimal value.

Proof. Let {(xPi], §[Pi])} be a convergent subsequence such that
lim (%Pl yPily = (%0, 30).
Jj—o0
Then, by continuity,

(R0, ¥o) = lim p(xP gPol) = tim APt =),
J—o0 J—00

where A is the limit point guaranteed by Lemma 3.7. By the definition of u, the pair
(X1,¥1) at which the maximum

(3.20) (X0, ¥o0) = h(X1,¥1; X0, ¥o)

is attained must be the singular vectors associated with the dominant singular value
A of the matrix €' (X, ¥o)-

By the algorithm (3.9), the subsequence { (%P1 FPi+1)} consists of the singu-
lar vectors of the convergent subsequence {%(XPs], §Pil)}, so it must also converge.
Under Condition S, the dominant singular value triplet is unique. So it must be the
case that

lim (2P gty = (%, 31).
]4)00

We may repeat this process and conclude that

(3.21) lim (%P2 P2y = (%5, 2),

Jj—o0
where the pair (X2,¥2) is the dominant singular vectors of the matrix € (X1, y1) with
the same dominant singular value A. On the other hand, observe that the relationship
(3.20) can be expressed as
?I%(ﬁoay\())il = /\a
Yo €(X1,¥1)%0 = A
Since \ is the dominant singular value, we see that the pair (Xg,yo) is also the dom-

inant singular vector pair of € (X1,y1). By uniqueness, it must be that (Xo,¥0) =
(X2,¥2). We thus conclude that

(3.22) {5@07?0) = (X1,¥1),
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In particular, we have established the relationship

C(E(Re,50)) 50 = ARe,
(3.23) TR =,
C(E(Xe,¥0))Xe = Ay,

which implies, by Lemma 3.5, that (Xo,¥o) and (X1,y1) are maximizers for the max-
imum value function u(X,y) with optimal value A. |

It is worthwhile to point out that the argument used in Lemma 3.8 for the
subsequence {(XPi+2 ylPit2)} can actually be extended to {(xPs+4 glPs+d)} for
{=3,4,... and, hence,

(3.24) lim (i[pj +4 ; y[Pj +5}) _

j—o0

(Xo,¥0) if £is even,
(ﬁl, ?1) if £ is odd.

Since the collection {p; + ¢|7,£ = 0,1,2,...} contains all integers greater than or
equal to pg, we become curious about whether there are other accumulation points.
In our numerical experiments, we have observed persistently that the iterates have
at most two accumulation points if A is only symmetric. However, we do not have a
mathematical proof at present.

We do claim that if, in addition, A is positive definite, then there is only one accu-
mulation point. Toward that end, we first extend Lemma 3.7 to show the interlacing
of AP, 3Py and pu(xP!, 3.

LEMMA 3.9. Suppose that A is symmetric and positive definite. Then
(3.25) )\(i[p},y[”]) < AP < )\(i[p+l}7y[19+1]) < )\[p+2]’

or equivalently

(3.26) h(g[p],y[p];i[p]’y[pb < h(i[p+1]7y[l)+1];i[?]’y[P])
<h (i[erl] , y[l’+1] : g[lﬂrl] , y[P+1])
<h (K[P+2] ; y[l)-‘rQ] : xp+1] , y[]’""l]) .

Proof. The first inequality follows from the fact that
’u(i[p]’y[p]) - h(i[pﬂ]7y[p+1];§[p]’y[p]) — )\[p+1]

is the global maximum per given parameters (i“’],y[f’]). The third inequality can be
argued similarly. It only remains to prove the second inequality.

Introduce the abbreviations a := X+ @ P+ and b := xP! @ ¥ and rewrite
the difference

A(i[p-%l]’y[p-i-l]) _ u(i[P],y[P]) = (Aa,a—b).
Observe that if A is symmetric and positive definite, then we have
0<(A(a—b),a—b)=(Aa,a) + (Ab,b) — 2(Aa,b).

Therefore,
<Aa a— b> > <Aaa a> _ <Ab7b>
) - 2 .
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To prove the second inequality, it suffices to prove
(3.27) /\(i[p+1]7§[p+1]) _ /\(i[p]’y[p]) > 0.
Let f: R™ — R denote the quadratic form
f(w) = (Aw, w).
Because A is symmetric and positive definite, the level sets
{w € R™|f(w) = c}

form a family of concentric hyperellipsoids in R™". The higher the level ¢ is, the
larger the ellipsoid becomes. Regarding the vectors a and b as two special points in
R™" we are interested in comparing which levels of hyperellipsoids they reside on.
To show (3.27) is to show that a is at a higher level than b. Observe that

(a—b,Vf(b)) = (a—b,Ab) = h(i[zﬂrl]’y[pﬂ];i[p]’y[p}) _ h(i[P],y[l’];i[P],y[F]) >0,

implying that the vector a—Db is forming an acute angle with the steep ascent direction
V f(b) at the point b. That is, the point a is indeed pointing outward and, hence, at
a higher level than b. The second inequality in (3.26) is therefore proved. ]

THEOREM 3.10. Suppose that A is positive definite and satisfies Condition S.
Suppose also that the sequence {\P} is strictly increasing. Then the iterates {(XP,
yP1)Y generated by the scheme (3.9) converge.

Proof. Rewrite
(a—b,A(a—Db)) = ((a, Aa) — (a, Ab)) — ((a, Ab) — (b, Ab)).
Therefore, by the interlacing property and Lemma 3.7, we see that
xPtl @ ylrtt] _ xlPl @ 3Pl 5 .

Defining
AxWP = xP1 _ %Pl
Ayl = ylpt1l _ el

it can be verified that

=1 ] - X 6 g = AR + AFPI - I Ax 3] Ay
Therefore, we find that AXP! and Ay converge to zero. Using an argument sim-
ilar to that in Theorem 2.6, these are sufficient to guarantee the convergence of
{(xlP! FlPl)y, O

4. Numerical experiments. Now that we have completed the theory for the
bipartite systems, it is illuminating to consider a few numerical experiments in this
section to further demonstrate the working of the two methods we have proposed in
this paper. The following experiments are performed on a Windows 10 Pro desktop
with Intel Core i7-8700 @ 3.20GHz processor and 8GB RAM by using MATLAB,
version 2019a, as the computing platform.
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Evidence of Multiple Local Maxima of A Evolution of Interlacing h Values
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Fic. 4.1. Distribution of optimal A values and dynamics of h values.

Example 1. Consider the scenario where A € R89%®0 is a randomly generated
symmetric and positive definite matrix with unit trace and search for unit vectors
x € R and y € R® to maximize (1.15). We carry out the iteration in the SVD
scheme (3.9) until the difference between two consecutive iterates is less than 1071V,
With this fixed A, we repeat this experiment 200 times with randomly generated
starting values.

We find in one of the test data that the iterates produce nine optimal values,
each of which can be reached with significant probability, as shown in Figure 4.1(a),
where the frequency of occurrence is marked along the left margin in the horizontal
histogram. Such a phenomenon should not be a surprise because we are dealing with
a nonconvex optimization problem. Multiple local maxima are normally expected for
nonlinear optimization problems. What is not clear is how the number of optimal
values, which is nine in this case but may vary in other cases, depends on the problem
data A. This question concerns the real-valued solutions to the polynomial system
(3.3), which is an important subject in the realm of real algebraic geometry.

The interlacing property (3.26), which is essential to our proof of convergence, is
manifested by the right graph in Figure 4.1(b). The result is from only one run of the
iteration but is typical in all other runs. For clarity, we display the evolution of the h
values defined in (3.4) for the first 30 iterates only. Stacked vertically on top of each
other for each p and gradually increased to a common limit point are the first three
h values in (3.26), where the variables are updated one pair at a time.

Example 2. While developing the convergence analysis for both iterative schemes
is of theoretical interest in its own right, ultimately it is of practical significance to
compare the performance of the power-like iteration (2.9) and the SVD-like iteration
(3.9) against some of the existing constrained optimization packages. Since we employ
MATLAB as the computing platform, we adopt the various solvers available in the
MATLAB Optimization Toolbox for comparison.

Some precautions should be taken when conducting such an experiment. First,
one iteration in each method may mean significant disparities in the complexities. One
iteration of the power-like scheme (2.9) clearly is straightforward, but one iteration of
the SVD-like scheme (3.9) involves many iterations within the Lanczos algorithm used
by svds, whereas one iteration reported by the MATLAB Optimization Toolbox may
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involve many bookkeeping and internal chores of which a precise account of cost is dif-
ficult. Second, because each method, including the different solvers within MATLAB,
has its own special characteristics, there is no obvious way to impose absolutely fair
and unified stopping criteria. To maintain a reasonable degree of fairness, we make
our comparison by imposing the following specifics across all methods:
1. For test data, we randomly generate a list of density matrices of sizes n? x n?
with n = 5,10, 20, 40, respectively, and look for the unit vectors x and y €
S"~1 that maximize (1.15).
2. For each size of the test data, We repeat our experiments with 20 different
starting values, while applying the same initial values to all methods.
3. For each method, we terminate the iteration whenever the first-order opti-
mality condition approximated by the calculation

<1078

F

X

€ (xlPH1 ylp 1) Tyt _ \[p+1xlp+1]
€ (xpH1 ylet)xp1] _ \lp+H]y[p+]

is satisfied.

4. We compare our two iterative methods with the conventional MATLAB rou-
tine fmincon employing solvers sqp, interior-point, and active-set, respectively.
For these solvers, we choose the parameter

OptimalityTolerance = 10~8

as the secondary stopping criteria. Also, it might be redundant for other
solvers, but the active-set method requires a box constraint that all variables
are bounded in the interval [—1,1].

We first report the achievable optimal A values. The left diagram of Figure 4.2(a)
suggests that all five methods return approximately the same (multiple but dis-
crete) optimal values with the exception that the active-set algorithm returns inferior
(smaller) optimal values when the test matrix is of size 1600 x 1600. In that case,
if we disregard the results obtained by the active-set algorithm and zoom in the re-
maining four results, then we see further details in the right diagram of Figure 4.2(a).
First, it seems that there are multiple optimal values, but they are clustered around
1073, Are these actual different values or are they simply computational artifacts?
To address this question, we demand a high precision by refining the stopping criteria
to 10714, Depicted in Figure 4.2(b) is the result by the SVD-like method under the
more stringent stopping criteria, which yields almost the same number of optimal so-
lutions as that under more the more relaxed stopping criteria. Thus, these clustered
A values are indeed distinct but close-by optimal values. Second, there is a consid-
erable overlap of achievable optimal values by all methods, confirming that these are
valid optimal values. However, there are also values attained by one method but not
by others within the 20 trials, even though all methods start with the same initial
values. This might have something to do with the innate features unique to different
algorithms.

Our codes are direct implementation of the schemes (2.9) and (3.9). They are not
as fine tuned as those carefully coded routines in the MATLAB Optimization Tool-
box. However, the above observations suggest that our simple schemes are as capable
of finding a maximizer for (1.15) as those more sophisticated methods employed in
the MATLAB Optimization Toolbox. The next question is which method is more
efficient.
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Fic. 4.2. Comparison of optimal X values.

The most objective means for gauging the computational complexity used to be
directly counting the theoretical number of floating-point operations (flops). How-
ever, given advanced computing technologies and highly optimized computer software
libraries, counting flops is no longer a good indicator to measure the efficiency of
an algorithm. Instead, we compare the overhead by measuring the elapsed time
taken by the underlying method to finish the task, i.e., from starting the iteration
to meeting the stopping criteria. For fairness, we do not count the time needed to
prepare the data. Neither do we furnish analytic Hessian information to some of the
MATLAB solvers. For calls of routines such as svds or fmincon, which are already
highly optimized, we simply measure the time around the calls without interfering
with any internal maneuvers. Depending on the loading of the CPU, the time mea-
surement might fluctuate. So, for each of the methods and each of the dimensions, we
repeat the experiment 20 times with randomly generated starting values and measure
the CPU time individually. We understand that the face value of time measurement
is machine dependent, but the trend should be generally indicative.

The performance in terms of the CPU time is depicted in Figure 4.3. We see that
for bipartite systems of sizes up to n = 20, the power-like method not only provides a
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Comparison of Elapsed Time
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Fi1c. 4.3. Comparison of elapsed time (20 runs per n).

good approximation but requires relatively less time to reach the state of convergence.
On the other hand, the time needed by the SVD-like method seems to grow slowly
as the sizes of the matrices increase. For the case of n = 40, in almost all trials, it
requires one order less time than the other four methods (the active-set method is
no longer competitive because it returns a smaller optimal value as is seen in the left
diagram of Figure 4.2(a)) to reach convergence.

Example 3. We point out in (1.17) that our problem can be cast as a fourth-order
rank-1 approximation problem with shared factors. In this example, we compare our
methods with the various solvers available in the Tensorlab toolbox which is designed
to handle such a structure effectively. To our knowledge, the current release of the
Tensorlab toolbox has not yet implemented the mechanism to compute the norm of
the gradient iterate by iterate. Thus, the option OptimalityTolerance is not available.
We modify our test as follows.

1. For n = 5,10, 20,40, we randomly generate an exact, separable, unit trace,
rank-1 matrix A € R" *"* which is then converted via 2 := reshape(vec(Z(A),
[, n,n,n]) to an order-4 tensor to be used as the target matrix. Consequently,
an ideal calculation should have produced a nearly zero residual in (1.17) with
optimal value A =~ 1.

2. We compare our two methods with the built-in solvers nls, als, and minf in
the Tensorlab toolbox, which invoke the nonlinear least squares, the alternat-
ing least squares, and the unconstrained nonlinear optimization techniques,
respectively.

3. We use the option model.factorizations.symm.cpd = {'A’, 'A’, 'B’, 'B'} in the
Tensorlab toolbox to specify the symmetric structure embedded in (1.17).

4. To stay compatible with the Tensorlab toolbox, we adopt the function toler-
ance, TolFun = 1078, as the stopping criteria. However, note that the Tensor-
lab toolbox gauges only the relative changes of function values with respect
to the starting residual, whereas we measure the absolute residuals.

5. We repeat our experiments with 20 different starting values, while keeping
the same target matrix 2 and starting values for all methods.

In Figure 4.4(a), we plot the final residual values obtained by the various methods.
It should be obvious that our SVD-like scheme consistently produces nearly perfect
approximations as the solver als does in all tests and the power-like method comes to
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FiG. 4.4. Performance comparison.

the second. However, when we compare CPU time need to meet the stopping criteria,
the results plotted in Figure 4.4(b) clearly indicate that our two methods have better
efficiency than any of those solvers currently available in Tensorlab.

5. Conclusion. Quantum entanglement is an indispensable resource for many
salient applications as it is capable of delivering fast, concurrent, and secure commu-
nication in quantum computing. One critical task in the construction of a quantum
system is to measure the “absolute gap” between a mixed state and its nearest sep-
arable state. The nonlinearity due to the entanglement among subsystems over the
complex field makes the task extremely challenging. This work investigates the en-
tangled problem over the real field as an important first step toward this endeavor.

The rank-1 approximation to bipartite systems is recast in the form of a nonlinear
eigenvalue problem and a nonlinear singular value problem. A power-like iteration
and an SVD-like iteration are proposed as numerical means to tackle these prob-
lems, respectively. These methods bear only a resemblance to the conventional power
method and the SVD method, but the iterative schemes are nonstationary and non-
linear in nature. This paper focuses on analyzing the limiting behavior of these two
methods. Convergence is guaranteed under generic conditions. Implementation of
the proposed iterative methods is straightforward, but experimental results suggest
that they are favorably comparable in both precision and efficiency with the more
sophisticated optimization routines available in the MATLAB Optimization Toolbox
and Tensorlab.

This study serves as the building block for the low-rank approximation to the
general entangled systems. Future work includes a generalization of the theory to
low-rank approximation to bipartite systems, to the general multipartite systems,
and ultimately to systems over the complex field.
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