
DYNAMICAL SYSTEM CHARACTERIZATION OF

THE CENTRAL PATH AND ITS VARIANTS — A REVISIT

MOODY T. CHU∗ AND MATTHEW M. LIN†

Abstract. The notion of central path plays a fundamental role in the development of interior point methods which,
in turn, have become important tools for solving various optimization problems. The central path equation is algebraic
in nature and is derived from the KKT optimality conditions of a certain logarithmic barrier problem; meanwhile, the
primal variable portion of the very same central path can also be cast precisely as the integral curve, known as the affine
scaling trajectory, of a certain gradient-type dynamical system. The justification is easy to establish in the context of
linear programming. Though expected, the generalization of such a concept to the semi-definite programming is not
quite as obvious due to the difficulty of addressing non-commutativity in matrix multiplication. This paper revisits
the dynamical system characterization of these flows and addresses the needed details for extension to semi-definite
programming by means of a simple notion of operators and specially defined inner product. From a dynamical system
point of view, numerical ODE techniques might help to develop some novel interior point methods.

Key words. linear programming, semi-definite programming, central path, interior point method, projected
gradient, dynamical system, affine scaling trajectory

AMS subject classifications. 37B35, 37N40, 90C22, 90C51

1. Introduction. Under the assumption of strong duality, the central path in either the linear
or the semi-definite programming paradigm is typically characterized by a coupled algebraic system,
called the central path equation, which arises from the optimality conditions for a certain family of
parameterized logarithmic barrier problems. The essence in the now well studied and prevalent interior
point methods is to approximately track points on the central path as the parameter is decreased to
zero. The literature on interior point methods, both in theory and practice, is abundant. We mention,
far from being exhaustive, only a few classic reference books [3, 7, 14, 19, 20] in this area.

We envisage the idea that if the central path itself can be characterized as the integral curve
of a certain differential system, then the notion of path-following and convergence analysis might be
ruminated from the numerical ODE point of view. To save the computational overhead, of course, it
would be particularly desirable to describe the curves for the primal and the dual variables without
making reference to each other. The purpose of this paper is to revisit this notion in the context of
linear programming and to extend the idea to semi-definite programming. The latter task has not
been obvious thus far because of the difficulty in addressing the non-commutative nature of matrix
operations.

We intend to bring forward two facts in this presentation. Firstly, we argue that, with a specific
way of diminishing the barrier parameter to zero, the primal variable portion in the central path
is precisely the same as the so called affine scaling trajectory. Such an identification is realizable
only if the barrier parameter is varied in an idiosyncratic manner. The unique and continuous way
of transforming the barrier parameter is different from the well established strategy in practice of
iteratively adapting the parameter to enhance the computational efficiency, but it unifies in theory the
concepts of central path and affine scaling trajectory. Secondly, we argue that, not just symbolically,
but in a mathematically rigorous justification, the same notion of projected gradient can be generalized
from the linear programming to the semi-definite programming. By introducing a suitable operator to
accommodate the non-commutativity of matrix multiplication, we are able to characterize the matrix-
valued affine scaling trajectory for the semi-definite programming problem in a way that is extremely
similar in appearance to that for the linear programming problem.

∗Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205. (chu@math.ncsu.edu).
This research was supported in part by the National Science Foundation under grants DMS-0732299 and DMS-1014666.

†Department of Mathematics, National Chung Cheng University, Chiaya 62012 Taiwan. (mlin@math.ccu.edu.tw).
This research was supported in part by the National Science Foundation under grants DMS-0505880 and DMS-0732299.

1



2. Preliminaries. To set the background information, we begin with a brief review of the central
path for a linear programming (LP) problem in the primal standard form

PL :

{
minimize c⊤x,

subject to Ax = b, x ≥ 0,
(2.1)

together with its corresponding dual standard form

DL :

{
maximize b⊤y,

subject to A⊤y + s = c, s ≥ 0,
(2.2)

where c, x ∈ R
n, A ∈ R

m×n, b ∈ R
m, s ∈ R

n and m < n. It is convenient to identify a vector v with
the diagonal matrix V := Diag(v) and vice versa. With the introduction of the logarithmic barrier
function

f(X) = − ln det(X) (2.3)

for any symmetric and positive semi-definite matrix X , the interior point method reformulates the
primal and the dual LP problems as

BPL(µ) :

{
minimize c⊤x + µf(X),

subject to Ax = b, x ≥ 0,
(2.4)

and

DPL(µ) :

{
maximize b⊤y − µf(S),

subject to A⊤y + s = c, s ≥ 0,
(2.5)

respectively, where again BPL(µ) and DPL(µ) are the Lagrangian dual to each other. By the theory
of Lagrange multipliers, we see that the triplets (x,y, s) at the optimal solution to these logarithmic
barrier problems are roots of the function F : R

n × R
m × R

n × R → R
n × R

m × R
n defined by

F (x,y, s, µ) :=





A⊤y + s− c

Ax − b

XS − µI



 . (2.6)

The equation F (x,y, s, µ) = 0, subject to the constraints x ≥ 0 and s ≥ 0, is known as the central path
equation (CPE). Assume that A is of full row rank and that feasible sets of (2.1) and (2.2) contain
interior feasible points. Then for each positive µ, there is a unique solution (xµ,yµ, sµ) to the CPE.
Indeed, these solutions form an analytic path as is guaranteed by the implicit function theorem.

The most effective interior point methods do not follow the central path closely. Instead, they
act in a neighborhood of the central path. Take the primal-dual algorithm as an example [15, 19].
The basic strategy is to take “some” Newton steps towards the minimizer of BPL(µ) for each fixed
parameter µ > 0, intending to approximately solve the CPE until a specified proximity criterion is
satisfied. The beauty is that if the parameter µ is decreased to zero in a certain specific way and the
iteration repeats, then often one single Newton step is all needed in the computation and convergence
in polynomial time can be achieved. Such a path-following mechanism is similar in spirit to but
different in practice from tracking the central path by means of some numerical ODE techniques. The
latter idea is closer to the notion of affine scaling algorithms which will be explored further in the
subsequent discussion.

2



For the matter of clarity, we stress hereby that the term “trajectory” refers to the integral curve
of a certain differential system. This trajectory is to be distinguished from the sequence of iterates
generated by any path-following algorithms. Being an analytic curve, the central path is governed by
the differential equation




0n×n A⊤ In 0n×1

A 0m×m 0m×n 0m×1

S 0n×m X −en





︸ ︷︷ ︸
A(x,µ)





ẋ

ẏ

ṡ

µ̇



 = 0, (2.7)

where the derivative ˙= d
dt

is taken with respect to some scalar variable t parameterizing the central
path and en ∈ R

n stands for the column vector of all 1’s. Owing to the relationship XS = µIm,
the coefficient matrix in (2.7) depends on (x, µ) only. Let n(x, µ) denote a basis of the null space of
A(x, µ). Without loss of generality, we may normalize the last entry and assume

n(x, µ) :=





n1(x, µ)
n2(x, µ)
n3(x, µ)

1



 . (2.8)

It is then legitimate to claim that the path (x(t), µ(t)) is characterized by the self-contained dynamical
system

{
ẋ = α(t)n1(x, µ),
µ̇ = α(t),

(2.9)

where α(t) can be any continuous function such that the corresponding solution µ(t) stays positive
and decays to zero. One such an example is α(t) = −µ(t), but we are interested in a more special one
which will be described later.

Suppose that x(0) is feasible. It is known that if µ(t) decreases to zero, then so does the value
c⊤x(t) decrease to the optimal objective value for the LP [20, Theorem 2.17]. The solution x(t) to the
differential system (2.9), which represents only the primal portion of the “full” central path, therefore
is inherently a descent flow on the affine subspace of solutions to Ax = b. We can characterize the
vector field on the right side of the dynamical system (2.9) more definitively as we shall derive its
closed form below.

2.1. Projected Gradient Flow. For each fixed parameter µ > 0, we describe two kinds of
gradient flows that link the central path to the so called affine scaling trajectory.

We first introduce the steepest descent flow. Denote the objection function of the BPL(µ) for
each fixed parameter µ by

φ(x; µ) = c⊤x − µ ln det(X). (2.10)

Trivially, we have

∇φ(x; µ) = c − µX−1e. (2.11)

The flow x(t; µ) defined by the negative projected gradient

ẋ := − (I − A⊤(AA⊤)−1A)︸ ︷︷ ︸
PN(A)

(c − µX−1e), (2.12)

3



where PN (A) denotes the projection operator onto the null space N (A) of A, therefore characterizes
the steepest descent movement for φ(x; µ) on the feasible set. Note that PN (A) is positive semi-
definite. Any zero main diagonal entry of PN (A) must lie on a zero row and column. It follows that
except for the degenerate case, if xi is sufficiently near zero, then by (2.12) we shall have ẋi > 0.
In other words, x(t; µ) cannot converge to a boundary point. Rather, x(t; µ) converges to a local
minimum of φ(x; µ) which, by convexity, is the unique xµ on the central path,

Example 1. Consider the case A = [1, 2], b = 2, and c = [1, 1]⊤. Then the projected gradient
flow is given by

{
ẋ1 = − 2

5 (1 − 2µ
x1

+ µ
x2

),

ẋ2 = 1
5 (1 − 2µ

x1
+ µ

x2
).

Upon the substitution by x1 = 2 − 2x2, it suffices to consider

ẋ2 =
1

5

(
1 + µ

1 − 2x2

x2(1 − x2)

)
, 0 < x2 < 1.

Suppose 0 < µ < 1. Then ẋ2 ≶ 0 if x2 ≷
1−2µ+

√
1+4µ2

2 = 1 − µ + µ2 + O(µ4), implying that x2(t) is
being pushed away from the boundary points 0 and 1, and converges to an equilibrium.

We next introduce a scaled gradient flow. Given an interior feasible point x̂, define the transfor-
mation (of scaling)

w := X̂−1x (2.13)

and reformulate the LP in terms of the variable w. In particular, the objection function for the
BPL(µ) becomes

φ(x; µ) = θ(w; µ) := c⊤X̂w − µ ln det(X̂W ). (2.14)

Note that the function θ is well defined because X̂W remains diagonal and positive. The gradient of
θ at e in the w-space is given by

∇θ(e) = X̂c − µe. (2.15)

Similar to (2.12), the negative projected gradient at e

ẇ|w=e := − (I − X̂A⊤(AX̂2A⊤)−1AX̂)︸ ︷︷ ︸
P

N(AcX)

(X̂c − µe) (2.16)

points to a feasible and steepest descent direction for θ(w; µ) at e. Pulling this vector back to the

x-space, we obtain a descent direction X̂ẇ|w=e, but not necessarily the steepest, for the objection
function φ(x; µ) at x̂. Applying this procedure continuously to every interior feasible point, we thus
obtain a new dynamical system

ẋ := −X
(
I − XA⊤(AX2A⊤)−1AX

)
(Xc− µe), (2.17)

whose solution x(t; µ) stays feasible and moves to decrease the objection value φ(x; µ).
Example 2. Using the same data as in Example 1, the system (2.17) gives rise to the differential

system




ẋ1 = −2x1x2(x1x2−2x2µ+x1µ)

x1
2+4x2

2 ,

ẋ2 = x1x2(x1x2−2x2µ+x1µ)
x1

2+4x2
2 .

4



Equivalently, after substitution, we have the stand alone system

ẋ2 =
(−1 + x2)x2

(
−x2 + x2

2 + 2x2µ − µ
)

1 − 2x2 + 2x2
2

for x2. It is easy to check that the system has the property that ẋ2 = 0 at x2 = 0, 1, but ẋ2 ≶ 0 if

x2 ≷
1−2µ+

√
1+4µ2

2 . Thus, even though x2 = 0, 1 are equilibria points, they are repellers. Still, x(t; µ)
converges to an interior equilibrium point which is xµ.

2.2. Relating Central Path to Gradient Flow and Affine Scaling Trajectory. The
“phase portraits” of the three dynamical systems, (2.9), (2.12), and (2.17) discussed thus far can
be depicted in Figure 2.1. We use the vertical axis to represent the barrier parameter µ and the
horizontal plane to represent the overly simplified feasible set in R

n for the primal variable x. For
each fixed µ, the green curve represents the trajectory of the projected gradient flow defined by either
(2.12) or (2.17). The flow converges to the unique point xµ on the central path defined by (2.7).
Based on these projected gradient flows, we consider two possible scenarios when letting µ decrease
to zero.

central path with µ̇ = −µ2

gradient flow with fixed µ1

affine scaling trajectory

x ∈ R
n

µ

µ1

xµ1

x∗

Fig. 2.1. Central path, gradient flow, and affine scaling trajectory

In the first scenario, observe that the vector field in either (2.12) or (2.17) is continuous in the
parameter µ. By the theory of continuous dependence on initial data and parameters in ODE, we
know that

lim
µ→0

x(t; µ) = x(t; 0).

The corresponding dynamical systems to (2.12) and (2.17) are reduced, repectively, to

ẋ := −(I − A⊤(AA⊤)−1A)c, (2.18)

and

ẋ := −X
(
I − XA⊤(AX2A⊤)−1AX

)
Xc, (2.19)

respectively.

5



The first projected gradient system (2.18) is trivial because its right hand side is a constant vector.
Unless PN (A)c = 0 to begin with, its solution flow x(t; 0) = x0 − t(I − A⊤(AA⊤)−1A)c moves in a
fixed direction until it reaches the boundary, that is, some entries become zero. Even at this optimal
point, the projected gradient is not zero.

The solution flow x(t; 0) corresponding to the second system (2.19) is more interesting. It is
precisely the so called affine scaling trajectory discussed in [5, 6]. It can be argued [5, Lemma 4.2]
that, if PN (A)c 6= 0, then ẋ 6= 0 at every interior feasible point x. The flow therefore has to move
asymptotically toward the boundary of the feasible set. Its limiting behavior can be derived from
the general framework of weighted primal affine scaling trajectory (w-PAS) discussed in [1]. Though
both are descent flows, the fundamental difference between (2.18) and (2.19) is that, starting with
an interior feasible point, the former flow will hit the boundary in finite time whereas the latter flow
stays in the interior of the feasible set for all t.

In the second scenario, we turn to the task of more specifically characterizing the vector field for
the dynamical system (2.7) that sets apart the central path.

Theorem 2.1. The triplets (x,y, s) in the central path defined by the optimality condition
F (x,y, s, µ) = 0 with F given by (2.6) are governed by the dynamical systems,

ẋ =
µ̇

µ2
XPN (AX)Xc, (2.20)

ẏ =
µ̇

µ

(
y − (AX2A⊤)−1AX2c

)
, (2.21)

ṡ =
µ̇

µ
A⊤(AX2A⊤)−1AX2s, (2.22)

respectively, where the choice of µ̇ can be arbitrary.
Proof. For the convenience of reference, we rehash (2.7) in its block form

A⊤ẏ + ṡ = 0, (2.23)

Aẋ = 0, (2.24)

Sẋ + X ṡ = µ̇e (2.25)

and proceed to solve for the derivatives in closed form.
By (2.23), we know that ṡ is in the range space R(A⊤) of A⊤ and, thus, X ṡ ⊥ N (AX). Note

also that, by (2.24), X−1ẋ ∈ N (AX). Rewrite (2.25) as µX−1ẋ+X ṡ = µ̇
µ
Xs and apply the projector

PN (AX) to its both sides. By the fact that (AX)⊤y+Xs = Xc from (2.6), we see that PN (AX)(Xs) =
PN (AX)(Xc) and the primal central path differential system (2.20) for x(t) is proved.

Likewise, rewrite (2.25) as µẋ − X2A⊤ẏ=

(
µ̇
µ

)
X2s. Upon substitution by (2.20), together with

the fact that AX2A⊤y + AX2s = AX2c, we obtain the dual central path differential system (2.21)
and the slack central path differential system (2.22) for y(t) and s(t), respectively.

It can be checked that, with the definition for ẋ and ṡ, the equation (2.25) is automatically
satisfied with arbitrary µ̇. Starting with any feasible initial value (x0,y0, s0), therefore, the solution
flow (x(t),y(t), s(t)) stays on the central path for all t.

Because we typically prefer that µ(t) is driven to zero, of particular interest is the choice

µ̇ := −µ2. (2.26)

Corollary 2.2. If µ(t) = 1
t+µ

−1
0

, then the dynamical system (2.20) coincides with (2.19). That

is, the x potion of the full central path which is derived from the KKT condition is precisely the same
as the affine scaling trajectory which is derived from the notion of projected gradient.

6



It is illuminating to represent the relationship characterized in Corollary 2.2 in Figure 2.1 by
“projecting” the central path to the horizontal plane to obtain the affine scaling trajectory. It is
important to note that the dynamical system (2.19) is autonomous in x and makes no reference to
either the dual variable y or the slack variable s at all.

3. Generalization to the SDP. Semi-definite programming (SDP) concerns finding a symmet-
ric matrix to optimize a linear functional subject to linear constraints and the additional condition
that the matrix be positive semi-definite. The SDP in the primal standard form is given by

MinimizeX 〈C, X〉
Subject to 〈Ai, X〉 = bi, i = 1, . . . , m

X � 0,

(3.1)

where C, A1, . . . , Am are given symmetric matrices in R
n×n, X � 0 means that X is positive semi-

definite, and 〈C, X〉 denotes the Frobenius inner product between C and X . Without loss of generality,
we assume henceforth that A1, . . . , Am are linear independent.

In recent years, the SDP has emerged as an important tool in mathematical programming. One
reason for this to happen is because the notion of SDP is versatile enough to model problems arising in
broad discipline areas. Some synoptic discussions on applications ranging from mathematical studies
in combinatorial optimization, Boolean and non-convex quadratic programming, min-max eigenvalue
problems, and matrix completion problems to engineering practices in nonlinear and time-varying
system analysis, controller synthesis, computer-aided control system design, network queueing, optimal
statistical model designs, and structural optimization can be found in [7, 15, 18]. Another reason for
its popularity is because there is a considerable similarity between the notions of SDP and LP. Many
results developed for the LP can be extended “mechanically” to the SDP.

In particular, let SR
n×n denote the subspace of all n×n real symmetric matrices and SR

n×n
+ the

subset of positive definite matrices in SR
n×n. If we introduce the linear operator A : SR

n×n → R
m

defined by

A X := [〈Ai, X〉]mi=1, (3.2)

then its corresponding adjoint A ∗ : R
m → SR

n×n is given by

A
∗v =

m∑

i=1

viAi. (3.3)

With this notation, we can write the primal and the dual SDP problems as [15]

PSDP :

{
minimize 〈C, X〉,
subject to A X = b, X � 0,

(3.4)

and

DSDP :

{
maximize b⊤y,

subject to A ∗y + S = C, S � 0,
(3.5)

respectively, whose appearances are now almost identical to those described in (2.1) and (2.2). Much
of the dual theory, interior point algorithms, convergence and polynomial time-complexity for LP can
be extended to SDP [2, 14]. This generalization thus admits theoretically efficient solution procedures
based on what has already been developed for LP problems. A profusion of research results are
available in the literature. For example, the book on SDP [18] lists 877 references, while the online
bibliography collected by Wolkowicz [17] lists more than a thousand and the number continues growing.

7



As casual users, we find that the comprehensive treatise in the two books [3, 7] and the two review
articles [2, 15] offer quick and useful grasp of this interesting and intensely studied subject. Our goal
in this section is to investigate whether the dynamical systems characterized in the preceding sections
for the LP can also be generalized to the central path for the SDP.

3.1. Central Path. Analogous to (2.6), it can be shown that the central path equation, i.e., the
optimality condition, for an SDP is

G(X,y, S, µ) :=





A ∗y + S − C

A X − b

S − µX−1



 = 0, (3.6)

where X and S are expected to be symmetric and positive semi-definite. Note that the third equation
in G is equivalent to XS = µI, but is conventionally written in this way for the purpose of maintaining
its images in the subspace SR

n×n. It is a known fact (see, e.g., [15, Theorem 5.2]) that if both PSDP

and DSDP have strictly feasible points, then corresponding to each positive µ there is a unique solution
(X(µ),y(µ), S(µ)) to the equation (3.6). With A and A ∗ denoting operators in mind, we want to
solve the linear system

A
∗ẏ + Ṡ = 0, (3.7)

A Ẋ = 0, (3.8)

µX−1ẊX−1 + Ṡ = µ̇X−1. (3.9)

for the dynamical system (Ẋ, ẏ, Ṡ, µ̇) of the central path.
We first tackle this problem by the approach suggested in [15]. It suffices to characterize only the

primal central path dynamical system.
Lemma 3.1. The X portion of the central path in the SDP is governed by the differential system

Ẋ =
µ̇

µ
(I − XA

∗Ω−1
A X)X, (3.10)

where Ω = [ωij ] is the m × m matrix defined by

ωij := 〈AiX, XAj〉. (3.11)

Proof. Upon substituting Ṡ = −A ∗ẏ from (3.7) into (3.9), we obtain

Ẋ =
1

µ
X(µ̇X−1 + A

∗ẏ)X. (3.12)

Applying A to both sides of (3.12), by (3.8), we see that ẏ can be solved from the linear equation

Ωẏ = −µ̇A X. (3.13)

Replacing ẏ in (3.12) gives rise to (3.10).
In the above, the operator XA ∗Ω−1A X seems symmetric at first glance. However, it really

should be read as the n × n matrix

XA
∗Ω−1

A X = X(A ∗(Ω−1b)) =

m∑

i=1

(Ω−1b)iXAi,

which generally is not a symmetric matrix at all.

8



Recall that the LP is a special case of the SDP. This can be seen through the convention that
X = diag(x), Ai = diag(ai) and A⊤ = [a1, . . . ,am]. We then have A X = Ax and A ∗y = diag(A⊤y).
It is easy to see that Ω = AX2A⊤ and that the system (3.10) is reduced to

ẋ =
µ̇

µ
X(I − XA⊤(AX2A)−1AX)e

which is identical to the primal central path system (2.20) (and, hence, the affine scaling system (2.19)
via the choice (2.26)) by the fact that PN (AX)(Xs) = PN (AX)(µe). The question now is whether a
notion of affine scaling trajectory for the LP can be generalized to the SDP.

Before we move on to derive the matrix-valued affine scaling trajectory, it is important to point
out one subtle difference between a continuous trajectory and an associated discrete version of path-
following algorithm. The affine scaling algorithm, originally proposed by [8] and rediscovered or
modified by others [4, 5, 16], is an iterative method in which the affine scaling direction and the step
size for each iteration are selected with respect to the associated Dikin ellipsoid. The affine scaling
algorithm, like many other polynomial-time interior point methods, can be naturally extended to the
SDP [13], but a task of extending the affine scaling “trajectory” to the SDP (with the same geometric
meaning as that for the LP) has not been so obvious in the literature. The hindrance is partially due
to the fact that, the underlying SDP variables no longer being diagonal, matrix multiplication is not
commutative. Indeed, while it has been proved that the primal central path of the SDP problem, that
is, the trajectory determined by (3.10), converges to the analytic center of the optimal face [10], it has
also been demonstrated in [13] that both short-step and long-step affine scaling “algorithms” using a
certain affine scaling “direction” fail to converge to an optimal point.

If we can prove, as will be done in the following, that the primal central path is in fact the same
as the affine scaling trajectory, then this distinction between an affine scaling algorithm and an affine
scaling trajectory is significant. An appropriate discretization of the continuous flow might lead to a
different numerical algorithm.

3.2. Affine Scaling Trajectory. A clever way to circumvent the difficulty associated with the
non-commutativity of matrix multiplication has been proposed in [9]. It relies on the machineries of a
specialized Riemannian metric and a group of linear isometries to induce a matrix-valued generalized
affine scaling vector field. We find, however, that the derivation of the theory could be obtained via
the following approach which is simpler and our resulting dynamical system conforms more favorably
than the formula described in [9, Proposition 2.8] to the system already developed for the LP. Our
main point is that, when cast under appropriate framework of operators, the notion of gradient flows
for the LP carries over to the SDP naturally. We explain our ideas below.

Firstly, we find the diagram in Figure 3.1 instructive in indicating how the operators go back and
forth between SR

n×n and R
m. In particular, the mapping A A ∗ : R

m → R
m can be represented by

the m × m matrix

A A
∗ = [〈Ai, Aj〉]. (3.14)

The operator

PN (A ) := I − A
∗(A A

∗)−1
A (3.15)

maps SR
n×n to SR

n×n and is in fact a projection operator onto the null space N (A ) of A . Thus,
with respect to the primal barrier problem associated with PSDP, the dynamical system

Ẋ := −(I − A
∗(A A

∗)−1
A )(C − µX−1) (3.16)

defines the projected gradient flow for the objective function

ϕ(X ; µ) := 〈C, X〉 − µ ln det(X). (3.17)

9



AA

A ∗

A ∗

(A A
∗)−1

A ∗(A A ∗)−1A

SR
n×nSR

n×n

SR
n×n

R
m

R
m

R
m

A A ∗

Fig. 3.1. Operators A , A ∗, A A ∗ and their domains

Secondly, mimicking (2.13), we define the (scaled) set

W := X̂−1SR
n×n = {X̂−1Z|Z ∈ SR

n×n} (3.18)

for any fixed interior feasible point X̂. For later reference, let W+ denote the open subset when
specifically Z ∈ SR

n×n
+ . By symmetry, we can also write

W = SR
n×nX̂. (3.19)

Corresponding to any W ∈ W, there exist unique matrices L (W ), R(W ) ∈ SR
n×n such that

W = X̂−1
L (W ) = R(W )X̂, (3.20)

whence L (W ) = X̂R(W )X̂ . Clearly, the operators L and R are isomorphisms from W to SR
n×n.

These operators are used to address the non-commutativity.
Define the map J·, ·K : W × W → R by

JW1, W2K := 〈L (W1), R(W2)〉. (3.21)

Lemma 3.2. The bilinear map J·, ·K is an inner product on the subspace W.
Proof. Observe first that

JW2, W1K = 〈L (W2), R(W1)〉 = 〈X̂R(W2)X̂, X̂−1
L (W1)X̂

−1〉 = JW1, W2K.

Observe next that

JW, W K = 〈L (W ), R(W )〉 = 〈X̂, R(W )X̂R(W )〉 > 0

unless W = 0. These properties of conjugate symmetry, linearity, and positive definiteness justify
that J·, ·K is an inner product on the subspace W.

10



AA

A ∗A ∗

(A L L ∗
A ∗)−1

L ∗A ∗(A L L ∗A ∗)−1A L

SR
n×n

SR
n×nSR

n×n

SR
n×n R

m
R

m

R
m

LL

L ∗

L ∗

W

W

W

A L L ∗A ∗

Fig. 3.2. Operators A L L ∗A ∗, L ∗A ∗(A L L ∗A ∗)−1A L , and their domains

Lemma 3.3. As L : W → SR
n×n acts as a left shift operator on W, its adjoint with respect to

the inner product J·, ·K is given by

L
∗(Z) = ZX̂ (3.22)

and acts as a right shift operator on SR
n×n.

Proof. Note that domain and range of L involve different inner products. To define the adjoint
operator of L , the relationship

〈L (W ), Z〉 = 〈X̂W, Z〉 = JX̂−1(X̂W ), ZX̂K = JW, ZX̂K

must hold. The adjoint operator S ∗ : SR
n×n → W has to be that defined in (3.22).

We now extend the relationships in Figure 3.1 to the diagram in Figure 3.2 to include the role
played by the shift operator L and its adjoint.

Lemma 3.4. The mapping A L L ∗A ∗ : R
m → R

m has a matrix representation

A L L
∗
A

∗ = [〈AiX̂, X̂Aj〉]. (3.23)

Proof. Given any vector z ∈ R
m, we carry out the operations from the right to the left as follows,

A L L
∗
A

∗ (z) = A L L
∗

(
m∑

i=1

ziAi

)
= A L




m∑

j=1

zjAjX̂



 = A




m∑

j=1

zjX̂AjX̂



 .

Finally, we use the relationship 〈Ai, X̂AjX̂〉 = 〈X̂Ai, AjX̂〉 and obtain the matrix representation.

With the change of variable W = X̂−1X for matrices X ∈ SR
n×n
+ , rewrite the objective function

in (3.17) as

ϕ(X ; µ) := ϑ(W ; µ) := 〈C, X̂W 〉 − µ ln det(X̂W ). (3.24)

11



In order that the function ln det(X̂W ) makes sense, it is important consider ϑ(·, µ) : W+ → R. It is
easy to see that the “action” of the Fréchet derivative of ϑ on a tangent vector of W+, i.e., an element

X̂−1Z ∈ W with Z ∈ SR
n×n, assumes the form

∇ϑ(W ; µ).(X̂−1Z) = 〈C − µW−1X̂−1, Z〉.

To retrieve the “gradient” of ϑ over W+ by the Riesz representation theorem, we have to take into
account the inner product imposed upon W. That is, by rewriting the relationships as

∇ϑ(W ; µ).(X̂−1Z) = J∇ϑ(W ; µ), X̂−1ZK = JX̂−1Z,∇ϑ(W ; µ)K = 〈Z,∇ϑ(W ; µ)X̂−1〉, (3.25)

we are able to retrieve the gradient of ϑ as

∇ϑ(W ; µ) = CX̂ − µW−1. (3.26)

It is readily seen that

PN (A L ) = I − L
∗
A

∗(A L L
∗
A

∗)−1
A L (3.27)

is a projection onto the null space N (A L ) in W. Analogous to (2.16), the steepest descent direction
for ϑ(W ; µ) at W = I is given by

Ẇ |I = −PN (A L )(CX̂ − µI). (3.28)

The corresponding pullback X̂Ẇ |W=I stands for a descent direction for φ(X ; µ) at X = X̂ . Since X̂

is an arbitrary interior feasible point, we can now describe a descent flow in SR
n×n for φ(X ; µ) by

Ẋ = −X(I − L
∗
A

∗(A L L
∗
A

∗)−1
A L )(CX − µI). (3.29)

Observe the resemblance of (3.29) to (2.17). Observe, in particular, how the diagonal matrix X =
diag(x) is being replaced by L in the projection operator. We do caution readers, however, that there
is a subtle dissimilarity in that matrix multiplications in SR

n×n generally are not communicative and
hence the order of multiplications in (3.29), such as the product CX , cannot be reversed.

By taking µ = 0, we obtain the affine scaling trajectory

Ẋ = −X(I − L
∗
A

∗(A L L
∗
A

∗)−1
A L )(CX). (3.30)

for the SDP problem in the same way as we did for the LP problem. Again, observe the considerable
similarity between (3.30) for the SDP and (2.19) for the LP. Note that the “scaling” for the SDP is
no longer done by diagonal matrices such as that in the LP case, but the concept carries over.

Applying the adjoint L ∗ to both sides of A ∗y + S = C and using (3.22), we obtain the equality

PN (A L )CX = PN (A L )SX = µPN (A L )I.

Thus the affine scaling trajectory (3.30) can be expressed via the matrix representation (3.23) as

Ẋ = −µX(I − A
∗Ω−1

A X2) = −µ(I − XA
∗Ω−1

A X)X. (3.31)

Comparing the righthand sides of (3.10) and (3.31), we finally have reached our goal in concluding
that, same as in the LP, if we choose µ̇ = −µ2, then the primal central path X(t) derived from the
CPE for the SDP is identical to the generalized affine scaling flow derived from the projected gradient.
The diagram sketched in Figure 2.1 is still relevant for the SDP.

12



4. Conclusion. We have used the same argument to justify that the primal central paths, that
is, the nonnegative vector x(t) of the LP problem and the symmetric and positive definite matrix
X(t) of the SDP problem, are precisely the integral curves of the differential systems (2.19) and
(3.31), respectively. It is interesting to note that the central path equations are algebraic in nature
and are derived from the KKT optimality conditions. The affine scaling vector fields, on the other
hand, are dynamical in nature and are results of projected gradient flows. Such a distinction dictates
the methodologies for path-following [12].

One prevailing idea in the field of optimization is to solve approximately along the central path
for the diminishing barrier parameter µ. Different ways to adopt this approach for efficiency have
been proposed in the literature and a good many packages of software have been developed. Some
known techniques include, for example, the Newton method, predictor-corrector schemes, or the pre-
conditioned conjugate gradient methods [3, 7, 14, 15, 20]. On the other hand, since the central path
can be cast as an integral curve, it is also possible to follow the path by concepts from numerical
integration. We conclude this paper by briefly sketching the latter idea below with its application to
the SDP problems in mind.

In an earlier work [9], a somewhat more complicated mechanism has been employed to derive the
affine scaling trajectory for the SDP. The resulting dynamical system is characterized by

Ẋ = −X

(
C −

m∑

i=1

ui(X)Ai

)
X

︸ ︷︷ ︸
D(X)

, (4.1)

where the combination coefficients ui(X) are entries of the vector

u(X) := Ω−1




〈A1X, XC〉

...
〈AmX, XC〉



 . (4.2)

Indeed, the very same vector field D(X), derived from an essentially different notion of dual estimate,
has been selected as an affine scaling direction and an iterative scheme of the form

Xk+1 = Xk − ρkD(Xk) (4.3)

has been employed as an affine scaling algorithm in [13]. The scheme (4.3) can be regarded as a
variable-step explicit Euler method which is perhaps the simplest yet efficient maneuver along the
course of integrating the differential system (4.1). The step size ρk is determined by either the so
called short step strategy or the long step strategy to ensure feasibility and to move the iterates to
the boundary. Rather surprisingly, however, an interesting example is given in [13] to show that the
affine scaling algorithm in the form (4.3) fails to converge to the unique optimal solution by either
strategy. Apparently, the step strategies have somehow lost track of the true affine scaling trajectory
defined by (4.1).

We should point out that the vector field derived in (4.1) is the same as our result in (3.30). The
only difference is that the system (3.30) is a lot more similar in appearance to that in (2.19) and is
proved to be identical to the central path (3.10). This equivalence relationship can be seen by carrying
out the following sequence of operations,

L
∗
A

∗(A L L
∗
A

∗)−1
A L (CX) = L

∗
A

∗Ω−1
A (XCX) = L

∗
A

∗Ω−1




〈A1, XCX〉

...
〈Am, XCX〉





= L
∗
A

∗u(X) = L
∗(

m∑

i=1

ui(X)Ai) =

m∑

i=1

ui(X)AiX.

13



As we have shown in the preceding section that the affine scaling trajectory is in fact a gradient flow,
perhaps what is being missed in the explicit Euler scheme such as (4.3) is the exploitation of this
descent property.

Solving the LP or the SDP problems amounts to finding the asymptotically stable limit point of
corresponding dynamical systems. So long as this limit point can be found effectively, the precision
in tracking the solution flows of either (2.19) or (3.30) (which now is the same as (3.31) and (4.1)) is
not essential. The question at hand is how we can take advantage of the fact that x(t) or X(t) is a
descent flow and propose a fast algorithm while preserving the same asymptotically stable limit point
as the original system. One possible alternative to the discretization of the affine scaling trajectory
is the pseudo-transit method [11]. The idea of this method is to mimic integration to steady-state
while managing the time step to move the iteration as rapidly as possible to the Newton method. The
method has been proved practical in finding steady-state solutions to time-dependent gradient flows
which happen to be an inherent feature of the affine scaling trajectory. Its application to the affine
scaling trajectory is currently under investigation.

REFERENCES

[1] I. Adler and R. D. C. Monteiro, Limiting behavior of the affine scaling continuous trajectories for linear

programming problems, Math. Programming, 50 (1991), pp. 29–51.
[2] F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization,

SIAM J. Optim., 5 (1995), pp. 13–51.
[3] A. Antoniou and W.-S. Lu, Practical optimization, Algorithms and engineering applications, Springer, New

York, 2007.
[4] E. R. Barnes, A variation on Karmarkar’s algorithm for solving linear programming problems, Math. Program-

ming, 36 (1986), pp. 174–182.
[5] D. A. Bayer and J. C. Lagarias, The nonlinear geometry of linear programming. I. Affine and projective scaling

trajectories, Trans. Amer. Math. Soc., 314 (1989), pp. 499–526.
[6] , The nonlinear geometry of linear programming. II. Legendre transform coordinates and central trajectories,

Trans. Amer. Math. Soc., 314 (1989), pp. 527–581.
[7] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge University Press, Cambridge, 2004.
[8] I. I. Dikin, Iterative solution of problems of linear and quadratic programming, Dokl. Akad. Nauk SSSR, 174

(1967), pp. 747–748.
[9] L. Faybusovich, On a matrix generalization of affine-scaling vector fields, SIAM J. Matrix Anal. Appl., 16 (1995),

pp. 886–897.
[10] D. Goldfarb and K. Scheinberg, Interior point trajectories in semidefinite programming, SIAM J. Optim., 8

(1998), pp. 871–886 (electronic).
[11] C. T. Kelley, L.-Z. Liao, L. Qi, M. T. Chu, J. P. Reese, and C. Winton, Projected pseudotransient continu-

ation, SIAM J. Numer. Anal., 46 (2008), pp. 3071–3083.
[12] N. Megiddo, Pathways to the optimal set in linear programming, in Progress in mathematical programming

(Pacific Grove, CA, 1987), Springer, New York, 1989, pp. 131–158.
[13] M. Muramatsu, Affine scaling algorithm fails for semidefinite programming, Math. Programming, 83 (1998),

pp. 393–406.
[14] Y. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex programming, vol. 13 of SIAM

Studies in Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
1994.

[15] M. J. Todd, Semidefinite optimization, Acta Numer., 10 (2001), pp. 515–560.
[16] R. J. Vanderbei and J. C. Lagarias, I. I. Dikin’s convergence result for the affine-scaling algorithm, in Mathe-

matical developments arising from linear programming (Brunswick, ME, 1988), vol. 114 of Contemp. Math.,
Amer. Math. Soc., Providence, RI, 1990, pp. 109–119.

[17] H. Wolkowicz, Bibliography on semidefinite programming, Department of Combinatorics and Optimization,
University of Waterloo. http://liinwww.ira.uka.de/bibliography/Math/psd.html.

[18] H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds., Handbook of semidefinite programming, International
Series in Operations Research & Management Science, 27, Kluwer Academic Publishers, Boston, MA, 2000.
Theory, algorithms, and applications.

[19] S. J. Wright, Primal-dual interior-point methods, Society for Industrial and Applied Mathematics (SIAM),
Philadelphia, PA, 1997.

[20] Y. Ye, Interior Point Algorithms, Theory and Analysis, Wiley-Interscience Series in Discrete Mathematics and
Optimization, John Wiley & Sons Inc., New York, 1997.

14


