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Abstract. The centroid decomposition, an approximation for the singular value decomposition
(SVD), has a long history among the statistics/psychometrics community for factor analysis research.
We revisit the centroid method in its original context of factor analysis and then adapt it to other
than a covariance matrix. The centroid method can be cast as an O(n)-step ascent method on
a hypercube. It is shown empirically that the centroid decomposition provides a measurement of
second order statistical information of the original data in the direction of the corresponding left
centroid vectors. One major purpose of this work is to show fundamental relationships between the
singular value, centroid, and semidiscrete decompositions. This unifies an entire class of truncated
SVD approximations. Applications include semantic indexing in information retrieval.

Key words. data matrix, loading matrix, scoring matrix, indexing matrix, factor analysis,
centroid method, singular value decomposition, low rank approximation, semidiscrete decomposition,
centroid decomposition, low rank decompositions, integer programming

AMS subject classifications. 15A21, 65F30, 62H25, 15A23, 68Q25

PII. S0895479800382555

1. Introduction. We first review factor analysis [5, 9, 7] in the terms used by the
applied statistics/psychometrics (AS/P) community with the notation of numerical
linear algebra. This provides a setting to show how the centroid method developed
as an approximate singular value decomposition (SVD). Our work was motivated by
a recent article [11] and correspondence from Lawrence Hubert drawing our attention
to the application of SVDs in the AS/P context. In particular we have found Horst’s
[9] description of the centroid decomposition proposed in the AS/P literature quite
illuminating. The use of the SVD or ideas associated with it has a rich history [7] in
the AS/P community dating back at least to Pearson [15] in 1901. Stewart’s scholarly
historical treatise [16] has traced the early history of the SVD back to Beltrami in
1873 and Jordan in 1874. Within the numerical linear algebra (NLA) community,
besides Hotelling’s work [10] and that of Eckert and Young [6], there seems little
awareness of the AS/P work. The AS/P community generally considers Thurston’s
1931 paper [17] as being the most complete description of the centroid method. In
point of fact the centroid method was used in 1917 by Burt [2]. So what turned out
to be an approximation for the SVD had its beginnings before there was widespread
knowledge of the SVD itself.

We begin in section 2 with the factor analysis setting, providing a brief but prac-
tical background for further understanding of the underlying matrix decompositions.
This should unify the differences in vocabulary and notation used by the AS/P and
NLA communities. The classical Wedderburn rank reduction formula has been used
by the AS/P community at least since the early 1940s. In section 3 we show how they
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connect the rank reduction formula with the centroid method, which provides insight
into the reduced matrix. What they call centroid factors are indeed the centroids of a
sequence of the orthogonally reduced loading matrices. Section 4 further develops the
centroid method with the necessary modifications for the reduction of the covariance
matrix. Section 5 gives the details of the centroid algorithm along with an ascent hy-
percube description, proof of convergence, and computational complexity. Section 6
provides a general stochastic treatment of the truncated SVD and thereby the sta-
tistical soundness of the centroid decomposition. Section 7 compares the similar yet
different setups between the centroid method and some latent semantic indexing tech-
niques used in data mining. Section 8 discusses a modified centroid algorithm that
does not require the explicit formation of the product moment or covariance matrix.
Finally, in section 9 we use the SVD triad of variational formulations to unify a class of
approximations to the SVD, including the data retrieval semidiscrete decomposition
(SDD) and the centroid decomposition.

2. The factor analysis setting. An indispensable task in almost every dis-
cipline of science is the analysis of data in search of relationships between sets of
externally caused and internal variables. Such a task has become especially impor-
tant in this era of information and digital technologies, when massive amounts of
data are being generated at almost all levels of applications. In many situations, the
digitized information is gathered and stored as a data matrix. Quite often the data
observed from complex phenomena represent the integrated result of several inter-
related variables acting together. When these variables are less precisely defined, it
becomes important to distinguish which variable is related to which and how the vari-
ables are related before deductive sciences can further be applied. Toward that end,
factor analysis is a class of procedures that can help identify and test what constructs
might be used to explain the interrelationships among the variables.

Let Y = [yij ] ∈ R
n×� denote the matrix of observed data. One of the main

applications of factor analysis is to analyze relationships between questions on tests.
Thus we will use here, as is done for almost any application, yij to represent, in a
broad sense, the standard score of variable i on entity j. By a standard score we mean
that a raw score has been normalized to have mean 0 and standard deviation 1. The
matrix

R :=
1

�
Y Y T ,(2.1)

therefore, represents the correlation matrix of all n variables. Note that rii = 1 and
|rij | ≤ 1 for all i, j = 1, . . . , n.

In a linear model, it is assumed that the score yij is a linearly weighted score of
entity j on several factors. That is, we assume

Y = AF,(2.2)

where A = [aik] ∈ R
n×m is a matrix with aik denoting loadings of variable i on factor

k, and F = [fkj ] ∈ R
m×� with fkj denoting the score of factor k on entity j. To

better grasp the notion of linear modeling in (2.2), readers might want to think, for
example, that each of the � columns of the observed matrix Y represents the transcript
of a college student (an entity) at his/her freshman year on n fixed subjects (the
variables), e.g., calculus, English, chemistry, and so on. It is generally believed that a
college freshman’s academic performance depends on a number of factors, including,
for instance, family social status, finances, high school GPA, cultural background, and
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so on. Upon entering the college, each student could be asked to fill out a questionnaire
inquiring about these factors of his/her background. In turn, individual responses to
those factors are translated into scores and placed in the corresponding column of the
scoring matrix F . What is not clear to the educators/administrators is how to choose
the factors to compose the questionnaire or how each of the chosen factors would be
weighted (the loadings) to reflect the effect on each particular subject. In practice, we
usually do not have a priori knowledge about the number and character of underlying
factors in A. Sometimes we do not even know the factor scores in F . Only the data
matrix Y is observable. Explaining the complex phenomena observed in Y with the
help of a minimal number of factors extracted from the data matrix is the primary
and most important goal of factor analysis.

It is customary to assume that all sets of factors being considered are uncorrelated
with each other. If we further assume, similar to Y , that the scores in F for each
factor are normalized, then it is true that

1

�
FFT = Im,(2.3)

where Im stands for the identity matrix in R
m×m. It follows that the correlation

matrix R can be expressed directly in terms of the loading matrix A, i.e.,

R = AAT .(2.4)

Factor extraction now becomes a problem of decomposing the correlation matrix R
into the product AAT using as few factors as possible.

As a whole, the ith row of A may be interpreted as how the data variable i is
weighted across the list of current factors. If the sum of squares of this row, called
the communality of variable i, is small, it suggests that this specific variable is of little
consequence to the current factors. On the other hand, the kth column of A may
be interpreted as correlations of the data variables with that particular kth factor.
Those data variables with high factor loadings are considered to be more like the
factor in some sense, and those with zero or near-zero loadings are treated as being
unlike the factor. The quality of this likelihood, which we call the significance of the
corresponding factor, is measured by the norm of the kth column of A. One basic
idea in factor analysis is to rewrite the loadings of variables over some newly selected
factors so as to manifest more clearly the correlation between variables and factors.
Suppose the newly selected factors are expressed in terms of columns of the orthogonal
matrix

V := [v1, . . . ,vm] ∈ R
m×m.(2.5)

Then this rewriting of factor loadings with respect to V is mathematically equivalent
to a change of basis, i.e., A is now written as B := AV . One of the fundamental
problems in the practice of factor analysis is to determine some appropriate new basis
for V . Note that because V V T = Im, the very same observed data now is decomposed
as Y = AF = (AV )(V TF ) = BG with B andG = V TF representing, respectively, the
factor loadings and uncorrelated standard factor scores corresponding to the factors
in V . From this we also see that the correlation matrix R = AAT = BBT ∈ R

n×n is
independent of factors selected. This is another reason that in the process of defining
new factors it is often desirable to retrieve information directly from the correlation
matrix R rather than from any particular loading matrix A. The centroid method,
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the main topic of this paper, has been used for retrieving such factors. The new
factors in the centroid method were defined via successive rank reduction applied to
the correlation matrix R.

3. Centroid factor. We shall denote A1 := A, R1 := R, and call the relation-
ship R1 = A1A

T
1 the product moment of A1. Temporarily assuming that a loading

matrix A1 is given, the coordinate axes in R
m represent a set of m abstractly defined

factors. The centroid method amounts to a procedure of defining a new coordinate
system representing what are called the centroid factors. The most important feature
of the centroid method is that loadings with respect to the centroid factors can be
calculated without the knowledge of A1 or even of the centroid factors. The assump-
tion of knowing A1 a priori, therefore, is not needed. But in the following we continue
to use A1 to gain insight into the meaning of the extraction steps.

The ith row in the matrix A1 denotes the loadings of variable i across the spec-
trum of the current set of factors. Denoting each row of A1 as a point in the factor
space R

m, the arithmetic mean of these points might be used to indicate a collective
trend of the variables. That direction could be a substantial factor to be weighted
in and thus constitutes the essential idea of a centroid factor. Before we move into
details, we should comment that generally variables that tend to vary together form
clusters. If all the variables are truly independent, there should be no clusters at all.
On the other extreme, if all the variables are dependent on the same factor, then a
single cluster should be formed. In between the two extremes, we do not know a priori
how many clusters are to be expected. There are many cluster detection techniques.
See, for example, the book [1]. Among these, the so called k-means method is perhaps
the most commonly used in practice. The centroid method we are about to describe
is the simplest special variation of the k-means method. The centroid method itera-
tively searches for one mean a time. Since the goal of this paper is to compare the
relationships of various discrete variational decompositions with the SVD, our present
discussion will be concentrating on the (1-mean) centroid method only. The gener-
alization of comparison to a k-means method should be another interesting research
topic in the future.

Given A1 ∈ R
n×m, the centroid of these n variables is given by the column vector

c1 :=
AT

1 1n

n
=

[∑n
i=1 ai1
n

, . . . ,

∑n
i=1 aim
n

]T
,(3.1)

where 1n denotes the column vector 1n := [1, . . . , 1]T ∈ R
n. The first centroid factor

is defined to be the normalized vector

v1 :=
c1

‖c1‖ .(3.2)

The new loadings of variables with respect to this new factor v1, i.e., the first column
b1 = [b11, . . . , bn1]

T of the new loading matrix B (which is yet to be found), can be
calculated without referring to A1 as follows: Each component bj1 is precisely the
projection component of variable j along the unit vector v1, i.e., b1 = A1v1. This
can be rewritten as

b1 = A1
AT

1 1n

‖AT
1 1n‖ =

R11n√
1T
nR11n

.(3.3)

In this way, we note that the first loading vector b1 is extracted directly from R1. No
reference to A1 or v1 is needed.
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Once the loadings b1 for the centroid factor v1 are found, the product moment
R1 is conventionally updated to a new matrix R2 defined by

R2 := R1 − R11n1
T
nR1

1T
nR11n

.(3.4)

It is important to understand the meaning of R2. Define

A2 := A1 −A1v1v
T
1 .(3.5)

Observe that each row in the matrix A2 represents the component of the original
loadings A1 in the direction orthogonal to v1. We shall call A2 the orthogonally
reduced loading matrix of A1 with respect to v1. Note that A2 inherits most of the
loading information of the original A1 except for the loadings along the direction v1.
The information along v1 is subtracted from A1 to form A2. The following statement
provides an interesting interpretation of R2.

Theorem 3.1 (see [3]). The traditional rank-one update (3.4) from R1 is sim-
ply another way to calculate the product moment of the orthogonally reduced loading
matrix A2 without directly referring to A2.

Proof. The product moment of A2 can be computed as follows:

A2A
T
2 =

(
A1 −A1v1v

T
1

) (
AT

1 − v1v
T
1 A

T
1

)
= A1A

T
1 −A1v1v

T
1 A

T
1

= R1 − R11n1
T
nR1

1T
nR11n

,

where the last equality follows from (3.1).
With A2 or R2 in hand, it seems that the above procedure can be repeated to

extract the next centroid factor for A2, to introduce the next reduced loading matrix,
and so on. Unfortunately, this is not the case. The procedure cannot be repeated
because AT

2 1n = 0m. In other words, because the centroid of A2 is residing squarely
at the origin of R

m, the second centroid factor is null. We have to modify the notion
of centroid somewhat to circumvent this situation.

It is worth mentioning that the update (3.4) is simply one special case of the
well-known Wedderburn rank reduction formula [4]. The rank of R2 is precisely one
less than that of R1.

4. Modified centroid factor. In factor analysis, one major task is to ascribe
the loadings in A1 to as few essential factors as possible. We consider that a factor
is essential if loadings with respect to that particular factor are relatively weighty.
Being the average of all variables, the centroid factor v1 would delineate an essential
factor under the following circumstances:

1. When all points in R
m representing rows of A1 stay near the line determined

by v1: In this case, each variable is approximately a scalar multiple of v1.
The scalar can be positive or negative, indicating a positive or negative lin-
ear correlation between the variable and the factor v1. In either case, it is
clear that a substantial portion of loadings in A1 should be attributed to the
factor v1.

2. When the centroid c1 is far away from the origin: In this case, the variables
are asymmetrically distributed in the factor space R

m. The quantity ‖c1‖
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measures, in some sense, the eccentricity of the system of variables with re-
spect to the origin. That is, the farther c1 is away from the origin, the more
variables are qualitatively scattered in a general area surrounding c1. Thus
the larger ‖c1‖ is, the better an essential factor v1 represents.

It is worth noting again, as we have already pointed out in the first remark above,
that replacing one particular variable by its negative does not cause trouble in the
identification of an essential factor. We therefore should change the sign of certain
rows if that helps to bring out other properties such as that described in the second
remark above. On the other hand, the scalar

1T
nR1n = ‖AT

1 1n‖2 = n2‖c1‖2(4.1)

is a fixed multiple of ‖c1‖. Combining these observations, we are motivated to consider
the integer programming problem

max
|z|=1

zTR1z,(4.2)

where |z| = 1 means the components of the column vector z are either 1 or −1. We
call z a sign vector. There are only 2n sign vectors for a fixed n. Without causing
any ambiguity, we shall use the same notation to represent the vectors

c1 :=
AT

1 z1

n
,(4.3)

v1 :=
AT

1 z1

‖AT
1 z1‖ ,(4.4)

where z1 is the optimizer of (4.2), and call them the modified centroid and the modified
centroid factor, respectively. For later reference, we shall call

µ1 :=
1

n
max
|z|=1

zTR1z(4.5)

the first centroid value of A1. The following results are generalizations of (3.3) and
Theorem 3.1.

Theorem 4.1. The loading b1 with respect to the modified centroid factor v1

defined by (4.4) is given by the projection b1 = A1v1 and can be computed by

b1 =
R1z1√
zT1 R1z1

.(4.6)

The product moment R2 of the orthogonally reduced loading matrix A2 = A1−A1v1v
T
1

can be computed by

R2 = R1 − R1z1z
T
1 R1

zT1 R1z1
.(4.7)

We remark again that in the above expression both b1 and R2 can be calculated
without making explicit reference to A1. By now, it should be clear that the notion of
modified centroid factor can be applied to R2 to induce the next R3, and so on. With
this generalization, we should also point out that henceforth the matrix R no longer
denotes a correlation matrix but rather a general symmetric and positive semidefinite
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matrix. Each application of this centroid factor retrieval will reduce the rank of the
loading matrix by one. The procedure therefore has to come to a stop in finitely many
steps. In this way, with the recurrence

Ai = Ai−1 −Ai−1vi−1v
T
i−1, i = 2, . . . , γ,(4.8)

where vi is the modified centroid factor of Ai, γ is the rank of A1, and with the
loadings bi = Aivi, we may write

A = A1 = bγv
T
γ + · · ·+ b1v

T
1 ,(4.9)

which we will call a centroid decomposition of A.

Let z2 be the sign vector that maximizes zTR2z. Note that z2 �= z1 because

R2z1 = 0. The modified centroid c2 for A2, according to (4.3), should be c2 =
AT

2 z2

n .
It is interesting to note that

cT1 c2 =
1

n2

(
zT1 A1

) (
AT

2 z2

)
=

1

n2

(
zT1 A1

) [
AT

1

(
z2 − zT1 R1z2

zT1 R1z1
z1

)]
= 0,(4.10)

i.e., the modified centroids (and factors) are mutually orthogonal even though they
are not explicitly calculated.

5. Centroid method. To perform the centroid decomposition, a sequence of
integer programming problems such as (4.2) must be solved. The feasible set con-
sists of 2n sign vectors. An exhaustive search would be expensive. Fortunately, an
interesting quick iterative approach, called the centroid method, has been developed
in the AS/P literature for solving the underlying maximization problem. We shall
briefly review the centroid method in this section. In particular, we want to provide
a geometric interpretation of the centroid method.

Upon identifying −1 as 0 and keeping 1 as 1, we can associate a unique binary
tag to each sign vector. Each binary tag, in turn, is translated into a unique integer
between 0 and 2n−1 that provides a natural ordering of the sign vectors. For example,
sign vectors [−1,−1,−1,−1]T and [−1, 1,−1, 1]T have binary tags 0000 and 0101 and
are the 0th and the 5th in the order, respectively. If we consider each sign vector as
one node connected to all other sign vectors whose binary tags differ from its own
by exactly one bit, then topologically the set of 2n sign vectors can be identified as
an n-dimensional hypercube. A 4-dimensional hypercube layout together with the
ordering of its vertices is depicted in Figure 5.1. Note (see Figure 5.1) that each
n-dimensional hypercube consists of two (n − 1)-dimensional subhypercubes where
one subhypercube is simply a bit reversal of the other. The objective values zTRz
therefore always appear in pairs.

The integer programming problem over sign vectors now becomes the maxi-
mization of zTRz over vertices on the hypercube. Without causing any ambigu-
ity, let R stand for any of the product moments Ri involved in the process. Write
R = [rij ] = P +diag(diag(R)). Since zTRz = zTPz+

∑n
i=1 rii, it suffices to consider

the problem of maximizing

f(z) := zTPz

with |z| = 1. The classical centroid method is described next.
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Fig. 5.1. Topology of a 4-dimensional hypercube.

Algorithm 5.1. Given any sign vector z(0) and machine zero threshold ε, define
w(0) := Pz(0). Repeat the following steps for i = 0, 1, . . . :

1. If sgn(w
(i)
k ) = sgn(z

(i)
k ) for all k = 1, . . . , n, then stop; otherwise, choose k

so that |w(i)
k | > ε and is the largest among all |w(i)

j |’s where sgn(w
(i)
j ) �=

sgn(z
(i)
j ).

2. Define z(i+1) by simply changing the sign of z
(i)
k .

3. Define w(i+1) := w(i) + 2sgn(z
(i+1)
k )P (:, k).

Since at most one bit is changed in each cycle, it is seen from the above that the
centroid method involves advancing from one node to one of its neighboring nodes
on the hypercube. The convergence behavior of this algorithm can be seen from the
following result.

Theorem 5.1. The sequence {f(z(i))} where z(i) is generated by the centroid
method from any starting value z(0) is finite and increasing.

Proof. We can rewrite the definition of z(i+1) as

z(i+1) := z(i) − 2sgn(z
(i)
k )ek,

where ek is the standard kth unit vector. Observe

f(z(i+1)) =
(
z(i) − 2sgn(z

(i)
k )ek

)T

P
(
z(i) − 2sgn(z

(i)
k )ek

)

= f(z(i))− 4sgn(z
(i)
k )(eTk Pz

(i))

= f(z(i))− 4sgn(z
(i)
k )w

(i)
k .

Note that, by the definition of k, the second term in the last equality is negative,

showing that f(z(i+1)) is strictly larger than f(z(i)) by 4|w(i)
k |. The centroid method
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Fig. 5.2. Number of steps per centroid value in the centroid method for a matrix of size 200.

can be regarded as a steepest ascent method along the nodes of the hypercube. There
are only finitely many nodes; the sequence therefore has to converge in finitely many
steps.

Although there are 2n nodes on an n-dimensional hypercube, to go from one node
to another node in order to maximize zTRz is not an NP problem. Indeed, recall that
each node is identified by a binary tag of length n. Recall also that the centroid
method (Algorithm 5.1) has the unique feature of changing only one bit at a time
and never descends. The worst scenario is that the iteration moves from one binary
tag, say 1010 in the case n = 4, to its bit reversal tag, say 0101. In other words, it
takes at most n iterations to locate a maximum. We can prove by induction that the
expected number of iterations required for convergence to a centroid value is in fact
n
2 . To illustrate this point, we report in Figure 5.2 just one of the many numerical
simulations we have conducted on the number of iterations needed to generate each
centroid value. The lower graph in Figure 5.2, depicting the histogram of these number
of iterations, suggests that the mean is about 100.

We conclude this section by cautioning that the centroid method only finds a
local maximum. Even after excluding the parity resulting from bit reversal mentioned
before, the local maximum may not be unique for a given P . For example, with

P =




0 3.5 3 1
3.5 0 −4 −3
3 −4 0 −3.5
1 −3 −3.5 0


 ,
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the objective value zTPz has local maxima at the 1st, 2nd, and 4th sign vectors. The
mechanism built in the first step of the centroid method dictates that the algorithm
converges to the 2nd (or its bit reversal, 14th) sign vector [−1,−1,−1, 1]T unless
the starting value happens to be the other two local maximizers, in which case the
algorithm stalls right there.

6. Relationship to truncated matrices. In the practice of information re-
trieval, quite often the original data matrix Y is not exact due to noise. It is often
sufficient to replace Y by a simpler approximation. This approximation matrix is ob-
tained by truncating the original matrix in some sense. In this section we shall provide
a statistical meaning of truncation. At the end of this section we establish the statis-
tical soundness of the centroid method and compare its decomposition with the SVD.
In contrast,we shall see in the next section that the SDD [12], though approximating
a SVD decomposition, does not readily imply the same desirable stochastic meaning.

We first consider a general random variable X in R
n. Let E [X ] denote the expected

value of X . Typically, cov(X ) := E [(X − E [X ])(X − E [X ])T ] ∈ R
n×n is defined as the

covariance matrix of X . Let

cov(X ) =
n∑

j=1

λjuju
T
j(6.1)

denote the spectral decomposition of cov(X ) with eigenvalues arranged in the de-
scending order λ1 ≥ λ2 ≥ · · · ≥ λn. Note that u1, . . . ,un form an orthonormal basis
for R

n. Express the random column variable X as

X =

n∑
j=1

(uT
j X )uj .(6.2)

Note that the columns in the matrix U := [u1, . . . ,un] are deterministic vectors
themselves. The randomness of X therefore must come solely from the randomness
of each coefficient in (6.2). The following observation in [3] sheds important insight
on the portion of randomness of X in each eigenvector direction of covX .

Theorem 6.1. Let α := UTX . Then α is a random variable whose components
are mutually stochastically independent. Indeed,

E [α] = UTE [X ],(6.3)

cov(α) = diag{λ1, . . . , λn}.(6.4)

In other words, the larger the eigenvalue λj of cov(X ) is, the larger the variance
of αj is, i.e., the more stochastic properties such as randomness the vector αjuj

contributes to X . From (6.2) it appears intuitive that those coefficients αj with larger
variance represent a more integral part of X . We therefore can rank the importance
of corresponding eigenvectors uj as essential components for the variable X according
to the magnitude of λj .

If it becomes desirable to approximate the random variable X by another unbiased
yet simpler variable X̂ , we see from Theorem 6.1 that X̂ had better capture those
components corresponding to larger λj in the expression (6.2). Indeed, it is entirely

sensible to require that cov(X̂ ) be reasonably close to cov(X ). We quantify this notion
with the following theorem, which provides the basic idea of truncation. The proof
can be found in [3], which uses results from [13, 14].
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Theorem 6.2. Suppose that X is a random variable in R
n with mean zero and

that its covariance matrix has a spectral decomposition given by (6.1). Then among
all unbiased variables restricted to any r-dimensional subspaces in R

n, the random
variable

X̂ :=

r∑
j=1

(uT
j X )uj(6.5)

is the best approximation to X in the sense that ‖cov(X̂ ) − cov(X )‖ is minimized.
In addition, X̂ is the best linear minimum-variance estimate of X in the sense that
E [‖X̂ − X‖2] is minimized.

It is important to note that in the above linear minimum-variance estimation, the
variable X is centered at zero. If X is not centered at zero, the expression for truncation
would be much more complicated. Without the centering, the mere truncated data
in the form of a low rank approximation would suffer from the loss of some significant
statistical meanings.

The above observation is based on the fact that the random variable X is com-
pletely known. Such an assumption is not practical in reality since often the prob-
ability distribution function of X is not known a priori. One common practice in
applications then is to simulate the random variable X by a collection of � random
samples. These samples are recorded in an n× � matrix. Our data matrix Y = [yij ] is
precisely such an example where each column of Y represents one random sample of
(standard) score for a certain random variable X ∈ R

n which, in this case, has mean
zero. It is known that when � is large enough, many of the stochastic properties of X
can be recouped from Y .

The question now is how to retrieve a sample data matrix from Y to represent
the truncated variable X̂ . The connection lies in the observations that the matrix
R is close to cov(X ) by the law of large numbers. Note that the eigenvalues of R
are precisely the squares of the singular values of Y/

√
� and that the singular values,

by Theorem 6.1, measure the degree of randomness (of X ) in the direction of the
left singular vectors (of Y ). In the spirit of truncation described in Theorem 6.2
above, the data matrix Ŷ for X̂ should be such that both ‖Y − Ŷ ‖ and ‖Y Y T −
Ŷ Ŷ T ‖ are minimized. It turns out that the truncated SVD of Y by throwing away
its smaller singular values satisfies precisely these requirements. See [3] for a more
detailed discussion. In this way, we understand now that the truncated SVD Ŷ not
only is the best approximation to Y in the sense of norm but more importantly
is the closest approximation to Y in the sense of statistics. It maintains the most
significant stochastic portion of the original data matrix Y . Generally speaking, any
lower rank approximation to an empirical data matrix Y should carry properties
similar to the truncated SVD, i.e., should contain substantial stochastic information
about the original random variable X .

Coming back to the factor retrieval problem (2.4), we should note that while
the product moment AAT gives rise to the same (covariance) matrix R as Y does,
the loading matrix A itself does not represent a sample data matrix of any random
variable. Indeed, the number m of factors (or columns) in A could be far shorter than
� to represent meaningful samples. However, as far as approximating R by the product
moment of some lower rank matrices is concerned, the idea of truncation can still be
carried over. That is, we would like that a significant portion of those components
in R corresponding to larger eigenvalues be captured by its low rank approximation
R̂ regardless of whether R̂ is calculated via truncated random samples Ŷ or reduced
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Fig. 6.1. Comparison of geometric meanings of z1 and u1(R1) when n = 2.

factors Â. The centroid method is an alternative way to accomplish that goal, as we
shall now explain below.

For convenience, let λ1(M) ≥ λ2(M) ≥ · · · ≥ λn(M) denote the eigenvalues
of any given real-valued symmetric M . Let the corresponding unit eigenvectors be
denoted as u1(M), . . . ,un(M). Recall the Rayleigh–Ritz theorem asserting that [8]

λ1(M) = max
‖x‖=1

xTMx,(6.6)

λk(M) = max
‖x‖=1

x⊥u1(M),...,uk−1(M)

xTMx for k = 2, . . . , n.(6.7)

This variational characterization suggests a scheme for eigenvalue computation. Al-
though the scheme is of little practical value in itself, its comparison with the centroid
method is worth mentioning. First, observe that

λ1(R1) = (u1(R1))
T
R1u1(R1) = max

‖u‖=1
uTR1u = max

‖u‖=1
‖AT

1 u‖2

≥ µ1 =
1

n
zT1 R1z1 =

1

n
max
|z|=1

zTR1z =
1

n
max
|z|=1

‖AT
1 z‖2,(6.8)

where z1 is used to define the first modified centroid (see (4.2)). This relationship sug-
gests that the sign vector z1 and the centroid value µ1 are mimicking the left singular
vector u1 and the square of the singular value λ1 of A1, respectively. Recall that the
singular values of AT

1 are precisely the lengths of the semiaxes of the hyperellipsoid
E defined by

E := {AT
1 x ∈ R

m|x ∈ R
n, ‖x‖ = 1},

whence the first left singular vector u1(R1) of A1 is mapped via AT
1 to the first major

semiaxis of E. On the other hand, the unit cube

C := {x ∈ R
n|‖x‖∞ = 1}

is mapped under AT
1 to a hyperparallelepiped that circumscribes E. The geometric

meanings of z1 and u1(R1) can be compared via Figure 6.1, where we draw C and E
for the case n = 2.
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Recall that once a factor represented by a unit vector v is determined, the com-
ponents in the product b = A1v represent the loadings of all variables in that factor.
The size of ‖b‖, called the significance earlier, can be used to indicate how essential
that factor is to the variables. While the modified centroid is obtained by weighting
loadings of all variables uniformly in the factor space, i.e., by constant weight 1

n ex-
cept signs, the SVD amounts to weighting these loadings unevenly so as to maximize
the significance of the resulting biased centroid (giving rise to the left singular vector).
The latter is a fairly expensive and difficult task to accomplish, while the former is
relatively easy to do via the centroid method. In this sense, we say that z1 gives a
foretaste of the location of u1.

Recall in the centroid method that once the first centroid factor is found, the
matrix R1 is reduced to R2 according to (4.7) and the search for the next centroid
factor continues. In exactly the same way, once the first eigenvector u1(R1) is found,
the matrix R1 can be reduced, by the same Wedderburn rank reduction formula, to

R2 := R1 − λ1u1(R1) (u1(R1))
T
.(6.9)

It can easily be proved from (6.7) that

(u2(R1))
T
R1u2(R1) = λ2(R1) = λ1(R2) =

(
u1(R2)

)T
R2u1(R2).(6.10)

The relationship described above between z1 and u1(R1) in principle can be carried
over to a similar relationship between z2 and u2(R1). The only problem is that

R2 �= R2(6.11)

because the two matrices are reduced from R1 using z1 and u1(R1), respectively.
However, we have pointed out earlier that at least in the initial stage z1 mimics the
role of u1(R1) reasonably, so most of the stochastic information in R2 should remain
close to that in R2. As the iteration continues, of course, the closeness between Ri

and Ri begins to depart. Consequently, the resemblance between zi and ui(Ri) is
expected to deteriorate progressively. Regardless, if we are interested in only the first
few essential factors, i.e., in capturing the qualitative behavior of the (truncated) SVD
of A1, the centroid decomposition seems to be a reasonable and quick alternative. We
summarize the comparison of the centroid decomposition and SVD in Table 6.1. We
indicate only the first step in both decompositions. The successive steps are done
similarly.

Furthermore, we plot in Figure 6.2 the centroid values and the singular values
of the correlation matrix of a randomly generated 200× 200 matrix A1. Recall from
Theorem 6.1 that the singular values indicate the degree of contribution to the ran-
domness by the left singular vectors. Figure 6.2 is a typical representation of our
many random tests. From the figure we see that the centroid values seem to mimic
the behavior of singular values reasonably well and, hence, should provide a reasonable
measurement of the original stochastic nature.

On the other hand, we point out that the reduced matrices Ri are no longer the
same as Ri after the first step. We therefore plot in Figure 6.3 the logarithmic values
of | cos(θi)| where θi is the angle between zi and ui for i = 1, . . . , 200. These values
allow us to examine the degree of alignment of the sign vector zi for the matrix Ri

with the ith left singular vector of R1. This diagram seems to suggest that the loss
of alignment is not bad. In fact, toward the end of the calculation, it seems that
the alignment is remarkably good. Further research is needed to understand this
alignment issue.
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Table 6.1
Comparison of centroid decomposition and SVD.

Centroid decomposition SVD

µ1 = 1
n

max|z|=1 zTR1z λ1 = max‖x‖=1 xTR1x

(centroid value) (eigenvalue)

z1 = arg max|z|=1 zTR1z u1 = arg max‖x‖=1 xTR1x

(sign vector for modified centroid) (left singular vector)

easy to obtain z1 in O(n) steps not easy to obtain u1 via iterations

(transverse hypercube) (nonlinear iteration)

v1 =
AT

1 z1√
nµ1

v̂1 =
AT

1 u1√
λ1

(centroid factor ) (right singular vector)

γ1 = ‖A1v1‖ σ1 =
√
λ1 = ‖A1v̂1‖

(significance) (largest singular value)

b1 = A1v1 σ1u1 = A1v̂1

(loading vector) (internal relation)

A1 =
∑

biv
T
i A1 =

∑
σiuiv̂

T
i

(centroid decomposition) (SVD)

R =
∑

bib
T
i =

∑
γ2i

bi
‖bi‖

(
bi

‖bi‖
)T

R =
∑

λiuiu
T
i =

∑
σ2i uiu

T
i

(factor decomposition) (spectral decomposition)

R2 = R1 − R1z1z
T
1 R1

zT1 R1z1
= R1 − γ21

b1
‖b1‖

(
b1

‖b1‖
)T

R2 = R1 − R1u1u
T
1 R1

uT
1 R1u1

= R1 − λ1u1uT
1

(rank reduction) (rank reduction)
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Fig. 6.2. Comparison of centroid values and singular values for correlation matrix of n = 200.
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7. Relationship to data retrieval. The research and notions of factor analysis
have been used in many disciplines, notably in educational, social, psychological,
and behavioral measurements [5]. In this section, we connect and illustrate factor
analysis development of the centroid method to that of information retrieval and
data mining. This illustration leads to the unification of a class of approximations to
the SVD.

We shall limit our goal in information retrieval to the task of finding documents
relevant to given queries [12]. The idea in the so-called latent semantic indexing
(LSI) is as follows: The textual documents are usually collected in an indexing matrix
H = [hkj ] in R

m×�. Each document is represented by one column in H. The entry
hkj in H represents the weight of one particular term k in document j whereas each
term could be defined by just one single word or a string of phrases. A natural choice
of the weight hkj is obtained by counting the number of times that the term k occurs
in document j. More elaborate weighting schemes can be found in the literature
(see, for example, [12]) and are observed to yield better performance. Each query is
represented as a row vector qT

i = [qi1, . . . , qim] in R
m where qik represents the weight

of term k in the query i. Again, the weighting for terms in a query can also use
more elaborate schemes. To measure how the query qT

i matches the documents, we
calculate the row vector

sTi = qT
i H(7.1)

and rank the relevance of documents to q according to the scores in s. To put the
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notation in the context of our discussion in the preceding sections, we observe the
following analogies:

indexing matrix H ←→ scoring matrix F ,

document j ←→ entity j,

term k ←→ factor k,

weight hkj ←→ score of factor k on entity j,

one query qT
i ←→ one row in loading matrix A,

weights qik ←→ loadings of query i on factor k,

scores in sTi ←→ scores in i row of data matrix Y .

Nevertheless, in contrast to the factor retrieval described above, the calculations in-
volved in an LSI application place emphasis not so much on computing the factors
based on the scores in sTi , i = 1, . . . , n, but rather on the vector-matrix multiplication
(7.1). Indeed, in a search engine application, quite often there is only one query, i.e.,
n = 1, per the user’s request. The factors are already specified by predetermined
terms. The focus in LSI has been on representing the indexing matrix and the queries
in a more compact form so as to facilitate the computation of the scores. Toward that
end, one way to do LSI is to use the truncated SVD of H.

From our discussion in section 6, we now understand well why using the truncated
SVD to represent H makes sense, provided data in H have been centered. It is not
just the best approximation to H in norm, but more importantly it also contains a
substantial portion of stochastic nature of the originalH. On the other hand, since the
original indexing matrix H is never exact, truncation also has the benefit of cutting
away noise when the signal-to-noise ratio (SNR) is too small. Suppose that

H =

γ∑
i=1

σiuiv
T
i(7.2)

denotes the SVD of H of rank γ. A general practice in LSI is to replace H by

Ĥk :=

k∑
i=1

σiuiv
T
i(7.3)

with k � γ and compute s ≈ qT Ĥk. The problem is that the low rank Ĥk could
require more storage than the original H that often is sparse. One of the suggestions
for saving storage has been to approximate H by the SDD [12] that also resembles
the SVD, i.e.,

H̃k :=

k∑
i=1

δixiy
T
i ,(7.4)

where each xi and yi is constrained to have integer entries −1, 0, or 1, and the di are
positive real numbers.

One purpose of this paper is to suggest using the truncated centroid decomposition
as an alternative low rank approximation to an indexing matrix H, even though the
objective of LSI is not to retrieve factors from observed data of scores. There is
considerable similarity between the centroid decomposition and the SDD, but there
is also a significant difference, as we shall address later in section 9.
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8. General centroid algorithm. In the context of factor retrieval, we would
like to have as few factors as possible. It is often the case that m � � and n � �.
The centroid method is applied directly to the product moment R = AAT . In the
context of data retrieval, what is given is the index matrix H. If m � �, we could
simply apply Algorithm 5.1 to the product moment HHT . This would correspond to
a subject area where the number of terms is relatively limited, while the number of
documents is large. However, in the context of LSI, it is common that each document
contains many more terms (or keywords) and that the contents of the documents
should sparsely overlap each other. It is reasonable to assume that m � �. In this
case, it probably is not economical to form the product moment HHT , as is the
practice with factor analysis (2.1). We modify the centroid method to work directly
with H.

Algorithm 8.1 (general centroid algorithm). Assume that initial values |z(0)| =
1,w(0) := HT z(0) as well the vector d = diag(HHT ) are available. Repeat the follow-
ing steps for i = 0, 1, . . . :

1. Compute g(i) := d− sgn(z(i)) ◦ (Hw(i)).

2. Choose k so that g
(i)
k is maximal and greater than ε; otherwise, stop.

3. Define z(i+1) by simply changing the sign of z
(i)
k .

4. Update w(i+1) := w(i) + 2sgn(z
(i+1)
k )H(k, :)T .

As with Algorithm 5.1 this is an ascent method (on an m-dimensional hypercube)
because

‖HT z(i+1)‖2 =
(
z(i) − 2sgn(z

(i)
k )ek

)T

HHT
(
z(i) − 2sgn(z

(i)
k )ek

)

= ‖HT z(i)‖2 + 4eTkHHTek − 4sgn(z
(i)
k )(eTkHw(i))

= ‖HT z(i))‖2 + 4g
(i)
k

and g
(i)
k > ε. Once the optimal z1 is found, the matrix H1 = H is reduced to

H2 := H1 −H1v1v
T
1 ,(8.1)

where v1 is the normalized unit vector of HT
1 z1, and then the algorithm is applied

to H2 and so on. A common practice in factor analysis is to terminate the algorithm
whenever the resulting significance ‖bk‖ drops below a specific threshold level. If the
algorithm is carried to the end, we obtain the centroid decomposition

H = H1 = bγv
T
γ + · · ·+ b1v

T
1 ,(8.2)

where bk := Hkvk, k = 1, . . . , γ, is the loading whose significance is analogous to
the singular value of Hk. (See the comparison in Table 6.1.) Furthermore, from the
discussion in section 6, we see that the first few loadings carry most of the stochastic
information in H. That is, a truncated centroid decomposition may often be as effec-
tive as the truncated SVD and can be expected to be much cheaper computationally,
as we will now see.

Since a single centroid iteration on a correlation has an order n sorting (step 1
in Algorithm 5.1) and an n-dimensional vector addition (step 3 in Algorithm 5.1),
the complexity is O(kn2) for a rank-k approximation. When the centroid algorithm
is executed on H rather than HHT , then the number of expected iteration steps
is m

2 for each centroid value. Note that the first step in Algorithm 8.1 involves an
m-dimensional vector subtraction and an O(m�) matrix to vector multiply, the next
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step an m-dimensional sorting, and an �-dimensional vector addition in the last step.
A rank-k centroid decomposition approximation to the rank-k truncated SVD of the
scoring matrix H would involve O(km2�) complexity. Obviously, the complexity may
be further reduced if sparsity can be exploited.

9. Conclusions. We have recast the centroid method as an O(n)-step opti-
mization problem on a hypercube. This interpretation enables us to view the centroid
method as a matrix approximation with many similarities to the truncated SVD.

Furthermore, we offer the insight that given any data matrix (with mean zero)
whose columns represent random samples from a certain unknown distribution, its
singular values then provide a measurement of the second order statistical informa-
tion of the original data in the direction of the corresponding left singular vectors.
This insight explains why, how, and when a low rank approximation can be used
as a reasonable approximation to the original matrix. Although low rank approxi-
mation has been a common practice used in many important applications, we have
not seen a satisfactory stochastic justification. There seems to be much misuse and
misunderstanding of low rank approximation techniques.

We justify the truncated SVD as not only the nearest distancewise approxima-
tion, but also as the minimum-variance approximation to the original data. It seems
fitting that any low rank approximation should carry stochastic properties similar to
the truncated SVD. We have shown this to be true of the centroid decomposition em-
pirically. Furthermore, we have shown that the centroid method can be generalized
so that it might be used for many applications, e.g., the LSI problem.

Figure 9.1 can be viewed as a fundamental triad which includes the three equiv-
alent variational formulations for the largest singular value of a matrix A.

The SDD method is analogous to the top vertex of the triad using only vectors
u and v, whose components are restricted to the set {0, 1,−1}. The centroid method

✁
✁

✁
✁

✁
✁

✁
✁

✁
✁

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆

A = UΣV T

max
‖u‖=1,‖v‖=1

uTAv
⇑

max
x∈{1,0−1}n,y∈{1,0,−1}m

xTAy
‖x‖‖y‖

(SDD method)

max
‖u‖=1

‖uTA‖
⇓

max
z∈{1,−1}n

‖zTA‖√
n

(Centroid method)

max
‖v‖=1

‖Av‖
⇓

max
w∈{1,−1}m

‖Aw‖√
m

Fig. 9.1. Fundamental SVD triad.
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is analogous to the left vertex of the triad, with the restriction that the vector u
is allowed to have components only from the set {0, 1,−1}; note, however, that the
inclusion of 0 does not give any additional discrete approximation because the corre-
sponding objective function is convex and the maximum must occur at a sign vector
(vertex). We call these sets restricted, whereas the vectors that determine the singular
values are completely unrestricted. The form in the lower right corner stands ready
to be analyzed in future work.

Finally, the important unification idea is that we can consider the centroid and
semidiscrete methods as producing approximations to the truncated SVD using just
two of the classes of many restricted discrete sets. We summarize relationships of
centroid decomposition, SDD, and SVD in Table 9.1.

Table 9.1
Comparison of centroid decomposition, SVD, and SDD.

Decomposition

Centroid Singular value Semidiscrete

µ = 1
n

max|z|=1 ‖zTA‖2
(centroid value)

σ = max‖u‖=1 ‖uTA‖
(singular value)

v = AT z
‖AT z‖ v = AT u

‖AT u‖
(centroid factor) (right singular vector)

σ = max‖u‖=‖v‖=1 |uTAv| δ = max|x|=|y|∈{1,0}
|xTAy|
‖x‖‖y‖

σ = max‖v‖=1 ‖Av‖

b = Av σu = Av

(loading vector) (internal relation)

γ = ‖b‖
(significance)

A ≈ (Av)vT A ≈ (Av)vT A ≈ (δx)yT

A1 =
∑

biv
T
i A1 =

∑
σiuiv

T
i A1 =

∑
δixiy

T
i

(CD) (SVD) (SDD)

rank(A− γ b
‖b‖vT ) = rank(A− σuvT ) =

rank(A) − 1 rank(A) − 1 (no rank subtraction)
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