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Abstract. Partially due to the fact that the empirical data collected by devices with finite band-
width often neither preserves the specified structure nor induces a certain desired rank, retrieving
the nearest structured low rank approximation from a given data matrix becomes an imperative task
in many applications. This paper investigates the case of approximating a given target matrix by a
real-valued circulant matrix of a specified, fixed, and low rank. A fast Fourier transform (FFT)-based
numerical procedure is proposed to speed up the computation. However, since a conjugate-even set
of eigenvalues must be maintained to guarantee a real-valued matrix, it is shown by numerical ex-
amples that the nearest real-valued, low rank, and circulant approximation is sometimes surprisingly
counterintuitive.
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1. Introduction. Finding a low rank approximation of a general data matrix
is a critical task in many aspects. The list of applications includes image compres-
sion, noise reduction, seismic inversion, latent semantic indexing, principal component
analysis, regularization for ill-posed problems, and so on. Practical means to tackle
this low rank approximation problem include the truncated singular value decompo-
sition (TSVD) method [9], the Lanczos bidiagonalization process [14], and the Monte
Carlo algorithm [11]. When the underlying matrix is also required to retain a cer-
tain structure, however, few techniques are available. Some preliminary discussion on
structured low rank approximation regarding its mathematical properties, interest-
ing applications, and an outline of some possible numerical procedures can be found
in [5]. This paper concerns the special case of real-valued low rank approximation
with circulant structure.

By an n× n circulant matrix, we mean a matrix C of the form

C =




c0 c1 . . . cn−1

cn−1 c0 c1 . . . cn−2

cn−2 cn−1 c0 . . . cn−3

...
...

. . .
. . .

...
c1 c2 cn−1 c0


 ,

where each of its rows is just the previous row cycled forward one step. A circu-
lant matrix is uniquely determined by the entries of its first row. We shall denote

∗Received by the editors January 3, 2001; accepted for publication (in revised form) by P. C.
Hansen May 23, 2002; published electronically January 23, 2003.

http://www.siam.org/journals/simax/24-3/38316.html
†Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205 (chu@

math.ncsu.edu). The research of this author was supported in part by the National Science Founda-
tion under grant DMS-9803759.

‡Department of Computer Science and Mathematics, Wake Forest University, Winston-Salem, NC
27109 (plemmons@mthcsc.wfu.edu). The research of this author was supported in part by the Air
Force Office of Scientific Research under grant AFOSR-F49620-00-1-0155, the Army Research Office
under grant DAAD-19-00-1-0540, and the National Science Foundation under grant CCR-9732070.

645



646 MOODY T. CHU AND ROBERT J. PLEMMONS

a circulant matrix by Circul(c) if its first row is c. In this paper, we are mainly
concerned with the case when c ∈ R

n.
Let Π (= Πn) denote the specific permutation matrix of order n,

Π :=




0 1 0 . . . 0
0 0 1 0
...

. . .
. . .

...
0 1
1 0 . . . 0


 .(1.1)

It is easy to see that

C =
n−1∑
k=0

ckΠ
k(1.2)

if and only if C = Circul(c) with c := [c0, . . . , cn−1]. It is convenient to represent
this relationship as

Circul(c) = Pc(Π),(1.3)

where

Pc(x) =

n−1∑
k=0

ckx
k(1.4)

is called the characteristic polynomial of Circul(c). Because of this representation,
it follows that circulant matrices are closed under multiplication. It is also clear
that circulant matrices commute under multiplication. Many important properties of
circulant matrices can be traced back mainly to those of the matrix Π. The circulant
structure often makes it possible to resolve many matrix-theoretic questions by “closed
form” answers. The book by Davis [6] is generally considered the most complete
reference on circulant matrices. It is also well known that circulant matrices are
closely related to Fourier analysis [15]. That relationship will be used to develop a
fast algorithm in this paper.

Circulant matrices have received much attention because the circulant form arises
from areas such as acoustics, electrodynamics, image processing, mathematical statis-
tics, number theory, numerical analysis, and stationary time series. To mention a few
specific examples, circulant matrices often are used as preconditioners for ill-posed
problems [2, 13]. In a recent book by Kailath and Sayed [10], circulant matrices are
related to important applications of linear estimation theory. Circulant matrices even
find applications to multiconjugate adaptive optics, as was discussed in [7, 8, 12].

Our goal in this paper is to retrieve as much information as possible from a given
real-valued matrix A while enforcing a circulant structure and a rank condition; that
is, we want to best approximate A with a real-valued circulant matrix C with a certain
desired rank. Before moving on, we first point out the following three limitations
imposed upon our approximation:

• We are emphasizing real-valued approximation. If there is no constraint re-
quiring C to have real coefficients, then the nearest circulant approximation
can easily be achieved via the notion of TSVD. (See Algorithm 3.1.)
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• We are fixing the rank to a specific value and not to a certain range. In the
latter, say, under the circumstances where singular values of the data matrix
decay gradually to zero, the precise number of singular values included in a
TSVD solution might not be very important. Such a flexibility on the rank
condition, as was discussed in [5], is much easier to handle than the fixed rank
condition.

• If the Frobenius matrix norm is used as the measurement of nearness, we
may assume without loss of generality that the original matrix A is the Chan
circulant matrix [3] to begin with. This can easily be seen from the fact
that circulant matrices form a linear subspace, and thus the square of the
distance from a target matrix to its nearest low rank circulant approximation
is the sum of the squares of the distance from the target matrix to the linear
subspace of circulant matrices (and hence its Chan circulant approximation)
and the distance from the Chan circulant approximation to its nearest low
rank circulant approximation.

Under these constraints, we follow the notion of the TSVD to propose a fast
Fourier transform (FFT)-based fast algorithm. In order to keep the final low rank
approximation a real-valued matrix, we recast the approximation as a data matching
problem. As it turns out, we discover a situation where sometimes one may have to
delete the largest eigenvalue in order to obtain a real-valued matrix. This surprising
and somewhat counterintuitive case might not be significant in applications since,
when the precise rank is not critically important, one may slightly relax the rank
condition (say, from holding the given rank exactly to being no greater than the given
rank), as we have indicated in the second bulleted item above. However, this discus-
sion still might be worth noting in that it clearly demonstrates the disparity between
fixed rank and variable rank and real-valued and complex-valued approximations.

2. Basic spectral properties. In this section, we briefly review some of the
basic spectral properties relevant to our study. Most of the proofs can be found in
[6, 15].

Let i :=
√−1. For a fixed integer n ≥ 1, let ω (= ωn) denote the primitive nth

root of unity

ω := exp

(
2πi

n

)
.(2.1)

Let Ω (= Ωn) denote the diagonal matrix

Ω := diag(1, ω, ω2, . . . , ωn−1),(2.2)

and let F (= Fn) denote the so-called discrete Fourier matrix whose Hermitian adjoint
F ∗ is defined by

F ∗ :=
1√
n




1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2n−2

...
...

1 ωn−1 ωn−2 . . . ω


 .(2.3)

Note that
√

nF ∗ is the Vandermonde matrix generated by the row vector [1, ω, ω2, . . . ,
ωn−1] and that F is a unitary matrix. The following spectral decomposition is a key
to our discussion [6].
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Theorem 2.1. The forward shift matrix Π is unitarily diagonalizable. Indeed,

Π = F ∗ΩF.(2.4)

The circulant matrix Circul(c) with any given row vector c has a spectral decomposi-
tion

Circul(c) = F ∗Pc(Ω)F.(2.5)

Observe that the vector of eigenvalues λ = [Pc(1), . . . , Pc(ω
n−1)] of a circulant

matrix Circul(c) can quickly be calculated from

λT =
√

nF ∗cT .(2.6)

From (2.6), the inverse eigenvalue problem of finding a circulant matrix with a pre-
scribed spectrum can also be answered easily: Given any vector λ := [λ0, . . . , λn−1],
the circulant matrix Circul(c) with c defined by

cT =
1√
n
FλT(2.7)

will have eigenvalues {λ0, . . . , λn−1}. It is important to note that the matrix-vector
multiplication involved in either (2.6) or (2.7) is precisely that involved in the FFT.
Thus both the eigenvalue problem and the inverse problem for circulant matrices can
be answered in O(n log2 n) floating point operations [15]. Observe also that, if all
of the eigenvalues are distinct, then there are precisely n! many distinct circulant
matrices with the prescribed spectrum.

For real circulant matrices, every complex-valued eigenvalue has the correspond-
ing complex conjugate as another eigenvalue. Indeed, the spectrum of any real circu-
lant matrix necessarily appears in a more special order, called conjugate-even in [15].
In order to obtain a real-valued circulant matrix by using the FFT in (2.7) for the
inverse eigenvalue problem, the vector λ of the prescribed eigenvalues must also be
arranged in a conjugate-even order. More precisely, the following arrangement of
eigenvalues allows for efficient FFT calculation for real data [15].

Theorem 2.2. If the eigenvalues are arranged in the order that
1. λ := [λ0, λ1, . . . , λm−1, λm, λm−1, . . . , λ1], where λ0, λm ∈ R and n = 2m, or
2. λ := [λ0, λ1, . . . , λm, λm, . . . , λ1], where λ0 ∈ R and n = 2m+ 1,

then the circulant matrix Circul(c) with c obtained from (2.7) is real-valued and has
entries in the prescribed vector λ as its spectrum.

For later reference, we shall refer to λ0 and λm, if n = 2m, and λ0, if n = 2m+1,
in the above theorem as the absolutely real elements in λ.

The singular value decomposition of Circul(c) is also easy to establish. It follows
from rewriting the expression (2.5) as

Circul(c) =
(
F ∗Pc(Ω)|Pc(Ω)|−1

) |Pc(Ω)|F,(2.8)

where |X| denotes the matrix of absolute values of the elements of X. The singular
values of Circul(c) are |Pc(ω

k)|, k = 0, 1, . . . , n− 1. Observe the following necessary
characteristic for singular values of a real circulant matrix.

Theorem 2.3. Any n × n real-valued circulant matrix can have at most 
n+1
2 �

distinct singular values. More precisely, the singular values must appear in the fol-
lowing way:

1. σn0 , σn1 , σn1 , . . . , σnm−1 , σnm−1 , σnm if n = 2m or
2. σn0 , σn1 , σn1 , . . . , σnm , σnm if n = 2m+ 1.
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3. Low rank approximation. Given a general matrix A ∈ R
n×n, its nearest

circulant matrix approximation measured in the Frobenius norm is simply the Chan
circulant matrix Circul(c) obtained by averaging over diagonals of A, as shown in [3].
Indeed, if c = [c0, . . . , cn−1], then

ck :=
1

n
〈A,Πk〉, k = 0, . . . , n− 1,(3.1)

where

〈X,Y 〉 = trace(XY T )

stands for the Frobenius inner product. This projection Circul(c) is generally of full
rank even if A has lower rank to begin with. Recall that the TSVD gives rise to
the nearest low rank approximation in the Frobenius norm. Observe further that the
low rank approximation Circul(ĉ) of a circulant matrix Circul(c) by the TSVD is
automatically circulant. We thus have the following algorithm for low rank circulant
approximation.

Algorithm 3.1. Given a general n×n matrix A, the matrix Circul(ĉ) computed
below is a nearest circulant matrix to A with rank no higher than κ ≤ n.

1. Use the projection (3.1) to find the nearest circulant matrix approximation
Circul(c) of A.

2. Use the inverse FFT (2.6) to calculate the spectrum λ of the matrix Circul(c).

3. Let λ̂ be the vector consisting of elements of λ, but those corresponding to the
n− κ smallest (in modulus) singular values are set to zero.

4. Apply the FFT (2.7) to λ̂ to compute a nearest circulant matrix Circul(ĉ) of
rank κ to A.

The above algorithm is fast due to the employment of efficient FFT calculation.
The resulting matrix Circul(ĉ), however, is complex-valued in general. To construct
real-valued low rank approximation, the truncated singular values must be specifically
selected so that the resulting vector λ̂ of truncated eigenvalues is conjugate-even.
Recall from Theorem 2.3 that most of the singular values are paired. Thus, to preserve
the conjugate-even property, the deletion of one complex eigenvalue necessitates the
deletion of its complex conjugate as well. To achieve the desired rank, the criteria for
truncation must be modified in a special way, as we shall now describe.

It is clear from Theorem 2.1 that all circulant matrices of the same size have the
same set of unitary eigenvectors. The real-valued low rank circulant approximation
problem, therefore, is equivalent to the following data matching problem (DMP):

(DMP) Given a conjugate-even vector λ ∈ C
n, find its nearest conjugate-even

approximation λ̂ ∈ C
n in the 2-norm subject to the constraint that λ̂ has exactly

n− κ zeros.

Note that finding the closest vector approximation λ̂ in the 2-norm produces the
closest matrix approximation in the Frobenius norm. If there were no conjugate-even
constraint, the DMP could easily be answered. See, for example, [1, 4]. With the
conjugate-even constraint, we claim that the DMP could be solved according to the
following sorting scheme.

Theorem 3.1. The optimal solution λ̂ to the DMP must be such that its nonzero
entries match precisely with the first κ conjugate-even components of λ according to
the descending order of their moduli.
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Fig. 1. Tree graph of λ1, λ1, λ0, λ2, λ2, λ3 with |λ1| ≥ |λ0| > |λ2| ≥ |λ3|.

Proof. Without loss of generality, we may write λ̂ = [λ̂1, 0] ∈ C
n with λ̂1 ∈ C

κ

to be determined and consider the problem of minimizing

F (P, λ̂) = ‖P λ̂
T − λT ‖2

2,

where the permutation matrix P is used to search for the match. Partition the
permutation matrix into P = [P1, P2] with P1 ∈ Rn×κ. The objective function in the
least squares problem is reduced to

F (P, λ̂) = ‖P1λ̂
T

1 − λT ‖2
2,

which obviously has its optimal solution with

λ̂1 = λP1.

This proves the important fact that the entries of λ̂1 must come from the rearrange-
ment of κ components of λ. Indeed, the objective function becomes

F (P, λ̂) = ‖(P1P
T
1 − I)λ‖2

2,

where P1P
T
1 −I is but a projection. To minimize F (P,λP1), the optimal permutation

P should be such that P1P
T
1 projects λ onto its first κ components with as large a

modulus as possible while maintaining the conjugate-even condition.
In other words, without the conjugate-even constraints, the answer to the DMP

corresponds precisely to the usual selection criterion mentioned in Algorithm 3.1, i.e.,
λ̂ is obtained by setting the n − κ elements of λ with smallest modulus to zeros.
With the conjugate-even constraint, the above criterion remains effective, but the
truncation also depends on the conjugate-even structure inside λ, as we explain next.

Consider the case n = 6 as an example. We shall first assume that neither
λ1 nor λ2 is a real number. There are six possible conjugate-even structures. For
convenience, we shall denote each structure by a tree graph. Each node in the tree
represents an element of λ. Arrange the nodes from top to bottom according to the
descending order of their moduli. In case of a tie, arrange the complex conjugate
nodes at the same level, and place the real node below the complex nodes. Thus
the conjugate-even structure λ1, λ1, λ0, λ2, λ2, λ3, arranged in the descending order of
their moduli, will be denoted by the tree in Figure 1.

The nearest conjugate-even vectors to λ of rank 5, 3, and 2, respectively, are easy
to determine. Their trees are given in Figure 2, where ◦ and • at each node denotes,
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Fig. 2. Tree graphs of λ̂ with rank 5, 3, and 2.
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Fig. 3. Tree graphs of λ̂ with rank 4.

respectively, that the particular node is being replaced by zero or remains unchanged
from the original tree. For these ranks and for this specific tree structure depicted in
Figure 1, the conjugate-even requirement has no effect.

However, depending upon whether 2|λ2|2 > |λ0|2 + |λ3|2, there are two choices

for λ̂ as the nearest conjugate-even approximation of rank 4. See Figure 3. Finally,
the nearest rank-1 conjugate-even approximation for the tree of λ given by Figure 1
is depicted in Figure 4.

It should be noted that we have implicitly assumed that, if n = 2m, then the
two absolutely real elements in a conjugate-even λ are λ0 and λm and that |λ0| ≥
|λm|. We have also assumed that the remaining 2m − 2 elements are “potentially”
complex-valued (some of them could in fact turn out to be real-valued), that they
are paired up (necessarily), and that they are arranged in descending order, i.e.,
|λ1| ≥ |λ2| ≥ · · · ≥ |λm−1|. A similar assumption can be made for the case in
which n = 2m + 1. See the ordering stated in Theorem 2.2. Nevertheless, we will
never assume any ordering relationship between the absolutely real element(s) and the
potential complex elements. Indeed, it is precisely such an ordering relationship that
will determine the truncation criteria as we have demonstrated above for the case in
which n = 6. In other words, assuming that there are exactly m+1 distinct absolute
values of elements in λ, there are exactly m(m+ 1)/2 many possible conjugate-even
structures for the case in which n = 2m, depending upon where the moduli of the
absolutely real elements fit into the moduli of the potentially complex elements when
a total ordering is taken.

Again, under the assumption that neither λ1 or λ2 is a real number, we further
illustrate our point by considering other cases for n = 6 in Figure 5. The leftmost
column in Figure 5 represents the six possible conjugate-even structures of λ when
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Fig. 4. Tree graph of λ̂ with rank 1.

elements are arranged in descending order of their moduli. For each fixed structure,
moving from left to right, Figure 5 demonstrates the plan of how the nodes on the
original tree should be “pruned” to solve the DMP for various lower rank conditions.
There are four cases, A4, A2, B2, and F4, in which additional comparisons are needed
to further discern which plan should be used. This situation happens when an even
number of nodes from a “loop” are to be dropped. We have already discussed the
case F4 in Figure 3. Other cases can easily be identified.

It is entirely possible that there are real-valued elements other than the two
(when n is even) absolutely real elements in a conjugate-even λ. The eigenvalues of a
symmetric circulant matrix, for instance, are conjugate-even and are all real. When
this happens, these conjugate-even real-valued elements must appear in pairs, and the
truncation criteria are further complicated. Using the example discussed in Figure 1
but assuming further that λ2 = λ2, we illustrate our point below. First, we use a
dashed link in Figure 6 and larger dots to indicate the occurrence of λ2 = λ2. It is
important to note that, in contrast to the two drawings in Figure 3, the tree graph of
the nearest conjugate-even approximation λ̂ with rank 4 changes its structure in this
case. See Figure 7.

4. Algorithm. While the aforementioned graph-theoretic concept should be
quite easy to follow, a general purpose code is not as straightforward. To facili-
tate the discussion, we now present an algorithm for computing the real-valued low
rank circulant approximation. In order to highlight the notion on how the singular
values of Circul(c) should be truncated, we simplify many computational operations
by adopting a pseudo-MATLAB syntax. The commands for these abridged opera-
tions are denoted in boldface (whereas, to avoid distraction, the vectors c and λ are
denoted as ordinary c and λ) in the steps of the following algorithm.

Algorithm 4.1. Given c ∈ R
n and a positive integer 1 ≤ κ < n, let m = �n

2 �.
Define tol = nε‖c‖ where ε is the machine accuracy as the threshold of system zero.
The matrix Circul(ĉ) with ĉ computed at the end of the following steps has eigenvalues

λ̂ containing exactly n− κ zeros and is the nearest approximation to Circul(c).

1. λ = n ∗ ifft(c); (Indices of λ start with 1.)

λ̂ = λ(1 : m+ 1);
2. if n = 2m

Ir = find(abs(imag(λ(2 : m))) < tol) + 1;
Ic = find(˜ismember(2 : m, Ir)) + 1;

else
Ir = find(abs(imag(λ(2 : m+ 1))) < tol) + 1;
Ic = find(˜ismember(2 : m+ 1, Ir)) + 1;
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Fig. 5. Possible solutions to the DMP when n = 6.

end
3. [t, J ] = sort(abs(λ));

J = fliplr(J); (J is the index set sorting λ in descending order.)
for i = 1 : m+ 1

I(:, :, i) =




[2, 0] , if ismember(J(i), Ic);
[2, 1] , if ismember(J(i), Ir);
[1, 1] , otherwise;

end
4. σ = 0;

s = m+ 1;
while σ < n− κ

σ = σ + I(1, 1, s);
s = s− 1;

end
idx = s+ 1; (idx indicates the place where λ is to be cut.)
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Fig. 6. Tree graph of λ1, λ1, λ0, λ2, λ2, λ3 with |λ1| ≥ |λ0| > |λ2| ≥ |λ3|.
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Fig. 7. Tree graph of λ̂ with rank 4 when λ2 = λ2.

5. if σ = n− κ
λ̂(J(idx : m+ 1)) = zeros(1,m− idx + 2);

go to 7
6. kκ =min(find(I(1, 1, idx + 1 : m+ 1) == 1)) + idx ;

ku =max(find(I(1, 1, 1 : idx ) == 1));
if I(:, :, idx ) == [2, 1]

if ˜isempty(kκ)

λ̂(J(idx : m+ 1)) = zeros(1,m− idx + 2);

λ̂(J(kκ)) = λ(J(idx ));
else

λ̂(J(ku)) = 0;

λ̂(J(idx + 1 : m+ 1)) = zeros(1,m− idx + 1);
end

else
if ˜isempty(kκ)

if isempty(ku)

λ̂(J(idx : m+ 1)) = zeros(1,m− idx + 2);

λ̂(J(kκ)) = λ(J(kκ));
else

t1 = 2 ∗ abs(λ(J(idx )))2;
t2 = abs(λ(J(ku)))

2 + abs(λ(J(kκ)))
2;

if t1 ≤ t2
λ̂(J(idx : m+ 1)) = zeros(1,m− idx + 2);

λ̂(J(kκ)) = λ(J(kκ));
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else
λ̂(J(idx + 1 : m+ 1)) = zeros(1,m− idx + 1);

λ̂(J(ku)) = 0;
end

end
else

λ̂(J(ku)) = 0;

λ̂(J(idx + 1 : m+ 1)) = zeros(1,m− idx + 1);
end

end

7. λ̂ =

{ [
λ̂,fliplr(conj(λ̂(2 : m)))

]
, if n = 2m;[

λ̂,fliplr(conj(λ̂(2 : m+ 1)))
]
, if n = 2m+ 1;

ĉ = real(fft(λ̂))/n;

5. Numerical examples. In this section, we illustrate our algorithm with some
numerical examples. We report all numerics using only four significant digits, although
entries of all matrices in consideration and the corresponding eigenvalues are originally
the full length of the double precision. All calculations are done using MATLAB.

Example 1. Consider the 8 × 8 symmetric circulant matrix whose first row is
given by a randomly generated vector

c = [0.5404, 0.2794, 0.1801,−0.0253,−0.2178,−0.0253, 0.1801, 0.2794].

The corresponding eigenvalues, arranged in descending order of their moduli, are

{1.1909, 1.1891, 1.1891, 0.3273, 0.3273, 0.1746,−0.0376,−0.0376} .

The singular values clearly are given by the moduli of these eigenvalues. Observe the
parity caused by the conjugate-evenness, whereas 1.1909 and 0.1746 are what we call
absolutely real eigenvalues.

The nearest circulant approximation of rank 7 would be simply to set the last
eigenvalue, i.e., −0.0376, to zero by using Algorithm 3.1, but such a TSVD approach
would result in a complex matrix. To obtain the nearest real-valued circulant approx-
imation of rank 7, we have to keep the pair of −0.0376 and zero out the value 0.1746.
Using the conjugate-even eigenvalues

λ̂ = [1.1909, 1.1891,−0.0376, 0.3273, 0, 0.3273,−0.0376, 1.1892],

we can construct the nearest real-valued rank-7 circulant approximation to Circul(c)
via the FFT and obtain the first row vector

ĉ = [0.5186, 0.3012, 0.1583,−0.0035,−0.2396,−0.0035, 0.1583, 0.3012].

In yet another scenario, the first row of the nearest rank 4 circulant approximation
is given by the row vector

ĉ = [0.4871, 0.3182, 0.1898,−0.1023,−0.1075,−0.1023, 0.1898, 0.3182]

with eigenvalues λ̂

λ̂ = [1.1909, 1.1892, 0, 0, 0.3273, 0, 0, 1.1892],
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where we see that the last pair of eigenvalues in λ are set to zero while the value 0.1746
together with the value 0.3273 cause a topology change in the graph tree the same as
in Figures 6 and 7.

Example 2. Consider the 9× 9 circulant matrix whose first row is given by

c = [1.6864, 1.7775, 1.9324, 2.9399, 1.9871, 1.7367, 4.0563, 1.2848, 2.5989].

The corresponding eigenvalues have conjugate-even structure given by

[20.0000,−2.8130± 1.9106i, 3.0239± 1.0554i,−1.3997± 0.7715i,−1.2223± 0.2185i].

Note the absolute real eigenvalue has modulus much larger than any other eigenvalues.
To obtain a real-valued circulant approximation of rank 8, we have no choice but to
select the vector (in its ordering)

λ̂ = [0,−2.8130− 1.9106i, 3.0239− 1.0554i,

−1.3997− 0.7715i,−1.2223 + 0.2185i,−1.2223− 0.2185i,

−1.3997 + 0.7715i, 3.0239 + 1.0554i,−2.8130 + 1.9106i]

to produce

ĉ = [−0.5358,−0.5872,−1.1736,−0.3212, 1.0198, 1.4013,−0.0761,−0.4115, 0.6844]

as the first row of its nearest real-valued circulant approximation. The fact that the
largest eigenvalue (singular value) of Circul(c) must be set to zero to produce the
nearest rank-8 approximation is quite counterintuitive to the usual sense of TSVD
approximation.

On the other hand, it is worth noting that, if we slightly modify our approximation
criteria by requesting only a nearest low rank approximation with rank no greater
than 8, the answer could be completely different. In this particular example, such a
nearest matrix turns out to be of rank 7 and is in agreement with the usual TSVD
approximation by truncating the pair of eigenvalues with the smallest moduli.

Example 3. Let Cκ ∈ R
n×n be a given circulant matrix of rank κ. With proba-

bility one, any random noise added to Cκ will destroy the circulant structure as well
as the rank condition. To establish a comparison, we may assume, without loss of
generality, that, after the projection step (3.1) mentioned in Algorithm 3.1, the added
noise is a circulant matrix. Let E ∈ R

n×n denote a random but fixed circulant matrix
with unit Frobenius norm. Consider the perturbation of Cκ by an additive noise of
magnitude (in Frobenius norm) 10−j ; i.e., consider the circulant matrices

Wj = Cκ + 10−jE, j = 1, . . . , 12.

It is almost certain that, under such a random perturbation, the matrix Wj will be
of full rank. Note that ‖Wj −Cκ‖ = 10−j . It will be interesting to see if Wj has any
closer circulant matrix approximation of rank κ than Cκ, especially when j is large.

Toward that end, we report a test case with n = 100, κ = 73, and a predetermined
matrix C73. In Figure 8, the (continuous) lines depict the distribution of singular
values of the perturbed matrices Wj for j = 1, . . . , 12, respectively, whereas the
singular values of the original C73 are marked by ∗. Observe how the perturbation
affects the last 27 (machine zero) singular values of C73 more significantly than the
first 73 (larger) singular values according to the magnitude 10−j .
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Using our algorithm to find the best circulant approximation Zj to Wj , we find
that it is always the case that

‖Wj − Zj‖ < ‖Wj − Cκ‖

for each j. This is indicated in Figure 9 by the fact that the circles ◦ are always
below the diagonal line. Also marked in Figure 9 by + signs is the difference between
Zj and Cκ.

6. Summary. Structured low rank approximation is an important and challeng-
ing task both theoretically and computationally. The special case of real-valued, low
rank approximation with circulant structure is studied in this paper. For any given
real data matrix, its nearest real circulant approximation can simply be determined
from the average of its diagonal entries. Its nearest lower rank approximation can also
be determined effectively from the TSVD and the FFT. However, such an approx-
imation usually will be complex-valued. To simultaneously maintain the circulant
structure, induce a specific lower rank, and keep the matrix real, the conjugate-even
structure must be taken into account. These requirements, in turn, can substantially
change the truncation criteria. Some counterintuitive examples illustrate the effect if
the rank is fixed to a precise number and the approximation is required to be real-
valued. We have proposed a fast algorithm to accomplish all of these approximation
objectives.
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