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Abstract. The inverse eigenvalue problem of constructing real and symmetric square matrices M,C and K

of size n× n for the quadratic pencil Q(λ) = λ2M + λC +K so that Q(λ) has a prescribed subset of eigenvalues
and eigenvectors is considered. This paper consists of two parts addressing two related but different problems.

The first part deals with the inverse problem where M and K are required to be positive definite and semi-
definite, respectively. It is shown via construction that the inverse problem is solvable for any k given complex
conjugately closed pairs of distinct eigenvalues and linearly independent eigenvectors, provided k ≤ n. The
construction also allows additional optimization conditions to be built into the solution so as to better refine the
approximate pencil. The eigenstructure of the resulting Q(λ) is completely analyzed.

The second part deals with the inverse problem where M is a fixed positive-definite matrix (and hence may
be assumed to be the identity matrix In). It is shown via construction that the monic quadratic pencil Q(λ) =
λ2In +λC+K with n+1 arbitrarily assigned complex conjugately closed pairs of distinct eigenvalues and column
eigenvectors which span the space Cn always exists. Sufficient conditions under which this quadratic inverse
eigenvalue problem is uniquely solvable are specified.
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1. Introduction. Given n×n complex matrices M , C and K, the task of finding scalars
λ and nonzero vectors x satisfying

Q(λ)x = 0, (1.1)

where

Q(λ) := Q(λ;M,C,K) = λ2M + λC +K, (1.2)

is known as the quadratic eigenvalue problem (QEP). The scalars λ and the corresponding vectors
x are called, respectively, eigenvalues and eigenvectors of the quadratic pencil Q(λ). Together,
(λ,x) is called an eigenpair of Q(λ). The QEP has received much attention because its formation
has repeatedly arisen in many different disciplines, including applied mechanics, electrical oscil-
lation, vibro-acoustics, fluid mechanics, and signal processing. In a recent treatise, Tisseur and
Meerbergen [17] surveyed a good many applications, mathematical properties, and a variety of
numerical techniques for the QEP. It is known that the QEP has 2n finite eigenvalues over the
complex field, provided that the leading matrix coefficient M is nonsingular. The QEP arising in
practice often entails some additional conditions on the matrices. For example, if M , C and K

represent the mass, damping and stiffness matrices, respectively, in a mass-spring system, then it
is required that all matrices be real-valued and symmetric, and that M and K be positive definite
and semi-definite, respectively. It is this class of constraints on the matrix coefficients in (1.2)
that underlines our main contribution in this paper.

In mathematical modelling, we generally assume that there is a correspondence between the
endogenous variables, that is, the internal parameters, and the exogenous variables, that is, the
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external behavior. In most of the applications involving (1.1), specifications of the underlying
physical system are embedded in the matrix coefficients M , C and K while the resulting bearing
of the system usually can be interpreted via its eigenvalues and eigenvectors. The process of
analyzing and deriving the spectral information and, hence, inducing the dynamical behavior of
a system from a priori known physical parameters such as mass, length, elasticity, inductance,
capacitance, and so on is referred to as a direct problem. The inverse problem, in contrast, is
to validate, determine, or estimate the parameters of the system according to its observed or
expected behavior. The concern in the direct problem is to express the behavior in terms of the
parameters whereas in the inverse problem the concern is to express the parameters in term of
the behavior. The inverse problem is just as important as the direct problem in applications.

There has been a lot of interest in the inverse eigenvalue problem, including the notable pole
assignment problem. Some general reviews and extensive bibliographies in this regard can be
found, for example, in the first author’s recent articles [3] and [4]. This paper concerns itself with
the inverse problem of the QEP.

The term inverse quadratic eigenvalue problem (IQEP) adopted in the literature usually is
for general matrix coefficients. In this paper we shall use it distinctively to stress the additional
structure imposed upon the matrix coefficients. Two scenarios will be considered separately:

• Determine real, symmetric matrix coefficients M , C and K with M positive definite and
K positive semi-definite so that the resulting QEP has a prescribed set of k eigenpairs.

• Assume that the symmetric and positive definite leading matrix coefficient M is known
and fixed, determine real and symmetric matrix coefficients C and K so that the resulting
QEP has a prescribed set of k eigenpairs.

Other types of IQEPs have been studied under modified conditions. For instance, the IQEP
studied by Ram and Ehlay [13] is for symmetric tridiagonal coefficients and, instead of prescribed
eigenpairs, two sets of eigenvalues are given. In a series of articles, Starek and Inman [16] studied
the IQEPs associated with nonproportional underdamped systems. Settings for some other me-
chanical applications can be found at the web site [14]. Our study in this paper stems from the
speculation that the notion of the IQEP has the potential of leading to an important modification
tool for model updating [5], model tuning, and model correction [1, 10, 15, 18], when compared
with an analytical model. We will discuss this specific application in a separate paper.

We note that in several recent works, including those by Chu and Datta [2], Nichols and
Kautsky [12], as well as Datta, Elhay, Ram and Sarkissian [6, 7], studies are undertaken toward a
feedback design problem for a second-order control system. That consideration eventually leads
to either a full or a partial eigenstructure assignment problem for the QEP. The proportional
and derivative state feedback controller designated in these studies is capable of assigning specific
eigenvalues and making the resulting system insensitive to perturbations. Nonetheless, these
results cannot meet the basic requirement that the quadratic pencil be symmetric.

In a large or complicated physical system, it is often impossible to obtain the entire spectral
information. Furthermore, quantities related to high frequency terms generally are susceptible
to measurement errors due to the finite bandwidth of measuring devices. Spectral information,
therefore, should not be used at its full extent. For these reasons, it might be more sensible to
consider an IQEP where only a portion of eigenvalues and eigenvectors is prescribed. A natural
question to ask is how much eigeninformation is needed to ensure that an IQEP is solvable.

To facilitate the discussion, we shall describe the partial eigeninformation via the pair (Λ, X) ∈
Rk×k × Rn×k of matrices where

Λ = diag{λ[2]
1 , . . . , λ

[2]
` , λ2`+1, . . . , λk} (1.3)
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with

λ
[2]
j =

[
αj βj
−βj αj

]
∈ R2×2, βj 6= 0, for j = 1, . . . , `, (1.4)

and

X = [x1R,x1I , . . . ,x`R,x`I ,x2`+1, . . . ,xk]. (1.5)

The true eigenvalues and eigenvectors are readily identifiable via the transformation

R := diag

{
1√
2

[
1 1
i −i

]
, . . . ,

1√
2

[
1 1
i −i

]
, Ik−2`

}
, (1.6)

with i =
√
−1. That is, by defining

Λ̃ = RHΛR = diag {λ1, λ2, . . . , λ2`−1, λ2`, λ2`+1, . . . , λk} ∈ Ck×k, (1.7)

X̃ = XR = [x1,x2, . . . ,x2`−1,x2`,x2`+1, . . . ,xk] ∈ Cn×k, (1.8)

respectively, the IQEP is concerned about finding a real-valued quadratic pencil Q(λ) (with its
matrix coefficients possessing a certain specified structures) so that Q(λj)xj = 0 for all j =
1, . . . , k. The true (complex-valued) eigenvalues and eigenvectors of the desired quadratic pencil
Q(λ) can be induced from the pair (Λ, X) of real matrices. In this case, note that x2j−1 =
xjR + ixjI , x2j = xjR − ixjI , λ2j−1 = αj + iβj , and λ2j = αj − iβj for j = 1, . . . , `, whereas xj
and λj are all real-valued for j = 2` + 1, . . . , k. For convenience, we shall denote henceforth the

set of diagonal elements of Λ̃, which is precisely the spectrum of Λ, by σ(Λ). We shall call (Λ, X)
an eigeninformation pair of the quadratic pencil Q(λ).

The two types of IQEP considered in this paper can be formulated as follows:
ISQEP (Inverse Standard Quadratic Eigenvalue Problem) Given an eigeninformation pair

(Λ, X), find real and symmetric matrices M , C and K with M and K positive definite and
semi-definite, respectively, so that the equation

MXΛ2 + CXΛ +KX = 0, (1.9)

is satisfied.
IMQEP (Inverse Monic Quadratic Eigenvalue Problem) Given an eigeninformation pair

(Λ, X), find real and symmetric matrices C and K that satisfy the equation

XΛ2 + CXΛ +KX = 0. (1.10)

Before we move into further details, some remarks highlighting the fundamental differences
between the two problems might help to capture the main points in the fairly involved mathe-
matics later on.

1. In the IMQEP, it suffices to consider the monic quadratic pencil (1.10) for the more
general case where the leading matrix coefficient M is positive definite and fixed. Since
M is known, let M = LL> denotes the Cholesky decomposition of M . Then

Q(λ)x = 0 ⇔ Q̃(λ)(L>x) = 0, (1.11)

where

Q̃(λ) := λ2In + λL−1CL−> + L−1KL−>. (1.12)

Thus, without loss of generality, we may assume that the given matrix M in the IMQEP
is the n × n identity matrix In to begin with. It is not the case with the ISQEP. The
leading matrix coefficient M in the ISQEP is part of the unknowns to be determined.
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2. Note that the IMQEP requires only symmetry and nothing else of the two matrix coef-
ficients C and K. The symmetry of C and K implies that there are in total n(n + 1)
unknowns to be determined in the inverse problem. Since each eigenpair (λ,x) charac-
terizes a system of n equations, it is natural to conjecture that a monic quadratic pencil
could be determined from any given n+1 eigenpairs that are closed under complex con-
jugation. One of our main contributions in this paper is to substantiate this conjecture
after a necessary condition is satisfied. We offer a constructive proof in this paper showing
that the solution for the IMQEP is in fact unique.

3. In contrast, the positive definiteness imposed on the ISQEP is much more complicated
than a mere count of the numbers of the unknowns and equations. It turns out that
the amount of eigeninformation cannot contain more than n eigenpairs. We show that,
given any k ≤ n distinct eigenvalues and linearly independent eigenvectors closed under
complex conjugation, the ISQEP is always solvable but the solution often is not unique.
Furthermore, the remaining unspecified eigenstructure of the reconstructed quadratic
pencil is in fact quite limited. In particular, at the upper end when k = n, that is,
when the number of prescribed eigenpairs is equal to the dimension of the ambient space,
every prescribed eigenvalue is a double eigenvalue and the remaining eigenstructure is
completely fixed.

4. Though both problems are solved by constructive proofs, the mathematical techniques
employed to derive the main results for the two problems are indispensably different. It
appears counter to the intuition that the IMQEP is much harder to analyze than the
ISQEP.

It might be appropriate to attribute the first technique for solving the inverse problem of
QEP to a short exposition in the book [9, p.173]. Unfortunately, the method derived from that
discussion is not capable of producing symmetric C and K. Our contribution is innovative in
four areas: First, we give a recipe for the construction of a solution to each of the two inverse
problems. These recipes can be turned into numerical algorithms. Secondly, we specify necessary
and sufficient conditions under which the IQEP is solvable. Thirdly, we completely characterize
the eigenstructure of the reconstructed quadratic pencil. Finally, we propose a way to refine the
construction process so that the best approximation subject to some additional optimal conditions
can be established.

2. Solving ISQEP. In this section we present a general theory elucidating how the
ISQEP could be solved with the prescribed spectral information (Λ, X). Our proof is constructive.
As a by-product, numerical algorithms can also be developed thence. Examples of numerical
schemes and applications will be discussed in Section 2.3. We shall assume henceforth, in the
formulation of an ISQEP, that the given spectral information (Λ, X) is always in the form of (1.3)
and (1.5).

2.1. Recipe of Construction. Starting with the given pair of matrices (Λ, X), consider
the null space N (Ω) of the augmented matrix

Ω :=
[

X> Λ>X>
]
∈ Rk×2n.

Denote the dimension of N (Ω) by m. If X has linearly independently columns (as we will assume
later), then m = 2n− k. Note that m ≥ n, if we have assumed k ≤ n (for the reason to be seen
later) in the formulation of the ISQEP. Let the columns of the matrix

[
U>

V >

]
∈ R2n×m

4



with U>, V > ∈ Rn×m denote any basis of the subspace N (Ω). The equation

[
X> Λ>X>

] [ U>

V >

]
= 0 (2.1)

holds. Define the quadratic pencil Q(λ) by the matrix coefficients

M = V >V, (2.2)

C = V >U + U>V, (2.3)

K = U>U. (2.4)

We claim that the above definitions are sufficient for constructing a solution to the ISQEP. The
theory will be established in several steps.

Theorem 2.1. Given any pair of matrices (Λ, X) in the form of (1.3) and (1.5), let U and
V be an arbitrary solution to the equation (2.1). Then (Λ, X) is an eigenpair of the quadratic
pencil Q (λ) with matrix coefficients M , C and K defined according to (2.2), (2.3) and (2.4),
respectively.

Proof. Upon substitution, we see that

MXΛ2 + CXΛ +KX = V >V XΛ2 +
(
V >U + U>V

)
XΛ +

(
U>U

)
X

= V > (V XΛ + UX) Λ + U> (V XΛ + UX) = 0.

The last equality is due to the properties of U and V in (2.1).
By this construction, all matrix coefficients in Q(λ) are obviously real and symmetric. Note

also that both matrices M and K are positive semi-definite. However, it is not clear whether
Q(λ) is a trivial quadratic pencil. Toward that end, we claim that the assumption that X has
full column rank is sufficient and necessary for the regularity of Q (λ).

Theorem 2.2. The leading matrix coefficient M = V >V is nonsingular, provided that X has
full column rank. In this case, the resulting quadratic pencil Q (λ) is regular, that is, det(Q(λ))
is not identically zero.

Proof. Suppose that V > ∈ Rn×m is not of full row rank. There exists an orthogonal matrix
G ∈ Rm×m such that

V >G =
[

V >1 0n×m2

]
,

where V >1 ∈ Rn×m1 and 0n×m2
denotes the zero matrix of size n ×m2. Note that m1 < n and

m2 = m−m1. Postmultiply the same G to U> and partition the product into

U>G =
[

U>1 U>2
]
,

where U>1 ∈ Rn×m1 and U>2 ∈ Rn×m2 . Note that m2 > m− n. On the other hand, we see from
(2.1) that

X>U>2 = 0,

whereas the column of U>2 are necessarily linearly independent by construction. It follows that

n− k ≥ m2 > m− n,

which contradicts with the fact that m = 2n− k. Thus, the matrix V > must be of full row rank
and then M = V >V is nonsingular.
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Theorem 2.3. Suppose in a given pair of matrices (Λ, X) that all eigenvalues in Λ are
distinct and that X is not of full column rank. Then the quadratic pencil Q (λ) defined by (2.2),
(2.3) and (2.4) is singular.

Proof. It is easy to check that the equation (2.1) remains true if Λ and X are replaced by
Λ̃ and X̃ defined in (1.7) and (1.8), respectively. Let µ be an arbitrary complex number not in
σ(Λ). Observe that

[
X̃> Λ̃>X̃>

] [ I −µI

0 I

] [
I µI

0 I

] [
U>

V >

]
= 0.

It follows that

[
X̃> (Λ̃> − µI)X̃>

] [
µV > + U>

V >

]
= 0.

By assumption, X̃ is not of full column rank. We may therefore assume that for some 2 ≤ q ≤ k,

x̃q =

q−1∑

j=1

rj x̃j ,

where not all rj , j = 1, . . . , q − 1, are zero. Define

Γ :=




1 r1,q 0
. . .

...
. . . rq−1,q

1
. . .

0 1




∈ Ck×k,

with rj,q = −λq−µ

λj−µ
rj , j = 1, . . . , q − 1. Clearly,

Γ>
[

X̃> (Λ̃> − µI)X̃>
] [ µV > + U>

V >

]
= 0. (2.5)

Notice that, by construction, the q-th row of Γ>(Λ̃>−µI)X̃> is zero. Let y (µ)
>
denote the q-th

row of Γ>X̃>, which cannot be identically zero because the spectrum of Λ are distinct. We thus
see from (2.5) that

y (µ)
> (

µV > + U>
)
= 0.

It follows that y (µ)
>
Q (µ) = 0. Since µ ∈ C is arbitrary, Q (λ) must be singular.

We conclude this section with one important remark. The rank condition k = n plays a
pivotal role in ISQEP. It is the critical value for the regularity of the quadratic pencil Q (λ)
defined by the matrix coefficients (2.2), (2.3) and (2.4). In fact, it is clear now that corresponding
to any given Λ ∈ Rk×k, X ∈ Rn×k in the form of (1.3) and (1.5), the quadratic pencil Q (λ) can
always be factorized into the product

Q (λ) =
(
λV > + U>

)
(λV + U) . (2.6)

If k > n, then rank (λV + U) ≤ 2n − k < n and hence det (Q (λ)) ≡ 0 for all λ. It is for this
reason that we always assume that k ≤ n in the formulation of an ISQEP.
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2.2. Eigenstructure of Q(λ). We have shown in the preceding section how to define
the matrix coefficients so that the corresponding quadratic pencil possesses a prescribed set of
k eigenvalues and eigenvectors. The ISQEP thereby is solved via construction. An interesting
question to ask is how the unspecified eigenpair in the constructed pencil should look like. In this
section we examine the remaining eigenstructure of the quadratic pencil Q (λ) created from our
scheme.

Theorem 2.4. Let (Λ, X) ∈ Rk×k × Rn×k in the form of (1.3) and (1.5) denote the partial
eigeninformation and Q(λ) be the quadratic pencil defined by coefficients (2.2), (2.3) and (2.4).
Assume that X has full column rank k.

1. If k = n, then Q (λ) has double eigenvalue λj for each λj ∈ σ(Λ);
2. If k < n, then Q (λ) has double eigenvalue λj for each λj ∈ σ(Λ). The remaining

2 (n− k) eigenvalues of Q (λ) are all complex conjugate with nonzero imaginary parts.
In addition, if the matrices U and V in (2.1) are chosen from an orthogonal basis of the
null space of Ω, then the remaining 2 (n− k) eigenvalues are only ±i with corresponding
eigenvectors z± iz where X>z = 0.

Proof. The case k = n is easy. The matrices U> and V > involved in (2.1) forming the null
space of Ω are square matrices of size n. We also know from Theorem 2.2 that V > is nonsingular.
Observe that

V −1U = −XΛX−1. (2.7)

Using the factorization (2.6), we see that

det(Q (λ)) = (det(λV + U))
2
.

It is clear that Q(λ) has double eigenvalue λj at every λj ∈ σ(Λ).
We now consider the case when k < n. Since X> ∈ Rk×n is of full row rank, there exists an

orthogonal matrix P1 ∈ Rn×n such that

X>P>1 =
[

X>
11 0n×(n−k)

]
, (2.8)

where X>
11 ∈ Rk×k is nonsingular. There also exists an orthogonal matrix Q1 ∈ Rm×m such that

P1V
>Q1 =

[
V >11 0k×(n−k) 0k×(m−n)

V >21 A 0(n−k)×(m−n)

]
∈ Rn×m, (2.9)

with appropriate sizes for the other three submatrices. In particular, note that both V >11 ∈ Rk×k

and A ∈ R(n−k)×(n−k) are nonsingular matrices, because V > is of full row rank by Theorem 2.2.
From the fact that

[
X> Λ>X>

] [ P>1 0
0 P>1

] [
P1 0
0 P1

] [
U>

V >

]
Q1 = 0, (2.10)

we conclude that the structure of P1U
>Q1 must be of the form

P1U
>Q1 =

[
U>11 0k×(n−k) 0k×(m−n)

U>21 ∆ B

]
∈ Rn×m, (2.11)

where B ∈ R(n−k)×(n−k) is nonsingular. Because

[
U>

V >

]
is of full column rank, together with

the fact that both A and B in (2.9) and (2.11) are nonsingular, it follows that

[
U>11
V >11

]
must be of
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full column rank. Note that U>11 is nonsingular if and only if Λ has no zero eigenvalue. Using V >11
as a pivot matrix to eliminate V >21 in (2.9), we may claim that there exits a nonsingular matrix
P2 such that

Ũ> := P2P1U
>Q1 =

[
U>11 0 0

Ũ>21 ∆ B

]
,

Ṽ > := P2P1V
>Q1 =

[
V >11 0 0
0 A 0

]
.

Compute the three matrices

M̃ := Ṽ >Ṽ =

[
V >11V11 0

0 AA>
]
,

C̃ := Ũ>Ṽ + Ṽ >Ũ =

[
U>11V11 + V >11U11 V >11Ũ21

Ũ>21V11 A∆> +∆A>
]
,

K̃ := Ũ>Ũ =

[
U>11U11 U>11Ũ21

Ũ>21U11 Ũ>21Ũ21 + BB> +∆∆>

]
,

and define the quadratic pencil Q̃(λ) := λ2M̃ + λC̃ + K̃. By construction, it is clear that
Q̃(λ) = (P2P1)Q(λ)(P2P1)

>. This congruence relation ensures that Q̃(λ) preserves the same
eigenvalue information as Q(λ). Define

Q11(λ) := λ2(V >11V11) + λ(V >11U11 + U>11V11) + U>11U11, (2.12)

P3 :=

[
I 0

−Ũ>21(λV11 + U11)Q
−1
11 (λ) I

]
. (2.13)

It is further seen that Q̃(λ) can be factorized as

P3

[
Q11(λ) 0

0 (λA+∆)(λA> +∆>) + BB>
]
P>3 . (2.14)

We thus have effectively decomposed the quadratic pencil Q̃(λ) into two subpencils.
By construction, we see from (2.8), (2.10) and (2.12) that the quadratic subpencil Q11(λ) in

(2.12) solves exactly the ISQEP with spectral data (Λ, X11). For this problem, we have already
proved in the first part that Q11(λ) must have double eigenvalue λj for each λj ∈ σ(Λ). It only
remains to check the eigenvalues for the subpencil (µA+∆)(µA>+∆>) +BB>. Recall that the
matrix B in (2.11) is nonsingular. The matrix (µA +∆)(µA> +∆>) + BB> is positive definite
for every µ ∈ R. In particular, its determinant cannot be zero for any real µ. Therefore, the
remaining eigenvalues of Q(λ) must be all complex conjugate with nonzero imaginary parts.

If, in addition, the columns of

[
U>

V >

]
in (2.10) are orthogonal to begin with, then both A

and B are (n − k) × (n − k) orthogonal matrices and the submatrix ∆ in (2.11) must be a zero
matrix. By (2.14), the remaining eigenvalues of Q(λ) can only be ±i. Observe further that there
exists a nonsingular W ∈ Rk×k such that

[
I 0
0 W

] [
U V

X> Λ>X>

] [
U> X

V > XΛ

] [
I 0
0 W>

]
=

[
I2n−k 0
0 Ik

]
. (2.15)

It follows that

U>U +XW>WX> = In,

U>V +XW>WΛ>X> = 0,
V >U +XΛW>WX> = 0,
V >V +XΛW>WΛ>X> = In.

(2.16)
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For any z satisfying X>z = 0, we see from the above equations that

U>Uz = z,

V >V z = z,

U>V z + V >Uz = 0.

This show that Q(±i)(z± iz) = 0.
Theorem 2.4 is significant in several fronts. First, if k = n, then all eigenvalues of Q(λ)

are completely counted. Secondly, if k < n and if the basis of null space N (Ω) are selected
to be mutually orthogonal (as we normally would do by using, say, MATLAB), then again all
eigenvalues of Q(λ) are completed determined. In other words, we are not allowed to supplement
any additional n− k eigenpairs to simplify this ISQEP. The solution of our method for ISQEP is
the most natural way for k(< n) prescribed pairs of eigenvalues and eigenvectors. In Section 2.3,
we shall study how non-orthogonal basis of N (Ω) can help to improve the ISQEP approximation.

We can further calculate the geometric multiplicity of the double roots characterized in The-
orem 2.5.

Theorem 2.5. Let (Λ, X) in the form of (1.3) and (1.5) denote the prescribed eigenpair of
the quadratic pencil Q(λ) defined before. Assume that Λ has distinct spectrum and X has full
column rank. Then

1. Each real-valued λj ∈ σ(Λ) has an elementary divisor of degree 2, that is, the dimension
of the null space N (Q(λj)) is 1.

2. The dimension of N (Q(λj)) of a complex-valued eigenvalue λj ∈ σ(Λ) is generically
1. That is, pairs of matrices (Λ, X) of which a complex-valued eigenvalue has a linear
elementary divisor forms a measure zero set.

Proof. Real-valued eigenvalues correspond to those λj ∈ σ(Λ) with j = 2` + 1, . . . , k. We
have already seen in Theorem 2.1 that Q(λj)xj = 0, where xj is the j-th column of X. Suppose
that the N (Q(λj)) has dimension greater than 1. From (2.6), it must be that

rank
(
λjV

> + U>
)
≤ n− 2. (2.17)

Rewrite (2.1) as

[
X> Λ>X>

] [ I −λjI

0 I

] [
I λjI

0 I

] [
U>

V >

]
= 0, (2.18)

which is equivalent to

[
X> (Λ> − λjI)X

>
] [ λjV

> + U>

V >

]
= 0. (2.19)

Note that, since Λ has distinct spectrum and X> has full row-rank,

rank
(
(Λ> − λjI)X

>
)
= k − 1,

or equivalently,

dim
(
N
(
(Λ> − λjI)X

>
))

= n− k + 1. (2.20)

On the other hand, there exists an orthogonal Gj ∈ Rm×m such that

[
λjV

> + U>

V >

]
Gj =

[
U>j1 0
V >j1 V >j2

]
, (2.21)
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where, due to (2.17), V >j2 has at least m− (n− 2) = n− k+ 2 linearly independent columns. We
then see from (2.19) that

(Λ> − λjI)X
>V >j2 = 0,

implying that dim
(
N
(
(Λ> − λjI)X

>
))
≥ n− k + 2. This contradicts with (2.20).

To examine the complex-valued case, notice that (1.9) can be rewritten as

M(XR)(RHΛ2R) + C(XR)(RHΛR) +KXR = 0,

where R is defined in (1.6). In particular from (1.7) and (1.8), for 1 ≤ j ≤ 2`, we have

Q(λj)xj = 0.

We first consider the case k = n. Two observations are due at the moment. First, the matrix

V in the basis

[
U>

V >

]
for the null space N

([
X>,Λ>X>

])
can be an arbitrary nonsingular

matrix. Secondly, if there exists another vector z ∈ Cn independent of xj such that Q(λj)z =
0, we claim that for this kind of eigenvalue the matrix (V >V )−1 must satisfy some kind of
algebraic varieties in Rn×n. Putting these two facts together, we conclude that any complex-
valued eigenvalue having a linear elementary divisor must come from a set of measure zero.

To see the claim concerning the algebraic varieties for (V >V )−1, we use (2.7) and (1.7) to
rewrite λjV + U as

λjV + U = V XR(λjI − Λ)RHX−1,

and thus factorize Q(λj) as

Q(λj) = (λjV
> + U>)(λjV + U)

= X−>R̄(λjI − Λ)R>X>V >V XR(λjI − Λ)RHX−1. (2.22)

If Q(λj)z = 0, from (2.22) we have

R>X>V >V XR(λjI − Λ)RHX−1z = τej , (2.23)

where ej is the jth standard unit vector and τ is some scalar. Rewrite (2.23) as

(λjI − Λ)RHX−1z = τRHX−1(V >V )−1X−>R̄ej .

Hence, a necessary condition for the existence of z is that (V >V )−1 must satisfy the algebraic
equation

e>j RHX−1(V >V )−1X−>R̄ej = 0. (2.24)

We note in passing that the condition (2.24) for (V >V )−1 is also sufficient since the above
argument can be reversed to show the existence of a vector z in the null space of Q(λj).

For the case k < n, a similar argument holds. Indeed, using the decompositions (2.12)
and (2.14) given in Theorem 2.4, a sufficient and necessary condition for the existence of z is
exactly the same as (2.24) where X and V are replaced by X11 and V11, respectively. In either
case, outside the algebraic variety, the elementary divisor of a generically prescribed complex
eigenvalues therefore is of degree 2.

To further demonstrate the subtlety of the second statement in Theorem 2.5, we make an
interesting observation as follows.
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Corollary 2.6. Suppose in the given (Λ, X) that X has full column rank and that Λ has
distinct spectrum. Assume further that {±i} ⊂ σ(Λ). Construct the quadratic pencil Q(λ) by

taking an orthogonal basis [U, V ]
>
for the null space N (Ω). Then the dimension of N (Q(±i))

is 2. In other words, in this non-generic case, both eigenvalues ±i have two linear elementary
divisors.

Proof. From (2.15), we have W (X>X + Λ>X>XΛ)W> = In. It follows that

W>W = (X>X + Λ>X>XΛ)−1.

The last equation in (2.16) gives rise to

(V >V )−1 = (I −XΛW>WΛ>X>)−1.

Upon substitution, it holds that

X−1(V >V )−1X−> = X−1(I −XΛW>WΛ>X>)−1X−>

= X−1(I −XΛ(X>X + Λ>X>XΛ)−1Λ>X>)−1X−>

= X−1(I −XΛX−1(I +X−>Λ>X>XΛX−1)−1X>Λ>X>)−1X−>

= X−1(I +XΛX−1X−>Λ>X>)X−>

= X−1X−> + ΛX−1X−>Λ>, (2.25)

where the forth equality is, after some algebraic manipulation, due to the Sherman-Morrison-
Woodburg formula. Substituting (2.25) into (2.24) and assuming that j is the index that defines
λj = ±i, we find that

e>j RHX−1(V >V )−1X−>R̄ej = e>j (R
HX−1X−>R̄+RHΛRRHX−1X−>R̄R>Λ>R̄)ej

= e>j (X̃
−1X̃−> + Λ̃X̃−1X̃−>Λ̃>)ej = 0.

The sufficient condition is met and, therefore, dim(N (Q(±i))) = 2.

2.3. Numerical Experiment. In this section we intend to highlight two main points
by numerical examples. The first example demonstrates the eigenstructure of a solution to a
typical ISQEP. From the discussion in the preceding sections, we already have a pretty good
idea about how the eigenstructure should look like. We now demonstrate numerically how the
selection of U and V might affect the geometric multiplicity of the double eigenvalue. The
second example has important meaning in applications. We demonstrate how some additional
optimization constraints can be incorporated into the construction of a solution to ISQEP. These
additional constraints are imposed by some logistic reasons with the hope to better approximate
a real physical system. In this example, we also experiment with the effect of feeding various
amount of information on eigenvalues and eigenvectors to the construction. In particular, we
compare the discrepancy between a given (analytic) quadratic pencil and the resulting ISQEP
approximation by varying the values of k and the optimal constraints. All calculation are done
by using MATLAB in its default (double) precision. For the ease of running text, however, we
shall report all numerals in 5 digits only.

Example 1. Consider the ISQEP where the partial eigenstructure (Λ, X) ∈ R5×5×R5×5 is
randomly generated. Assume

X =




−0.4132 5.2801 2.9437 −6.6098 −9.6715
−4.3518 3.2758 −5.1656 9.1024 −9.1357
−0.1336 −4.0588 2.5321 3.3049 −4.4715
−5.1414 4.4003 −2.2721 5.2872 6.9659
8.6146 −4.0112 −6.9380 1.4345 −4.4708
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and

Λ =




−0.2168 −4.3159 0 0 0
4.3159 −0.2168 0 0 0

0 0 2.0675 −0.9597 0
0 0 0.9597 2.0675 0
0 0 0 0 −0.3064



.

Choose a basis

[
U>1
V >1

]
for the null space N

([
X>Λ>X>

])
, say,

U>1 =




0.26861 0.56448 −0.08687 0.39491 −0.24252
0.32690 −0.24385 0.00804 −0.32844 0.42471

−0.33739 0.27725 −0.15949 −0.05883 0.58406
−0.13374 0.43824 0.09638 0.28605 0.46936
−0.42433 0.17867 0.69977 −0.12829 −0.16140



,

V >1 =




0.51817 0.09467 0.20341 −0.04075 0.32693
0.25575 0.38674 −0.09339 −0.32830 −0.22850
0.31749 −0.02297 0.63841 0.01156 0.05987

−0.02434 −0.40196 0.09987 0.65755 0.09646
0.27184 0.02061 −0.01859 0.30413 −0.03669




and construct

Q1(λ) = λ2(V >1 V1) + λ(V >1 U1 + U>1 V1) + (U>1 U1).

This quadratic pencil has double eigenvalue λj for each λj ∈ σ(Λ), according to our theory.
Furthermore, we compute the singular values of each Q(λj) and find that

svd(Q1(−0.21683± 4.3159i)) = {17.394, 15.039, 4.3974, 2.6136, 1.2483 × 10−15},
svd(Q1(2.0675± 0.95974i)) = {5.9380, 4.9789, 1.1788, 0.45926, 4.6449 × 10−16},

svd(Q1(−0.30635)) = {1.0937, 1.0346, 0.89436, 0.18528, 3.8467 × 10−17},

implying that the dimension of the null space Q(λj) is precisely 1 for each λj ∈ σ(Λ).
However, suppose we choose a special basis for N

([
X>Λ>X>

])
by

[
U>2
V >2

]
=

[
U>1 V −>1 X−1

X−1

]

and construct

Q2(λ) = λ2(V >2 V2) + λ(V >2 U2 + U>2 V2) + (U>2 U2).

We find that

svd(Q2(−0.21683± 4.3159i)) = {15.517, 0.12145, 0.07626, 3.4880× 10−15, 7.9629× 10−16},
svd(Q2(2.0675± 0.95974i)) = {21.064, 0.16325, 0.02540, 3.2321× 10−15, 5.2233× 10−16},

svd(Q2(−0.30635)) = {20.995, 0.19733, 0.08264, 0.02977, 1.6927× 10−15}.

In this case, each of the four the complex-valued eigenvalues of σ(Λ) has linear elementary divisors.
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Example 2. We can further exploit the freedom in the selection of basis for the null space
N (Ω). In this example we first demonstrate a few ways to select the basis under some special
circumstances. We then illustrate the effect of available eigeninformation on the construction.

To fix the idea, we first generate randomly a 10 × 10 symmetric quadratic pencil Q̂(λ) =
λ2M̂ + λĈ + K̂, where M̂ and K̂ are also positive definite, as an analytic model. We then
compare the effect of k on its ISQEP approximations for k = 1, . . . , 10. To save the space, we
shall not report the data of these test matrices M̂ , Ĉ and K̂ in this paper, but will make them
available upon request. We merely report that the spectrum of Q̂(λ) turns out to be the following
10 pairs of complex-conjugate values,

{−0.27589± 1.8585i, −0.19201± 1.5026i, −0.15147± 1.0972i, −0.11832± 0.54054i,

−0.07890± 1.3399i, −0.07785± 0.76383i, −0.07716± 0.86045i, −0.07254± 1.1576i,

−0.06276± 0.97722i, −0.05868± 0.18925i}.

These eigenvalues are not arranged in any specific order. Without loss of generality, we shall
pretend that the first 5 pairs in the above list are the partially described eigenvalues and wish to
reconstruct the quadratic pencil. For ` = 1, . . . , 5 (and hence k = 2`), denote these eigenvalues
as α`± iβ` Also, define partial eigenpairs (Λ2`, X2`) of Q̂(λ) according to (1.3) and (1.5), that is,

Λ2l = diag

{[
α1 β1

−β1 α1

]
, . . . ,

[
α` β`
−β` α`

]}
, (2.26)

X2` = [x1R, x1I , . . . , x`R, x`I ], (2.27)

where x`R ± ix`I is the eigenvector of Q̂(λ) corresponding to α` ± iβ`.

Let

[
U>`
V >`

]
∈ R2n×(2n−2`) be an orthogonal basis for N (

[
X>

2` Λ
>
2`X

>
2`

]
). We now introduce

three ways to select a new basis for N (
[
X>

2` Λ
>
2`X

>
2`

]
), each of which is done for a different

optimization purpose. The physical meaning of these optimal constraints will be explained at the
end of this section.

Case 1. Suppose K̂ = LK̂L>
K̂

and M̂ = LM̂L>
M̂

are the Cholesky factorizations of K̂ and M̂

in the model pencil, respectively. Find a matrix G>`1 ∈ R(2n−2`)×(2n−2`) by solving the sequence
of least-square problems

min

∥∥∥∥
[

U>`
V >`

]
G>`1(:, j)−

[
LK̂ 0n−2`

0n−2` LM̂

]
(:, j)

∥∥∥∥
2

, (2.28)

for each of its columns G>`1(:, j), j = 1, . . . , 2n − 2`. For convenience, we have adopted here the
MATLAB notation (:, j) to denote the jth column of a matrix.

The solution of (2.28) is intended to, not only solve the ISQEP, but also best approximate
the original K̂ and M̂ in the sense that the quantity

‖U>` G>`1G`1U` − K̂‖F + ‖V >` G>`1G`1V` − M̂‖F . (2.29)

is minimized among all possible G>`1 ∈ R(2n−2`)×(2n−2`). Once such a matrix G>`1 is found, we
compute the coefficient matrices according to our recipe, that is,

M`1 = V >` G>`1G`1V`, K`1 = U>` G>`1G`1U`,

C`1 = U>` G>`1G`1V` + V >` G>`1G`1U`,
(2.30)
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and define the quadratic pencil

Q`1(λ) = λ2M`1 + λC`1 +K`1, (2.31)

according to ` = 1, . . . , 5.

Case 2. We first transform V >` to [V >`0 , 0] by an orthogonal transformation. Then we find a
matrix G>`2 ∈ R(2n−2`)×(2n−2`) in the form

G>`2 =

[
E>`2 0
0 F>`2

]
, (2.32)

where E>`2 = V −>`0 LM̂ and F>`2 is an arbitrary (n− 2`)× (n− 2`) orthogonal matrix.

Case 3. We transform U>` to [U>`0, 0] by an orthogonal transformation. Then we find a
matrix G>`3 ∈ R(2n−2`)×(2n−2`) in the form

G>`3 =

[
E>`3 0
0 F>`3

]
, (2.33)

where E>`3 = U−>`0 LK̂ and F>`3 is an arbitrary (n− 2`)× (n− 2`) orthogonal matrix.

The purpose of finding G>`2 and G>`3 in the form of (2.32) and (2.33) is to, not only solve the

ISQEP, but also best approximate the original M̂ and K̂, respectively, in the sense that

‖V >` G>`2G`2V` − M̂‖F (2.34)

and

‖U>` G>`3G`3U` − K̂‖F (2.35)

are minimized by G>`2 and G>`3, respectively. Once these matrices are found, we define quadratic
pencils Q`2(λ) and Q`3(λ) in exactly the same way as we define Q`1(λ).

It would be interesting to see how the reconstructed quadratic pencils for the ISQEP, with
the above-mentioned optimization in mind, approximate the original pencil. Toward that end,
we measure the total difference

d`j = ‖M`j − M̂‖F + ‖C`j − Ĉ‖F + ‖K`j − K̂‖F , (2.36)

between the original pencil and the reconstructed pencil for each j = 1, 2, 3 and ` = 1, . . . , 5.

In Figure 2.1 we plot the error d`j between Q̂(λ) and Q`j(λ) for the various cases. Not
surprisingly, we notice that the quadratic pencil Q`1(λ) constructed from G>`1 is superior to the
other two. What might be interesting to note is that in Case 1 the amount of eigeninformation
available to the ISQEP does not seem to make any significance difference in the measurement of
d`1. That is, all d`1 seems to be of the same order regardless of the value of `. We think a reason
for this happening is because G>`1 has somewhat more freedom to choose so that M`1 and K`1

better approximate M̂ and K̂, respectively.

In real application for vibrating systems, the stiffness matrix K̂ and the mass matrix M̂ of a
mathematical model can usually be obtained by finite element or finite difference method. It is
the damping matrix Ĉ in such a system that is generally not known. If some partial eigenstructure
can be measured by experiment, then the construction proposed in Case 1 might be a good way
to recover the original system by best approximating the stiffness matrix and the mass matrix in
the sense of minimizing (2.29).
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Fig. 2.1. Errors of ISQEP approximations.

3. Solving IMQEP. With the existence theory established in the preceding section for
the ISQEP where k = n plays a vital role in deciding whether the resulting quadratic pencil is
singular, it is interesting to study in this section yet another scenario of the IQEP.

In the IMQEP, the leading matrix coefficient M is known and fixed and only symmetric C

and K are to be determined. We have already suggested earlier by counting the cardinality of
unknowns and equations that the number of prescribed eigenpair could go up to k = n+1. Since
the prescribed eigenvectors now form a matrix X of size n× (n+1), by assuming that X is of full
rank, there is at least one column in the given n × (n + 1) matrix X depending linearly on the
other columns. The following analysis is contingent on whether this linearly dependent column
is real-valued or complex-valued. We separate the discussion into two cases. Either case shows a
way to solve the IMQEP.

3.1. Real Linearly Dependent Eigenvector. Assume that the linearly dependent
column vector is real-valued. By rearranging the columns if necessary, we may assume without
loss of generality that this vector is xn+1. It follows that the n× n submatrix

X1 := [x1, x̄1, . . . ,x2`−1, x̄2`−1,x2`+1, . . . ,xn]. (3.1)

of X̃ defined in (1.8) is nonsingular. Let

Λ1 := diag{λ1, λ̄1, . . . , λ2`−1, λ̄2`−1, λ2`+1, . . . , λn}, (3.2)

be the corresponding submatrix of Λ̃ defined in (1.7). Both matrices are closed under complex
conjugation in the sense defined before.

Define

S := X1Λ1X
−1
1 . (3.3)

Note that, due to the complex conjugation, S is a real-valued n × n matrix. Define a quadratic
pencil Q(λ) via the factorization

Q(λ) := (λIn + S + C)(λIn − S), (3.4)
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where C is yet to be determined. Upon comparing the expression of (3.4) with (1.10), we see that

K = −(S + C)S. (3.5)

The first criterion for solving the IMQEP is that both matrices C and K be real-valued and
symmetric. Thus the undetermined real-valued matrix C must first satisfy the following two
equations simultaneously:

{
C> = C,

S>C − CS = S2 − (S>)2.
(3.6)

The following result provides a partial characterization of the matrix C we are looking for.
Theorem 3.1. The general solution to (3.6) is given by the formula

C = −(S + S>) +

n∑

j=1

γjyjy
>
j . (3.7)

where vectors yj, j = 1, . . . n, are the columns of the matrix

Y1 := X−>
1 = [y1, . . . ,y2`−1,y2`,y2`+1, . . . ,yn] (3.8)

and the scalars γj, j = 1, . . . , n, are arbitrary complex numbers.
Proof. It is easy to see that −(S + S>) is a particular solution of (3.6). The formula thus

follows from an established result ([11, Theorem 1, Section 12.5]).
It might be worth mentioning that the columns of Y1 are also closed under complex conju-

gation and, hence, C is real-valued if and only if the corresponding coefficients γj are complex
conjugate. It only remains to determine these combination coefficients in (3.7) so that the IMQEP
is solved. Toward that end, observe first that

X1Λ
2
1 + CX1Λ1 +KX1 = 0, (3.9)

regardless how the scalars γj , j = 1, . . . , n, are chosen. In other words, n pairs of the given data
have already satisfied the spectral constraint in the IMQEP. We use the fact that the last pair
(λn+1,xn+1) ∈ R×Rn in the given data must also be an eigenpair of Q(λ) in (3.4) to determine
the parameters γj , j = 1, . . . , n.

Define

z := (λn+1I − S)xn+1 ∈ Rn. (3.10)

Plugging the eigenpair (λn+1,xn+1) into (3.4) and using (3.7), we obtain the equation

λn+1z = S>z−
n∑

j=1

γjyjy
>
j z

which can be written as

−X>
1 (λn+1z− S>z) = diag{y>1 z, . . . ,y>n z}




γ1

...
γn


 . (3.11)

Obviously, values of γjy
>
j z, j = 1, . . . , n, are uniquely determined. However, the value of γj is

unique only if

y>j z = e>j X−1
1 z 6= 0, (3.12)

16



where ej denotes the jth standard unit vector. In terms of the original data, the condition can
be written equivalently as

e>j (λn+1I − Λ1)X
−1
1 xn+1 6= 0. (3.13)

If we assume that the condition (3.12) holds for all j = 1, . . . , n, then the last step in solving the
IMQEP is to show that elements in the solution {γ1, . . . , γn} to (3.1) are closed under complex
conjugation in exact the way as columns of Y1.

For convenience, we shall denote

r := λn+1z− S>z ∈ Rn. (3.14)

The first 2` elements in the equation (3.11) are

−x>2j−1r = y>2j−1zγ2j−1, (3.15)

−x>2jr = y>2jzγ2j , for j = 1, . . . , `. (3.16)

Recall x2j−1 = x̄2j and y2j−1 = ȳ2j for j = 1, . . . , `. Upon taking the conjugation of (3.15) and
comparing with (3.16), we conclude that

γ2j = γ̄2j−1, for j = 1, . . . , `. (3.17)

Similarly, γk ∈ R, for k = 2` + 1, . . . , n. It is now finally proved that both C and K are indeed
real-valued and symmetric. We summarize our first major result as follows:

Theorem 3.2. Let (Λ̃, X̃) ∈ C(n+1)×(n+1)×Cn×(n+1) be given as in (1.7) and (1.8). Assume
that one eigenvector, say, xn+1 ∈ Rn, depends linearly on the remaining eigenvectors x1, . . . ,xn
which are linearly independent. If the condition (3.13) is satisfied for all j = 1, . . . , n, then the
IMQEP has a unique solution.

We point out quickly that the equation (3.11) is not necessarily consistent. In particular, a
possible scenario is as follows.

Corollary 3.3. Under the same assumptions as in Theorem 3.2, if e>j X−1
1 z = 0 and

e>j (λn+1I − Λ>1 )X
>
1 z 6= 0 for some j, then the IMQEP has no solution.

3.2. Complex Linearly Dependent Eigenvector. Assume that the linearly depen-
dent column vector is complex-valued. By rearranging the columns if necessary, we may assume
without loss of generality that this vector is x2`. It follows that the n× n matrix

X1 = [x1, x̄1, . . . ,x2`−3, x̄2`−3︸ ︷︷ ︸
complex−conjugated

,x2`+1, . . . ,xn+1︸ ︷︷ ︸
real−valued

, x2`−1︸ ︷︷ ︸
complex−valued

]

is nonsingular. For convenience, we shall re-index the sequence of the above column vectors
by successive integers. Without causing ambiguity, we shall use the same notation for the re-
numbered vectors. Specifically, we rewrite the above X1 as

X1 = [x1, x̄1, . . . ,x2m−1, x̄2m−1︸ ︷︷ ︸
complex−conjugated

,x2m+1, . . . ,xn−1︸ ︷︷ ︸
real−valued

, xn︸︷︷︸
complex−valued

], (3.18)

column by column but only rename the indices, and define the corresponding

Λ1 = diag{λ1, λ̄1, . . . , λ2m−1, λ̄2m−1, λ2m+1, . . . , λn−1, λn}. (3.19)

We could further assume in (3.18) that

x̄n ∈ span{x1, x̄1, . . . ,x2m−1, x̄2m−1,xn}, (3.20)
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since otherwise one of the real-valued eigenvectors (and this is possible only if 2m+ 1 < n) must
be linearly dependent and we would go back to the case in Section 3.1. The following argument
is analogous to that of Section 3.1, but additional details need to be filled in.

Following (3.3) through (3.5) except that S is now complex-valued, we want to determine the
matrix C in the factorization (3.4) and the corresponding K via several steps. We first require
both C and K to be Hermitian. That is, the matrix C must satisfy the following equations:

{
CH = C ∈ Cn×n,

SHC − CS = S2 − (SH)2 ∈ Cn×n.
(3.21)

In contrast to Theorem 3.1, the characterization of C is a little bit more complicated.
Theorem 3.4. The general solution to (3.21) is given by the formula

C = −(S + SH) + γ1y1y
H
2 + γ2y2y

H
1 + · · ·+ γ2m−1y2m−1y

H
2m + γ2my2myH2m−1

+γ2m+1y2m+1y
H
2m+1 + · · ·+ γn−1yn−1y

H
n−1. (3.22)

where vectors yi, i = 1, . . . , n are the columns of the matrix

Y1 := X−H
1 = [y1,y2, . . . ,y2m,y2m+1, . . . ,yn]. (3.23)

Proof. Again, the formula is similar to that in Theorem 3.1 using exactly the same established
result ([11, Theorem 1, Section 12.5]). The slight complication is due to the fact that the first
2m eigenvalues of S and SH coincide in a conjugated way and the last eigenvalues of S and SH

are distinct.
Note that for j = 1, . . .m, y2j−1, y2j = ȳ2j−1 are the eigenvectors of SH with eigenvalues to

λ̄2j−1 and λ2j−1, respectively. Likewise, for k = 2m+ 1, . . . , n− 1, yk ∈ Rn is the eigenvector of
SH corresponding to λj ∈ R. Finally, yn ∈ Cn is the eigenvector of SH corresponding to λ̄n ∈ C.

By construction, we already know that (3.9) is satisfied with X1 defined by (3.18) and C

defined by (3.22). It remains to determine the coefficients γ1, . . . , γn−1 so that the deleted linearly
dependent vector x̄n (the original x2` before the re-indexing) is also an eigenvector with eigenvalue
λ̄n. Of course, we also need to make sure that the resulting C and K are real-valued ultimately.

Let

z = (λ̄nIn − S)x̄n. (3.24)

Substituting the eigenpair (λ̄n, x̄n) into (3.4) and using (3.22), we obtain

(λ̄nIn − SH)z = −[y1, . . . ,y2m,y2m+1, . . . ,yn−1]




γ1y
H
2 z

γ2y
H
1 z
...

γ2m−1y
H
2mz

γ2myH2m−1z

γ2m+1y
H
2m+1z
...

γn−1y
H
n−1z




. (3.25)

With the assumption of (3.20), it is not difficult to see that

yHj z = 0, for j = 2m+ 1, . . . n− 1. (3.26)
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The equation of (3.25) is equivalent to the equation

(λ̄nIn − ΛH1 )XH
1 z = −




γ1y
H
2 z

γ2y
H
1 z
...

γ2m−1y
H
2mz

γ2myH2m−1z

0
...
0




. (3.27)

The left-hand side of (3.27) is completely known. It is now clear that the coefficients γ1, . . . , γ2m

are uniquely determined if

yHj z 6= 0, for j = 1, . . . , 2m, (3.28)

whereas the coefficients γ2m+1, . . . , γn−1 in (3.25) (and hence in (3.22)) can be arbitrary real
numbers so long as the last n− 2m equations in (3.27) are consistent, that is,

xHj z = 0, for j = 2m+ 1, . . . , n− 1. (3.29)

Assuming (3.28) and (3.29), we now show that the resulting matrix C in (3.22) is Hermitian.
Toward that end, it suffices to show that γ2j−1 = γ̄2j , for j = 1, . . . ,m. Based on (3.26) and
(3.29), we introduction the following two vectors for convenience.

p := XH
1 z = [p1, . . . , p2m, 0, . . . , 0, pn]

T ∈ Cn, (3.30)

q := X−1
1 x̄n = [q1, . . . , q2m, 0, . . . , 0, qn]

T ∈ Cn. (3.31)

For j = 1, . . .m, the (2j − 1)-th and the (2j)-th components of (3.27) are, respectively,

(λ̄n − λ̄2j−1)p2j−1 = −γ2j−1y
H
2jz = −γ2j−1(λ̄n − λ2j)q2j ,

(λ̄n − λ̄2j)p2j = −γ2jy
H
2j−1z = −γ2j(λ̄n − λ2j−1)q2j−1.

Since λ2j−1 = λ̄2j , it follows that

p2j−1 = −γ2j−1q2j , (3.32)

p2j = −γ2jq2j−1. (3.33)

On the other hand, observe that

z = (λ̄nIn − S)x̄n = (λ̄nIn − S̄ + S̄ − S)x̄n = (S̄ − S)x̄n (3.34)

since x̄n is an eigenvector of S̄. Observe also that

(S̄ − S)xj = 0 for j = 1, . . . , n− 1 (3.35)

because of the complex conjugation. It follows that

(S̄ − S)x̄n = qn(S̄ − S)xn (3.36)

xH2j−1(S̄ − S)x̄n = −γ2j−1q2j (3.37)

xH2j(S̄ − S)x̄n = −γ2jq2j−1. (3.38)
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Taking conjugation of (3.37) and using (3.36), we obtain

−q̄nx̄
H
2j−1(S̄ − S)x̄n = −γ̄2j−1q̄2j . (3.39)

Comparing (3.38) and (3.39), since x̄2j−1 = x2j for all j = 1, . . . ,m, we obtain a critical relation-
ship that

q̄nγ2jq2j−1 = −γ̄2j−1q̄2j , for j = 1, . . . ,m. (3.40)

Now we are ready to show that γ2j = γ̄2j−1, j = 1, . . . ,m. We rewrite xn = X̄1q̄ from (3.31) as

xn = q̄1x̄1 + q̄2x̄2 + · · ·+ q̄2m−1x̄2m−1 + q̄2mx̄2m + q̄nx̄n

= q̄1x2 + q̄2x1 + · · ·+ q̄2m−1x2m + q̄2mx2m−1 + q̄nx̄n. (3.41)

Replacing the last term by

q̄nx̄n = q̄nq1x1 + q̄nq2x2 + · · ·+ q̄nq2mx2m + |qn|2xn,
we obtain the equality

xn = (q̄nq1 + q̄2)x1 + (q̄nq2 + q̄1)x2 + · · ·+ (q̄nq2m−1 + q̄2m)x2m−1

+ (q̄nq2m + q̄2m−1)x2m + |qn|2xn.
Since {x1, . . . ,x2m,xn} are linearly independent, it holds that

q̄nq2j−1 + q̄2j = 0, for j = 1, . . . ,m, (3.42)

Substituting (3.42) into (3.40), we have proved that γ2j = γ̄2j−1, for j = 1, . . . ,m.
By now, we have completed the proof that the matrix C constructed using (3.27) is Hermitian.

We are ready to state our second major result.
Theorem 3.5. Let (Λ̃, X̃) ∈ C(n+1)×(n+1)×Cn×(n+1) be given as in (1.7) and (1.8). Assume

that one eigenvector, say, x2` ∈ Cn, depends linearly on the remaining eigenvectors which are
linearly independent. Then

1. Suppose ` = n+1
2 , that is, suppose that there is no real-valued vector at all in X. If the

condition (3.28) is satisfied for j = 1, . . . , n− 1, then the IMQEP has a unique solution.
2. Suppose ` < n+1

2 and that (3.20) holds. If the condition (3.28) is satisfied for j =
1, . . . , 2` − 2 and the condition (3.29) is satisfied for j = 2` + 1, . . . , n + 1, then the
IMQEP has infinite many solutions; otherwise it has no solution.

Proof. Thus far, we have already shown that both matrices C and K can be constructed
uniquely and are Hermitian. It only remains to show that C and K are real symmetric. It
suffices to prove that C = C̄ and K = K̄.

Consider the IMQEP associated with the spectral data ( ¯̃Λ,
¯̃
X), the complex conjugate of the

original data (Λ̃, X̃). Then the sufficient condition (3.28) for the problem associated with (Λ̃, X̃)

applies equally well to the new problem associated with ( ¯̃Λ,
¯̃
X). A quadratic pencil therefore

can be constructed to solve the new IMQEP. Indeed, by repeating the procedure of construction

described above, it is not difficult to see that the constructed pencil for ( ¯̃Λ,
¯̃
X) is of the form

Q̃(λ) = λ2In + λC̄ + K̄.

Since Λ and X are closed under complex conjugation, the spectral information ( ¯̃Λ,
¯̃
X) is actually

a reshuffle of (Λ, X). As a matter of fact, these two IMQEPs are the same problem. In the
first case where ` = n+1

2 , the solution is already unique. In the second case where ` < n+1
2 and

(3.20) holds, so long as the arbitrarily selected real coefficients γ2m+1, . . . , γn−1 remain fix, the
complex-conjugated coefficients γ1, . . . , γ2m are also uniquely determined. In either case, we must
have that C = C̄ = CH and K = K̄ = KH .
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3.3. Numerical Examples. The argument presented in the proceeding section offers
a constructive way to solve the IMQEP. In this section we use numerical examples to illustrate
the two cases discussed above. For the ease of running text, we report all numbers in 5 significant
digits only, though all calculations are carried out in full precision.

Example 1. To generate test data, we first randomly generate a 5 × 5 real symmetric
quadratic pencil Q(λ) = λ2I + λC +K and compute its “exact” eigenpairs (Λe, Xe) numerically.
We obtain that Λe = diag{λ1, . . . , λ10}, Xe = [x1, . . . ,x10] with λ1 = −0.31828 + 0.86754i = λ̄2,
λ3 = −0.95669 + 0.17379i = λ̄4, λ5 = −4.4955, λ6 = 1.5135, λ7 = −0.24119 + 0.029864i = λ̄8,
λ9 = 0.91800, λ10 = −1.7359, and the corresponding eigenvectors

x1= x̄2=




15.159− 11.123i
−77.470− 14.809i
2.1930− 10.275i

0.38210 + 16.329i
57.042 + 18.419i



, x3= x̄4=




65.621 + 34.379i
22.625 + 24.189i

−37.062 + 15.825i
−9.6496 + 14.401i
−0.61893 + 25.609i



, x5=




2.2245
1.5893
2.1455
2.1752
1.6586



,

x6=




34.676
−5.8995
37.801

−66.071
−6.6174



, x7= x̄8=




35.257− 0.31888i
−25.619− 4.2156i
98.914− 1.0863i

−21.348 + 5.8290i
−97.711− 1.0693i



, x9=




−97.828
10.879
100.00

−4.3638
22.282



, x10=




−1.3832
4.4564

−1.1960
−4.0934
5.7607



,

Note that the above spectral data are not arranged in any specific order. According to our theory,
any n+1 eigenpairs satisfying the specification of (3.1) and (3.2) and the sufficient condition (3.13)
or (3.28), depending upon whether assumptions in Section 3.1 or Section 3.2 with ` = n+1

2 are
applicable, should ensure the full recovery of the original pencil.

Case 1: Suppose the prescribed partial eigeninformation is given by

(Λ̃, X̃) = (diag{λ1, λ2, λ3, λ4, λ5, λ6}, [x1,x2,x3,x4,x5,x6]) .

It is easy to check that the real-valued eigenvector x6 depends linearly on the first five eigenvectors
which are linearly independent. This fits the situation discussed in Section 3.1 where we choose
to work with

(Λ̂1, X̂1) =
(
diag{λ1, λ̄1, λ3, λ̄3, λ5}, [x1, x̄1,x3, x̄3,x5]

)
.

We construct the unique real symmetric quadratic pencil

Q̂(λ) = λ2I5 + λĈ + K̂

by the method described in the proof of Theorem 3.2. In Tables 3.1 and 3.2, we show the residual
‖Q̂(λj)xj‖2, where (λj ,xj) are the computed eigenpairs of Q(λ), for j = 1, . . . , 10,, as well as the

difference ‖Ĉ − C‖2 and ‖K̂ −K‖2, respectively.
Table 3.1

eigenpairs residual ‖Q̂1(λj)xj‖2
(λ1,x1) 2.2612e-015
(λ2,x2) 2.2612e-015
(λ3,x3) 2.9827e-015
(λ4,x4) 2.9827e-015
(λ5,x5) 2.0381e-015
(λ6,x6) 1.8494e-014
(λ7,x7) 7.9955e-014
(λ8,x8) 7.9955e-014
(λ9,x9) 4.4264e-014
(λ10,x10) 4.5495e-014
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Table 3.2

‖Ĉ − C‖2 1.8977e-014

‖K̂ −K‖2 7.3897e-014

Case 2: Suppose the prescribed spectral information is given by

(Λ̃, X̃) = (diag{λ1, λ2, λ3, λ4, λ7, λ8}, [x1,x2,x3,x4,x7,x8]) .

Note that all eigenvectors are complex-valued. This fits the situation discussed in Section 3.2
with ` = n+1

2 where we choose to work with.

(Λ̌1, X̌1) =
(
diag{λ1, λ̄1, λ3, λ̄3, λ7}, [x1, x̄1,x3, x̄3,x7]

)
.

We construct the unique real symmetric quadratic pencil

Q̌(λ) = λ2I5 + λČ + Ǩ

by the method described in the proof of Theorem 3.5. In Tables 3.3 and 3.4, we show the residual
‖Q̌(λj)xj‖2, for j = 1, . . . , 10,, as well as the difference ‖Č − C‖2 and ‖Ǩ −K‖2, respectively.

Table 3.3

eigenpairs residual ‖Q̌(λj)xj‖2
(λ1,x1) 4.5422e-016
(λ2,x2) 4.5422e-016
(λ3,x3) 7.8025e-016
(λ4,x4) 7.8025e-016
(λ5,x5) 3.7137e-014
(λ6,x6) 2.9549e-014
(λ7,x7) 9.4143e-016
(λ8,x8) 9.4143e-016
(λ9,x9) 6.0018e-014
(λ10,x10) 4.6464e-014

Table 3.4

‖Č − C‖2 1.9222e-014

‖Ǩ −K‖2 1.7951e-014

It can be checked that both cases above satisfy the sufficient conditions (3.13) and (3.28), respec-
tively. The errors shown in the tables seem to be quite satisfactory.

Example 2. In the previous example we demonstrate two scenarios of prescribed spectral
information that give rise to the same unique solution to the IMQEP. Now we demonstrate the
second situation in Theorem 3.5 when both ` < n+1

2 and (3.20) take place. Our theory asserts
that there will be either infinitely many solutions to the IMQEP or no solution at all.

Consider the case where n = 4 and the prescribed eigenvalues are given by λ1 = 3.3068 +
8.1301i = λ̄2, λ3 = 1.8702 + 2.7268i = λ̄4, λ5 = 5.4385 with corresponding eigenvectors

x1 = x̄2 =




0
9.2963 + 1.5007i
2.3695 + 1.9623i
3.8789 + 1.0480i


 , x3 = x̄4 =




0
6.5809 + 8.3476i
4.9742 + 8.0904i
1.1356 + 5.5542i


 , x5 =




1
0
0
0


 ,

respectively. It is obvious upon inspection that the linearly dependent vector in the above X must
be a complex-valued vector. Let this linearly dependent vector be x4. Then the real symmetric
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quadratic pencil

Q(λ) = λ2I + λC +K,

where C = −(S + SH) + γ1y1y
H
2 + γ2y2y

H
1 + γ3y3y

H
3 and K = −(S + C)S, can be constructed

with arbitrary γ3 ∈ R. In Table 3.5 we show the residual ‖Q(λj)xj‖2, for j = 1, . . . , 5 with various
values of γ3.

Table 3.5

γ3 = 2.56 γ3 = 40.6 γ3 = 506
eigenpairs residual residual residual
(λ1,x1) 2.9334e-011 2.9334e-011 2.9334e-011
(λ2,x2) 2.9334e-011 2.9334e-011 2.9334e-011
(λ3,x3) 7.8802e-011 7.8802e-011 7.8802e-011
(λ4,x4) 7.8802e-011 7.8802e-011 7.8802e-011
(λ5,x5) 1.7764e-015 2.8422e-014 4.5475e-013

Suppose we modify the first entries of the complex eigenvectors to

x1 = x̄2 =




9.2963 + 1.5007i
9.2963 + 1.5007i
2.3695 + 1.9623i
3.8789 + 1.0480i


 , x3 = x̄4 =




6.5809 + 8.3476i
6.5809 + 8.3476i
4.9742 + 8.0904i
1.1356 + 5.5542i


 , x5 =




1
0
0
0


 .

Still, we see that the linearly dependent vector in the corresponding X must be a complex-valued
vector, say x4. However, we find that the condition (3.29) is not satisfied because

xH3 z = xH3 (λ̄4I4 − S)x̄4 = −115.54 + 600.67i 6= 0.

The system (3.27) being inconsistent, the real coefficient γ3 in (3.22) is not solvable. We conclude
that the prescribed vectors and the corresponding scalars λi, i = 1, . . . , 5 indicated above cannot
be part of the spectrum of any 4× 4 real-valued, symmetric and monic quadratic pencil.

4. Conclusion. The quadratic eigenvalue problem arises in many important applica-
tions. Its inverse problem is equally important in practice. In a large or complicated system,
often it is the case that only partial eigeninformation is available. To understand how a physical
system modelled by a quadratic pencil should be modified with only partial eigeninformation in
hand, it will be very helpful to first understand how the IQEP should be solved. Some general
theory toward that end has been presented in this paper.

In the first part of this paper, we found that the ISQEP is solvable, provided that the number
of given eigenpairs is less than or equal to the size of matrices and that the given vectors are
linearly independent. A simple recipe for constructing such a matrix was described, which can
serve as the basis for numerical computation. We also found that the unspecified eigenstruc-
ture of the reconstructed quadratic pencil is quite limited in the sense discussed in Section 2.2.
We demonstrated three different ways for the construction that not only satisfied the spectral
constraints but also best approximated the original analytical model in some least squares sense.

In the second part of this paper, we established some general existence theory for the inverse
problem when the leading matrix coefficient M is known and fixed. The procedure used in the
proof can also provide a basis for numerical computation.

It should be noted that the stiffness matrix K is normally more complicated than the mass
matrix M . The requirement of maintaining physical feasibility also imposes constraints on the
stiffness matrix, making it less flexible and more difficult to construct. Thus, one usual way of
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formulating an inverse eigenvalue problem is to have the stiffness matrix K determined and fixed
from the existing structure, known as the static constraints, and then to find the mass matrix M

so that some desired natural frequencies are achieved. This is sometimes so desired even without
the damping term C. By exchanging the roles of M and K, the discussion in this paper could be
applied equally well to the inverse quadratic eigenvalue problem formed with the aforementioned
static constraints in mind.

The study made in this paper should have shed light on the long standing question of how
much a quadratic pencil could be updated, modified, or tuned if some of its eigenvalues and
eigenvectors are to be kept invariant. Finally, we should point out that there are unfinished tasks
in this study. Among these, sensitivity analysis in the case of a unique solution, robustness in the
case of multiple solutions, and existence theory where M or K are specially structured are just a
few interesting topics that are yet to be further investigated.
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