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Abstract� Consistency retrieval from a biased relative preference table is an imperative task
in decision theory� This paper considers the least squares approximation of a pairwise comparison
matrix by consistent matrices� It is observed that the highly nonlinear manifold of consistent matrices
can be changed into a linear subspace by the component�wise logarithmic transformation� A �rst
order optimality condition therefore can be described in terms of coordinates in the linear subspace�
This approach facilitates the otherwise much more complicated optimality condition if working with
the variables in the original manifold� Fast nonlinear equation solvers can be employed to solve the
problem e�ciently�
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�� Introduction� Decision making� especially on intangible stimuli or criteria such

as the degree of environmental hazard factors or psychological impact factors� is a very
hard task� Not only the information about the stimuli is often inexact or incomplete�
but also the decision maker�s own judgment is sometimes inconsistent� Given n stimuli�
one way to acquire better insights into the underlying system is to assign a weight

of priority to each stimulus and to compare the stimuli in pairs� In the ideal situation
where there are exact positive values v�� � � � � vn for the stimuli� the quotientmij � vi�vj�
called the relative preference of stimulus i to stimulus j in the literature� can be used as
a powerful inference tool in knowledge�based or data mining expert systems� Practical

and theoretical discussion of the knowledge acquisition process based on the method of
pairwise comparison can be found in ��� ���

In practice� however� it is di	cult to establish the relative preference matrix �mij�

exactly either because a priority setting v�� � � � � vn cannot be possibly measured or be�
cause such a weight estimation itself is inexact� In the decision making procedure quite
often the pairwise comparison coe	cients mij are provided through some other avenues
and are meant only to be an approximation to the true yet unknown quotients vi�vj�

Under circumstances such as this� one important issue stands out before a relative pref�
erence table can be used to help decision making� i�e�� the inconsistency embedded in
the estimated pairwise comparison coe	cients must be removed or reduced�

To describe the problem more precisely� we say that M � �mij� � R�n is a pairwise

comparison matrix if mij � 
 for all i� j � �� � � � � n� �So a pairwise comparison matrix is
in fact a positive matrix as we normally call in the literature� A pairwise comparison
matrix M is called consistent if

mikmkj � mij��
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for all i� j� k � �� � � � � n� Note that a consistent matrix M is necessarily reciprocal� i�e��

mji � �
mij

for all i� j� but the converse is not true in general� Consistent matrices
correspond to the ideal situation in which there are exact values v�� � � � � vn for the
stimuli� The quotients mij � vi�vj then form a consistent matrix�

The pairwise comparison matrix arising in practice� due to noise or imperfect judg�

ments� usually is not consistent� The challenge is to best approximate a given pairwise
comparison matrix Z by a consistent matrix in some sensible way� Several approaches
have been proposed� Motivated by the Frobenius Theorem� for example� Saaty ��� sug�
gests that the eigenvector v � �v�� � � � � vn�T corresponding to the largest eigenvalue in

modulus of Z would be a reasonable priority setting� Crawford� on the other hand�
proposes a geometric means procedure for estimating the scale of judgment matrix ����
A Monte Carlo study comparing the performance of these two methods can be found

in ���� This paper discusses the best consistent approximation of Z in the sense of least
squares� We outline a procedure using the quasi�Newton method to solve the problem�

It would be wrong to simply consider the problem

min
mji�

�

mij

kZ � �mij�kF

because the solution matrix� though is reciprocal� may not be consistent� It would also
be impractical because there are n�n���

�
variables involved in the above optimization

whereas the relationship �� implies� by induction� that a consistent matrix M � �mij�
must be of the form

mij �

����
���

�� if j � i�
sisi�� � � � sj��� if j � i�

�
sisi�����sj��

� if j � i�
��

where s�� � � � � sn�� are some positive numbers� Clearly� the consistent matrices form a

much more complicated nonlinear submanifold of dimension n � ��
The relationship in �� de�nes one way to parameterize the manifold of consistent

matrices� i�e�� by using values s�� � � � � sn�� of the sup�diagonal entries of the matrix� By
working with these parameters� one may therefore formulate the best approximation as

the solution to the least squares problem

min
s��������sn����

kZ �M�s�� � � � � sn��kF��

where entries of M � M�s�� � � � � sn�� are de�ned by ��� It can be shown that the

resulting optimality condition� though complicated� is equivalent to yet another simpler
way of parameterization discussed in this paper� Our main point is that the manifold
of consistent matrices can be nicely parameterized through the following logarithmic

transformation that facilitates the derivation of the optimality condition and the com�
putation of the projected gradient�

Consider the set

L ��
n
L � ��ij � � Rn�nj�ik � �kj � �ij for all i� j� k

o
���

�



Clearly L forms a linear subspace� It is important to notice that corresponding to each

L � L the matrix

exp�L �� �e�ij ����

i�e�� the element�wise exponential of L� is a consistent matrix� Similarly� corresponding
to each consistent matrix M the matrix

log�M �� �lnmij����

i�e�� the element�wise logarithm of M � is an element in L� Furthermore� the correspond�
ing is a one�to�one mapping� Given a pairwise comparison matrix Z� the least squares

approximation problem can now be stated as�

min
L�L

kZ � exp�LkF ���

�� Optimality Condition� Suppose L � L� It is clear that �ii � 
 for all i� The
following theorem states that L is completely characterized by its last column�

Theorem ���� Let the last column of L be denoted by �t�� � � � � tn��� 
�
T � Then

L � ��ij� is determined by the rule

�ij � ti � tj���

Proof� Since �nj � �jn � �nn � 
� it follows that �nj � �tj for all j� Then

�ij � �in � �nj � ti � tj�
We shall denote L by L�t�� � � � � tn��� It follows immediately that L is of dimension

n� �� A natural basis for L would be fL���� � � �L�n���g where

L�i� �� L�ek��

and ek is the standard unit vector �
� � � � � �� � � �
�T in Rn�� with � at its k�th position�

It is easy to see that the entries ��k�ij of L�k� are given by

�
�k�
ij �

���
��

�� if i � k and j �� k�
��� if j � k and i �� k�

� otherwise�

��


As a linear subspace� L may be characterized by many other ways than using the
last column of a matrix� For example� �� suggests that we may use the sup�diagonal
of L � L to delineate the matrix� i�e�� we may write L � ��ij� as

�ij �

���
��


� if j � i�

si � si�� � � � �� sj��� if j � i�

�si � si�� � � � � � sj��� if j � i�





where fs�� � � � � sn��g are sup�diagonal entries of L� The resulting basis however are

unnecessarily more complicated� We think that the basis de�ned by ��
 is perhaps the
simplest for L and� as will be seen below� simpli�es the calculation�

The element�wise exponential function exp de�ned in �� is di�erentiable� Note
that

exp�M �H � exp�M � �emij�hij � emij �

� �emijhij� �O��h�ij ��

It follows that the Fr�echet derivative of exp at M acting on H is given by

exp
�

�M�H � exp�M �H���

where A �B � �aijbij� stands for the Hadamard product of matrices A and B� De�ne

F �L ��
�

�
hZ � exp�L� Z � exp�Li���

where hA�Bi �
P

i�j aijbij stands for the Frobenius inner product of matrices A and B�
We can calculate the gradient of F according to the following theorem�

Theorem ���� With respect to the Frobenius inner product� the gradient rF is

given by

rF �L � ��Z � exp�L � exp�L����

Proof� By ���� we �nd that

F
�

�L�H � hZ � exp�L��exp�L �Hi

� h��Z � exp�L � exp�L�Hi����

In the second equation above� we have used the fact that

hA�B �Hi �
X
i�j

aij�bijhij �
X
ij

�aijbijhij � hA �B�Hi�

The assertion therefore follows from ����

We can easily project ProjLrF �L of the gradient rF �L onto the space L� The
projection is necessarily a linear combination of the basis L�k� de�ned in ��� Suppose

ProjLrF �L �
n��X
k��

�kL
�k�����

Then it follows that

hrF �L�
n��X
k��

�kL
�k�� L�i�i � 
� for i � �� � � � � n� �����

�



That is� � �� ���� � � � � �n���T must satisfy the linear system of equations

n��X
k��

hL�i�� L�k�i�k � hrF �L� L�i�i� for i � �� � � � � n� �����

The coe	cient matrix � �� �hL�i�� L�k�i� in ��� has very simple form

� �

�
��������

��n� � �� � � � �� ��
�� ��n � � � � � ��
���

� � �
���

�� ��n � � ��
�� �� �� ��n � �

�
�������	
�

Since L���� � � �L�n��� are linearly independent� � must be nonsingular� In fact� the
inverse has very simple closed form�

��� �
�

n

�
��������

� �
� � � � �

�
�
�

�
�

�
���

� � �
�
�

� �
�

�
�

�
�

� � � �
�

�

�
�������	
����

So the computation of � is easy�
Once � is determined� the vector �ProjLrF �L o�ers a steepest descent search

direction in the space L to decrease the values of F � Together with a line search strategy�

we have in hands a descent method that works directly in terms of the variable L�
On the other hand� our approach provides an easy derivation of the �rst order

optimality condition in terms of the parameters t�� � � � � tn���
Theorem ���� Assume tn � 
� For L � L�t�� � � � � tn�� � L to be a local minimizer

of F � the system of nonlinear equations

nX
j��

h
�zkj � etk�tj etk�tj � �zjk � etj�tketj�tk

i
� 
� k � �� � � � � n� ����

must be satis�ed�

Proof� It follows from ��� and ��� that the �rst order optimality condition for L

is

h�Z � exp�L � exp�L� L�k�i � 
� for k � �� � � � � n� ��

The structure of L�k� �see ��
 implies that hA �B�L�k�i �
P

j�akjbkj � ajkbjk for any
matrices A and B� The assertion follows after noting that L � �eti�tj ��

These conditions are mathematically equivalent to but operationally simpler than
those obtained� for instance� from ��� We illustrate our point by one simple example

where n � � and

Z �

�
��
� � �
� � �

� � �

�
�	 ���
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Fig� �� Solution curves of each individual equation in ���� with Z given by �����

Figure � depicts the solution curves �t�� t� to each of the two equations de�ned in
���� It is seen that there are three simultaneous solutions to the system ���� On
the other hand� we can also use the parameterization �� to solve the problem� Upon

di�erentiating the objective function in �� with respect to the parameters s� and s�� we
obtain a new set of gradient equations whose solution curves are plotted in Figure �� It
is seen that there are six simultaneous solutions to this gradient system� It is conceivable
that the higher the dimension n is� the more extraneous solutions there will be� Indeed�

the resulting nonlinear system of gradient equations by using the parameterization ��
will in general end up with a system of Laurent polynomials� There is a well known
theory� Bernstein�s Theorem� that predicts the number of solutions by using the mixed
volume of the Newton polytopes of the equations� More details can be found in ���

x����� Of course� the problem �� requires both s� � 
 and s� � 
 and� hence� limits the
solutions of the above example to the three in the �rst quadrant that� in return� give
the same answers as would be by solving ���� But the fact that our parametrization
avoids the calculation of the extraneous points from the beginning is quite remarkable�

�� Numerical Experiment� The unknowns t�� � � � � tn�� in ��� can be solved
by any available nonlinear equation solver� The resulting matrix exp�L�t�� � � � � tn��

would be regarded as a least squares solution to problem �� with impunity� In particu�
lar� through our parameterization the optimization �� now becomes an unconstrained

�
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Fig� �� Solution curves of each gradient equation obtained from ��� with Z given by �����

problem

min
t������tn��

G�t�� � � � � tn�� ��
�

�
kZ � exp�L�t�� � � � � tn��k

�
F ����

We make a crucial observation that the nonlinear system i in Theorem ��� corresponds
exactly to the gradient of G�

Theorem ���� For k � �� � � � � n� ��

�G

�tk
� h� �Z � exp�L�t�� � � � � tn�� � exp�L�t�� � � � � tn��� L

�k�i����

Proof� The proof follows directly from the chain rule that �G
�tk

� F
�

�L �L
�tk

� the

relationship ���� and the fact that �L
�tk

� L�k��

The gradient information therefore can be used to build up curvature information
through� for example� the BFGS technique� In return� a search direction can be deter�
mined to decrease the value of G� Followed by an appropriate line search procedure�
a quasi�Newton algorithm can be developed to solve the least squares problem e�ec�

tively� There are many readily available library routines for doing this job� We �nd that
the routine fminu in MATLAB�s Optimization Toolbox ��� is particularly convenient
because the MATLAB command exp does precisely the component�wise exponential

de�ned in ��� The gradient in ���� for example� can quickly be calculated through the
following program�

	



function g�grad�T��

global Z

n�length�T����t��T����

L�diag�t�	ones�n�
ones�n�	diag�t��

temp�
�Z
exp�L���	exp�L��

temp�sum�temp�
temp��

g�temp��n
���

end

We report some numerical experiments in this section� For convenience� we display

all numbers only with �ve digits although all tests are run with a much higher termi�
nation criteria for the worst case precision of both the independent variables and the
objective function� i�e�� the options vector in fminu is reset so that options��� � �
��

and options��� � �
��� For practical applications� this precision is far better than
needed� Also� we have tested some larger size matrices �with n up to �

 and the
algorithm performs reasonably well� We concentrate on the case n � � in this report
to illustrate our point�

We note �rst that the least squares consistent approximation to a given Z is not
unique due to the nonlinearity of the problem� Likewise� a solution to the system ���
only satis�es a necessary condition� We have already illustrated that when Z is given
by ��
 there are three three simultaneous solutions to the system� But upon checking�

only the two pairs ������
���
����� and �������� �� ���� for �t�� t� correspond to a
least squares solution� The third pair �����
�� 
����
 solves the nonlinear system ����
but is not a least squares solution� The starting point determines which least squares
solution the algorithm converges to�

Example �� To illustrate the sensitivity of the consistent matrices subject to
perturbations� consider the case where a system of seven stimuli has been given priorities
si � i for i � �� � � � � �� The ideal pairwise comparison matrix should be S � �si�sj ��

Suppose now random noises from a normal distribution of mean 
 and variance �
��

have been added to the o��diagonal entries �common sense would tell that something
is obviously wrong if the diagonal entries are not ��s of S to produce

Z �

�
������������

��
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Now it is not clear how valid the pairwise comparison matrix Z represents the true
relative preference� Starting with the random vector

�
����
� 
�
��
� 
������ 
������ 
������ 
������

as initial values for �t�� � � � t	�� the routine fminu takes �� steps to reduce the gradient
to less than �
��� The history of the objective values are plotted in Figure �� We make

�
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Fig� �� History of objective values for Example ��

a remark here that this example also represents a typical run of fminu on many other
experiments we have conducted� It is interesting to note that the best consistent matrix
approximation to Z is given by

C �

�
������������

��
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It is important to note that C is closer to S than to Z� i�e� kC � SkF � 
�
��� and

kC � ZkF � 
�
��� whereas kZ � SkF � 
�
���� indicating that C is really retrieving
consistency from the perturbed S�

Example �� We repeat the above experiment �

 times with consistent matrices
S whose weights of priority are generated randomly by the absolute value of randn� a

MATLAB random number generator of uniform distribution with mean 
 and variance
�� Random noises from randn����� are added to produce testing data Z� Initial
guesses for t�� � � � t	 are also randomly generated from randn� We plot in Figure � the
di�erences among S� Z� and C measured by the Frobenius norm� It is observed that

kC � SkF is generally two to three times smaller than kC � ZkF �

�� Conclusion� In the process of knowledge acquisition� one important approach
is to introduce weights re�ecting the relative signi�cance of the objectives concerned� In
reality� however� these weights either cannot be precisely assigned or are assigned with
biased judgments� We have discussed in this paper an important issue of retrieving con�

sistency from the data that are in disarray� We propose a special parameterization that
in conjunction with the quasi�Newton method enables us to carry out this validation
process e�ectively�






0 50 100 150 200 250 300 350 400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of tests

F
ro

be
ni

us
 n

or
m

 o
f Z

−
S

, C
−

Z
, a

nd
 C

−
S

Random Test of Consistency Retrieval

* = norm of Z−S; − = norm of C−Z; : = norm of C−S

Fig� �� Di�erences of kZ � SkF 	 kC � ZkF and kC � SkF in Example ��

REFERENCES

��� D� Cox� J� Little� D� O�Shea� Using Algebraic Geometry� to be published by Springer�Verlag�
draft� �

	��w

��� G� Crawford� The geometric mean procedure for estimating the scale of judgment matrix� Math�
Modelling� 
��
�	�� �	���

�� A� Grace� Optimization Toolbox User�s Guide� The MathWorks� Inc�� �

��
��� M� Herman� W� Koczkodaj� A Monte Carlo study of pairwise comparison� Inform� Processing

Letters� �	��

��� ����
�
��� R� Jensen� An alternative scaling method for priorities in hierarchical structures� J� Math� Psy�

chology� ����
���� �	���
��� T� Saaty and L� Vargas� Comparison of eigenvalue� logarithmic least square and least square

methods in estimating ratios� Math� Modelling� ���
���� �
����
�	� L� L� Thurstone� A law of comparative judgments� Psychological Review�� ���
�	�� �	�����

��


