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ON THE CONTINUOUS REALIZATION OF ITERATIVE PROCESSES*
MOODY T. CHU#t

Abstract. Many important mathematical problems are solved by iterative methods. Many of these
iterative schemes may be regarded as the discrete realization of certain continuous dynamical systems. This
paper summarizes some of the recent developments in the continuous realization of several popular basic
iterative methods.
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1. Introduction. The process of successive iterations has been used in a variety
of ways to solve many important mathematical problems. Without an attempt to be
complete, the following are just a few examples in applications. The Newton methods
[15], [30], [37] may be used for solving systems of nonlinear equations; the steepest
descent method [19] for solving optimization problems; the power method [16], [23],
[31] for finding the eigenvector associated with the largest module eigenvalue; the
SVD algorithm [21]-[23] for calculating the singular value decomposition; the QZ
algorithm [23], [28] for solving generalized eigenvalue problems; and the linear
stationary methods [24], [38], including the Jacobi method, the Gauss-Seidel method,
and the SOR method, for solving large and sparse systems of linear algebraic equations.

Over the past few decades numerous researchers have made great efforts and
contributions to the description, analysis, and modification for each of the above-
mentioned iterative processes. The present paper does not intend to survey the state
of the art in that aspect, so only a few general references are cited for each method.
Readers should be able to find more detailed discussions and applications from the
bibliographies referred to therein.

Recently, continuous versions of various iterative processes have been proposed
and studied. Roughly speaking, the continuous method involves systems of differential
equations, whereas the discrete method involves systems of difference equations. The
subject of the present paper is to examine the differential equation analogues of some
of the basic iterative processes.

All the basic iterative methods discussed in this paper can be expressed abstractly
in a similar form. That is, each iterative process generates a sequence of points
{x.} by

(11) -xx+1=Gx(xx)9

where {G.} is a sequence of properly chosen operators. The scheme (1.1) is about the
simplest case of the general iterative process [30] defined below.
DEFINITION 1.1. A family of operators {G.}, where

(1.2) G.:D.C(R"**?—>R", k=0,1,---,

defines an iterative process I = ({G,}, D*, p) with p initial points and with domain
D* C D,, if D* is not empty and if for any point (X0, X-1, - -+ , X_p+1) € D*, the
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376 MOODY T. CHU
sequence {x,} generated by
(1.3) xx+l=GK(xxs"' ,x—p+l)9 K=Oala"' 1)

exists, i.e., if (x,, - - - , Xx_p+1) €D, forallk =0, 1,
DEFINITION 1.2. An iterative process I = ({G,}, D*, p) is said to be an m-step-
method if p = m and if the mappings {G,} are of the form

(1.4) G..D,C(R""—R", k=0,1,....
An m-step process is sequential if the iterates are generated by
(1.5) Xet1 =G fXes + o+ 3 Xemmt1), k=0,1,...

A sequential m-step process is stationary with iteration function G if G, =G, D, =D
forallk=0,1, ---.

It is clear from these definitions that all the basic iterative processes mentioned
in this paper are sequential one-step methods. While the Newton method, the Jacobi
method, the Gauss-Seidel method, the SOR method, and the power method are
stationary processes, the QR algorithm, the steepest descent method, the QZ algo-
rithm, and the SVD algorithm are nonstationary. The secant method is an example
of a two-step method. In [37] various multistep methods are proposed in order to
obtain higher-order methods for the solution of nonlinear equations. On the other
hand, many procedures that are used to accelerate the convergence of the basic linear
stationary methods may result in multistep methods. The Chebyshev and conjugate
gradient accelerations [24] are just two examples of this kind. Numerical techniques
employed to approximate solutions of differential equations often take the form of a
sequential, stationary multistep iterative process.

The discussion in this article is presented on a method-by-method basis. The
reader will find that some continuous models evaluate exactly the iterates of the
corresponding discrete methods, but that others are simply straightforward continuous
extentions. In either case, the advantages of considering the differential systems could
be as follows:

(a) There are many state-of-the-art numerical techniques available for following
the associated solution flows;

(b) The theoretical O.D.E. techniques often offer better understanding about the
convergence conditions for the corresponding discrete method;

(c) In contrast to the local properties for some discrete methods, the continuous
approach usually offers a global method for solving the underlined problem.

We note that it is a complicated problem to judge whether a more secure but
more involved method is superior to a simpler method. Likewise, it is difficult to
compare the algorithmic details between the continuous and the discrete methods. In
spite of the large amount of variations of iterative procedures, we shall restrict our
discussion of continuous realization to the very basic schemes only. We assume that
the reader has already learned these basic methods elsewhere, so there is no need to
comment on the schemes themselves. Nor do we intend to evaluate the various
computational perspectives of the continuous methods, even though in recent years
some of these continuous approaches have become more and more appealing and
promising [2], [18], [26]. Our primary objective is to summarize a number of
connected problems so as to arouse general interest in the various correspondences
between iterative methods and dynamical systems.
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2. The Newton method. Consider the problem of solving the nonlinear equation

(2.1) Sx)=0,

where f: R” — R" is a sufficiently smooth function. It has long been known that one
cycle of the classical Newton iteration

(2.2) Xerr=Xe— (" (X)) 7S (x)

may be regarded as one explicit Euler step with unit steplength applied to the
differential system

d
2.3) T=— YR, xO0=x.

The solution flow x(s) of (2.3) obviously satisfies the equation f(x(s))=
€~5f(x(0)). This can be interpreted as follows: the flow always moves in the direction
along which the magnitude of f(x) is reduced exponentially. It follows that the
solution x(s) of (2.3) either diverges to infinity, converges to a local minimum of f,
or converges to a zero of /. From this observation, we can imagine that if x, is on the
wrong side of a local maximum of the graph of f, then the iterates of (2.2)
may diverge. Even though divergence can be avoided by considering Broyden’s
modification

(2.4) Xer1 =X — o (f7 (%)) (%),

where «, is chosen to minimize the norm of f(x.+,), the sequence {x,} is still not
guaranteed to converge (to a solution of (2.1)).

Let x* be a solution of (2.1). Suppose that /” (x*) is nonsingular. It is not difficult
to see that the coefficient matrix of the variational equation of (2.3) at x* is equal to
the negative of the identity matrix. It follows that x* is an asymptotically stable
equilibrium point of (2.3). This fact manifests another local convergence property for
the Newton method.

The differential system (2.3) can be derived from a topological point of view [25].
Let f(x0) = fo #0. Let L = L(f;) be a half-line in R"

(2.5) L={tfo:t>0}

and consider the set C(xo) which is the connected component of xo in f~'(L). If fis
sufficiently smooth, then generally C(x,) will be a smooth one-dimensional sub-
manifold through xo. It is well known in differential geometry that for x € C(xo) the
derivative f”(x) maps the tangent space of the manifold C(xo) at x into that of the
manifold L at f(x). Therefore, if the derivative f”(x) is invertible, then the tangent
line to C(x,) at x should be parallel to the vector (f”(x))~'f(x). With some suitable
scaling and orientation considerations, we end up with an equation such as (2.3).

Another way to derive the differential system (2.3) is to consider the homotopy
equation

(2.6) ' H(y)=f(x)—1f(x)=0,

where y repreéents the point (x, f) in R™'. Suppose that 0 € R" is a regular value
for H. It is well known that the solution set of (2.6) is a one-dimensional sub-
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manifold. Differentiating (2.6) with respect to the arc length, denoted by s, yields
,,ndx 1 dr
x(0)=xo, t(0)=1.

If f7(x) is nonsingular, then (2.7) and (2.3) are almost equivalent. But the regularity
of (2.6) also enables us to handle the case when f”(x) is of rank 1 deficiency. Solving
system (2.6) is known variously as the continuation method, the Davidenko method,
and the homotopy method. It is attractive because of its global and probabilistic
features. For general references of the theory and its applications, the reader is referred
to [1], [2], [5], [18], [26], [27], [34], [39].

If we formulate an analogous equation of (2.3) for the underdetermined system
H(y)=0, we get

2.7

) H 02 =),

Again, it is easy to see that all solutions of (2.8) will satisfy the equation
H(y(s)) = e*H(y(0)). Furthermore, it can be shown [36] that the one-dimensional
solution set of (2.6) forms an asymptotically stable center manifold with respect to
the system (2.8). If we consider the differential system determined from the least
square solution of (2.8), i.e.,

dy
2. —=—H'(y)*H(p),
(2.9) s ("H(y)
where (H'(y))* is the Moore-Penrose generalized inverse of H’(y), then from the
well-known fact

(2.10) Range ((H’)")=Range (H’)")=(Kernel (H"))*

we see that the solution flow of (2.9) always moves in the direction that is perpendicular
to the one-dimensional kernel space of H’. Note that the zero set of (2.6), in particular,
is characterized by its tangent vectors which is in the kernel space of H’ since
H'(y(s)) dy/ds = 0. Thus in summary, we conclude that all solution flows of (2.9)
converge globally and perpendicularly to the solution curve of (2.6).

The differential system (2.9) is different from (2.3) only in that the system (2.6)
is underdetermined. So it is natural to consider the following Newton-like iteration
scheme [20]:

(2.11) Ver1 =Ye—(H'(y)) "H(y.).

The resulting point y.; lies in the hyperplane normal to the tangent vector of the
curve {y € R"'; H(y) =H(y.)}. Since the tangent vectors form a Lipschitzian vector
field [33], we expect that (2.11) can be used to follow the implicitly defined curve of
(2.6). In fact, the following theorem which is an analogue of the Kantorovich theorem
for the classical Newton method can be established [6].

THEOREM 2.1. Let H: D C R™"' — R" be a C*function such that

I1H'(z))—H'(22)| Sallzi— 2|

for every z,,z,€D. Suppose H(y*)=0 and H "(¥*) is of full rank. Choose
0<B8<(3—+5)/2 and define

M=min {2/(Ba||(H’)*|),dist (y*, 6 D)}.
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If0 <r<BM is such that for every y in the ball B(y*, r) centered in y* with radius r
we have

IHO)I <aBM?/2,

then with any y, € B(y*,r) C D, the scheme (2.11) is well-defined and converges
geometrically to a solution of (2.6).

The concept of multistep iterative methods has been proposed to obtain higher
order of convergence to the solution of (2.1). A detailed discussion on this topic can
be found in [37], which also contains a substantial amount of examples. We note that
some of these multistep iterative methods also can be realized from the discretization
of the differential system (2.3). As an example, the following iterative scheme [37],
known to be in order three of convergence,

u=(f"(x))"f(x),
X1 =X ™ (%){ux'l' (f’(xx_ ux))—]f(-xx)‘,

can be regarded as a predictor-corrector method with unit steplength applied to (2.3).
More specifically, the predictor is the explicit Euler method and the corrector is the
implicit trapezoidal rule.

(2.12)

3. The steepest descent method. Consider the problem of minimizing the scalar-
valued function g: R” — R. As in the Newton method, we may regard one step of the
steepest descent method

(3.1) Xe+1=X,— a, grad g(x.)

as one explicit Euler step with steplength «, applied to the differential system
dx

(3.2) a —grad g(x),  x(0)=xo.

It is obvious that each strict relative minimizer of the function g(x) is a local attractor
of the system (3.2), whereas each strict relative maximizer is a local repeller. Therefore,
we may adopt Branin’s ideas in [3] to modify (3.2) to

(3.3) %= (1) grad g(x),

where the sign is changed whenever a critical point of g(x) has been reached or x(z)
has moved outside a prescribed domain (say, the feasible domain). Following the
solution flows of (3.3) offers a global optimization method. Another advantage is that
the path determined from (3.1), which usually is noticed to be highly zigzag in
character, is now replaced by a smoother path. Hence, the eccentricity problem
becomes less significant.

4. The QR algorithm. Consider the linear algebraic eigenvalue problem
4.1) Ax=AXx,

where A is an n by 7 real matrix. Let X, = 4. The unshifted QR algorithm generates
a sequence of orthogonally similar matrices {X,} from the scheme

(4.2) ¢ XK=QKRK, Xx+l=Rxst K=0919"' s

where each Q, represents an orthogonal matrix and R, an upper triangular matrix.
Recently this sequence of matrices has been found [14], [29], [35], [41] to be intimately
related to the solution flow of a homogeneous quadratic differential system, known
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as the Toda lattice:
(4.3) %)tf= [X(2), Ho(X(2 D] =X ()Mo(X (2)) — Mo (X (£))X(2),  X(0)=Xo,

where ITo(X) = (X7) — (X7)" and X~ is the strictly lower triangular part of X.
The solution of (4.3) can be expressed as

(4.4) XO)=Q0"(0X0),

where Q(¢) is an appropriately defined family of orthogonal matrices. When sampled
at integer times, this Toda flow gives exactly the same sequence of matrices as the
QR algorithm applied to the initial matrix exp (X,). The convergence properties of
the QR algorithm can thus be explored by techniques from the theory of ordinary
differential equations. Listed below are some established results in this respect. Any
of these results can be readily interpreted for the dynamics of the QR algorithm. The
interested reader may refer to the references for more detailed discussions.

THEOREM 4.1. The manifold of upper triangular matrices with main diagonal
entries in descending order is the stable center manifold of the Toda flow [7].

THEOREM 4.2. The Toda flow starting with a real normal matrix converges
to a diagonal block matrix where for a real eigenvalue the associated block is of
size one by one with that eigenvalue as its element and for complex-conjugate pairs of
eigenvalues the associated block is of size two by two with the real part as its diagonal
elements and the (+) imaginary part as its off-diagonal elements [8].

THEOREM 4.3. When the Toda flow is applied to a general real irreducible upper
Hessenberg matrix, the solution flow can be only essentially convergent, that is, the
solution flow tends to a quasi-upper triangular form (which is known as the real-valued
version of the Schur theorem) but not all elements converge [9].

Suppose now Xj is an n by n complex matrix. Let G(z) be an analytic function
defined on a domain © which contains the spectrum of X;,. The initial value problem

4.5) ‘fl_)t(= X, (G =XIL(GX) - IL(GX))X,  X(0)=X,,

with II;(X) = (X7) — (X7)* + i Im (diag (X)), where Im (diag (X)) means the imagi-
nary part of the diagonal matrix of X and

1
(4.6) G(X)=ﬁI_i FG()\)(M—X)” dax,

where T' is any contour that surrounds the spectrum of X in Q, is a generalization of
(4.3). It is shown in [7], [29] that this generalized Toda flow, when sampled at integer
times, gives exactly the same sequence of matrices as the QR algorithm applied to the
matrix exp (G(Xo)). Therefore, if X, is nonsingular and G(z) =In z, then the QR
algorithm can be completely recovered from the Toda flow. Setting G(z) = s1n z, we
obtain the QR power method [42].

We remark that a theory of LU flows as well as Cholesky flows can be developed
along the same lines as the theory of Toda flows. The interested reader is referred to
the review article [41].

5. The power method. Given a unit vector x, in R”, the power method for a real
n by n matrix A generates a sequence of unit vectors {x,} by

yx+l =Axx,

5.1
( ) xK+1=yK+1/"yK+1"9
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for an appropriately chosen vector norm || ||. It is well known that if 4 has a most
dominant eigenvalue in the sense of magnitude, then the sequence {x,}, in general,
converges to the eigenvector associated with that eigenvalue. This property has
then brought about the so-called inverse power method and the Rayleigh quotient
iterations [32].

Let B be an n by n real matrix. Suppose that B has a real eigenvalue A* that is
no less than the real part of any other eigenvalues. Consider the following autonomous
differential system on the unit sphere S"~' in R":

du
. - = - ,B s
(5.2) 7 Bu—(u,Bu)u
where (, ) means the usual inner product in R". The system above obviously has
equilibrium points only at eigenvectors of B. Indeed, the exact solution of (5.2) with

u(0) = uo € S"! is explicitly known, that is,
(5.3) u(t)=e"®uo/(e"®uo, e"®uo) %

From (5.3) it is not difficult to see that the positive semiorbit of (5.2), in general,
converges to the eigenvector of B associated with A\*. Now suppose that 4 is non-
singular and choose B = In 4. Then (5.3) becomes

A'ug
| A uoll2’

where by A' we mean the matrix exponential ‘). It is now clear that the evaluations
of (5.4) at positive integer times correspond precisely to the iterates of the classical
power method, whereas the evaluations at negative integer times correspond to the
iterates of the inverse power method.

The Rayleigh quotient iteration [31] for a matrix 4 generates a sequence of unit
vectors {x,} from a given unit vector X, according to the following scheme:

(5.9 u(t)=

M= p(X,(),

5.5
(5-5) .Vx+1=(A—/.L,<I)—lxK, Xet1 = Yast/ I Ver1ll2,

where p(x) = (x, Ax)/(x, x) is the Rayleigh quotient of x with respect to 4. Let u(¢)
represent the solution of the system (5.2) which now is defined only piece by piece in
the way that for all ¢ in the interval [k, k + 1], B is chosen to be

(5.6) B=In[(4-p1)7"]
with p, = p(u(k)). It then follows that, with u(¢)] =« = u(k),
(5.7) u(k+ 1)=4—pJ) " u(k)/N(A—p )" u(k)|.

In other words, the (piecewise differentiable) solution u(¢) of (5.2) with B defined by
(5.6), is a continuous extension of the sequence (5.5), provided xo = u(0).

Recall that the major subject of the Rayleigh quotient iterations is the speed-up
of convergence by making A4 —u,J nearly singular so that (4 — w.)”! has a most
dominant eigenvalue. Given the fact that the two complex-valued functions
In[(z—c¢)"'1and (z - c)? are “qualitatively” similar [4] near the singular point ¢, we
can simulate the dynamics of the Rayleigh quotient iteration by considering the
differential system (5.2) with

(5.8) B=B(u)=[A—p))"(A—p)D]™".
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Let o(4) denote the spectrum of A. Obviously the resulting differential system
(5.2) with B defined by (5.8) becomes singular at any point of the set
I'={u€S""; p(u) € 6(4)]. But the remaining set S"~' — T can be shown [10] to be
invariant under this system. Furthermore, along any solution flow #(¢) on the unit
sphere, the residue function r(¢) with

(5.9 r(t)= 1A= pu@)Du@)l|

is nondecreasing. Using r(¢) as the Lyapunov function, we then are able to explore
the global dynamics of system (5.2) with B defined by (5.8) as follows [10].

THEOREM 5.1. Let E={u€S,_, — I'; u is an eigenvector of B(u)}. The positive
semiorbit of u(t) either

(a) approaches the singular set T in finite time, or

(b) converges to an eigenvector of A as t goes to infinity, or

(c) has its w-limit set contained in E.

Obviously the occurrence of any of the first two cases already provides essential
information about eigenvalues of the matrix 4. In [10], the set E was further explored
and interpreted for real symmetric and normal matrices. The success of this simulation
is evidenced by the fact that most of the properties concerning the dynamics of the
differential system are almost parallel with those of the classical Rayleigh quotient
iterations. The interested reader may refer to [10] and [31] to compare these estab-
lished results.

A connection between the inverse power method and the Newton method is
worth noting [13]. By imposing an additional normalization condition, we can
formulate the linear algebraic eigenvalue problem (4.1) as a nonlinear algebraic
equation

Ax—Ax]=O

(5.10) F(X,)\)=[Urx_1

where the normalization vector v can be chosen in a number of ways but in general
depends on x and X. Solving (5.10) by Newton’s method amounts to solving the linear
system

A=A, X | X=X | _ | (AT —A)x,
(5.11) [ v’ O][AKH—)\K]_ [vKTxK—l
or equivalently
(5.12) AT=A)xr1=—Nr1 = A,  vixe=1.

The algorithm is more conveniently formulated as
(A= ND)yer1=xX,,

(5.13) Xet1 = Ver1 /(0 Y1),
Met =N+ 1/00 Yers.

From (5.13), we see that Newton’s method applied to the nonlinear equation (5.10)
is equivalent to the inverse power method.

6. The SVD algorithm. It is well known that the singular value decomposition
(SVD) of a matrix A is closely related to the Schur decomposition of the symmetric
matrix A”4. So Golub and Kahan [21] proposed the following algorithm for the
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computation of the SVD of an m by n(m Z n) real matrix A:

(a) Use a sequence of Householder transformations to reduce 4 to upper
bidiagonal form, that is,

6.1 - UpAVp=

|

where B is an n by n upper bidiagonal matrix.
(b) Apply a sequence of implicit-shift QR steps to the tridiagonal matrix B”B to
compute the SDV of B.

We are interested in a continuous analogue of the iteration that is taking place
in part (b). Toward this end, we consider the one-parameter family of matrices
6.2) Y@)=U(@)BV(t),

where U(¢) and V(¢) are families of orthogonal matrices to be specified so that Y ()
maintains the bidiagonal form for all z. Differentiating (6.2) with respect to ¢ yields

(6.3) %= YN—-MY,

where, due to the orthogonality of U and V, the two matrices
M)= _<d v )> U,

(6.4) dt

N(t)= VT(z)<dV(t )>

are necessarily skew-symmetric. It is clear from (6.3) and (6.4) that Y(¢), U(¢), and
V(¢) will be unambiguously determined from the specifications of M(¢) and N(¢). In
[11], the following definitions are introduced:

M) =To(Y()Y'()),
N(@)=To(Y' ()Y ().

In this case, (6.2) becomes a system of autonomous, homogeneous cubic differential
equations

6.5)

d 11 ‘
(6 6) 3;[ _ylz(y11+l ylg—l,i) forn;lzl,
| d N '
ydt+l Viist (Vs —yi) forn—12zizl,

where we denote Yo 1 = Vpn+1 = 0.

The asymptotic behavior of Y(¢) defined by (6.6), as well as the corresponding
U(t) and V(t), can be understood from the theory of the Toda lattice. Indeed, V(¢)
and U’(¢) correspond to the matrix Q(¢) in (4.4) if X(¢) in (4.3) is replaced by
Y7(2)Y(¢) and Y(¢)Y7(¢), and X, is replaced by B”B and BB, respectively. It follows
from Theorem 4.2 that both U(¢) and V(¢) converge to constant matrices, say
U(t)— U, and V(t)— V,, and X(¢) converges to a diagonal matrix, say X(z) — Z,
as ¢ goes to plus infinity. The matrix B then has a singular value decomposition:

(6.7) B=ULZV..
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We conclude that the system (6.6) is related to part (b) of the Golub-Kahan SVD
algorithm almost in the same way as the Toda lattice is related to the QR algorithm.

7. The QZ algorithm. The development of the QZ algorithm is based on the
generalized Schur decomposition theorem [28], that is, given any two matrices 4 and
B, there exist unitary matrices Q and Z such that QA4S and QBZ both are upper
triangular. The algorithm is designed deliberately to accomplish the following two
tasks for real matrices:

(a) Use orthogonal transformations to reduce simultaneously 4 to upper
Hessenberg form and B to upper triangular form.

(b) Apply a QR-analogue algorithm to reduce A iteratively to upper quasi-
triangular form while the triangularity of B is preserved.

A differential system whose solution is an analogue of the iteration taking place
in (b) can be developed. The approach is similar to that discussed in the previous
section. We shall assume, henceforth, that A is upper Hessenberg and that B is upper
triangular and nonsingular. Consider simultaneously the two one-parameter families
of matrices

X(1)=Q()AZ(),
Y(t)=Q(t)BZ(1),

where Q(¢) and Z(¢) are orthogonal matrices to be specified with Q(0) = Z(0)=1I.
Differentiating (7.1) with respect to ¢ will yield equations similar to (6.3) and (6.4). In
order to maintain the upper Hessenberg form for X(¢) and the upper triangular form
for Y(¢) for all ¢, some extra conditions must be imposed on the matrices Q(¢) and
Z(t). In [12], the solutions of the following two initial value problems were found to
fulfill these requirements:

(7.1)

do()

(7.2) dt
2O _z0n0),  z0=1

where M(t) and N(¢) are two tridiagonal, skew-symmetric matrices defined by
M(t)=To(X()Y'(2)),
N(t)=Io(Y'()X(2)).

In this case, X(¢) and Y(¢) correspond to solution flows of the autonomous system

%Y—XHO(Y"X) (XY )X,

(7.4) ‘;—Y = YIIo(Y ~'X) - (XY )Y,

X0)=4, Y(0)=B.

The system (7.4) is again closely related to the Toda lattice. Indeed, the matrices
Q7(¢) and Z(¢) defined by (7.2) correspond, respectively, to the cases when the Toda
lattice (4.3) is applied to the matrices X(¢)Y ~'(¢) and Y ~'(#)X(¢) with initial values
AB™' and B7'A. It follows from the theory of the Toda lattice that under suitable
conditions both X(¢) and Y(¢) converge to constant upper triangular matrices. In

=-M@®)Q(t), QO)=I,

(7.3)
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other words, the solution to (7.2) offers a continuous approximation to the generalized
Schur decomposition of the pencil {4, B}. It is amazing that all the plane rotations
involved in the QZ algorithm to maintain certain matrix structures are now implicitly
retained in following the flow defined by (7.4).

8. The linear stationary methods. Most of the basic linear stationary methods
for solving the linear system

8.1) Ax=b,
where A is a real n by n nonsingular matrix and b € R”, may be expressed in the form
8.2) X1=Gx.+c, k=0,1,2,---,

where G is the real n by n iteration matrix for the method and c is an associated
known vector. In general, the above quantities are related by

(8.3) G=I-Q7'4, c=Q7'b

for some nonsingular matrix Q which is called a splitting matrix. It is clear that x* is
a fixed point to the iteration (8.2) if and only if x* is the unique solution to (8.1). A
necessary and sufficient condition for convergence of (8.2) is that the spectral radius
p(G)<1.

We may regard (8.2) as one Euler step with unit stepsize applied to the linear
differential system

8.4) ‘2—);=(G—])x+c=(—Q”‘A)x+c.

But then we only need the assumption that all eigenvalues of G — I have negative real
parts to ensure that the unique solution x* of (8.1) is a global attractor to all flows of
(8.4). This requirement obviously is much weaker than that for the general iterative
scheme (8.2). In fact, given a nonsingular matrix A, there always exists a nonsingular
matrix Q such that the spectrum of the product Q~'4 is equal to any prescribed set
of n nonzero real numbers. In our case, we certainly want to control these numbers
to be positive (to ensure convergence), nearly equal (to avoid stiffness) and relatively
large (to reach the steady state faster).

Solving (8.4) by a numerical method amounts to a new iterative scheme. For
example, if the trapezoidal rule

(8.5) Xer1 =X+ (R/2)(f+ fes1)
with stepsize /4 is applied to solve (8.4), then due to the linearity of (8.4) we obtain
(8:6)  Xer1=[—(h/2(G—DI' I+ (h/2)(G— Dlx.+ [~ (h/2(G— D] hc.

We remark that implicit schemes like (8.6) are not practical in general because of the
involvement of the inverse. But it is interesting to note that the iteration matrix in
(8.6) is precisely the (1, 1)-pair Padé approximation of the matrix exp [(4/2)(G — I)].
If all eigenvalues of G — I have negative real parts, then the iteration (8.6) converges
for all £ > 0. Solving the differential system (8.4) by higher-order methods, such as
the Adams method or the Runge-Kutta method, usually results in highly complicated
multistep iterative schemes.

Chebyshev and conjugate gradient acceleration are two special methods of a
general procedure, known as polynomial acceleration [24], for accelerating the rates
of convergence for the basic iterative scheme (8.1). These methods generate a sequence
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of vectors {x,} by using a three-term relation:

x1=B1(Gxo+¢)+ (1 —B1)xo,

X1 = Qa1 Bt (GX + €) + (1 = Bes )X} + (1 — s )X,

where «,, 8, are properly defined real numbers. By rearranging terms in (8.7), we
realize that this relation can be expressed as

X1 =x0+BLf(‘)9
Xe+1= Ot 1 X + (1 = 0t 1 X1 + @1 Bus 1 S

8.7

(8.8)

with f, = (G — I)x, + ¢. In other words, the polynomial acceleration procedure de-
scribed in (8.7) can be regarded as the application of the explicit, variable coefficient
two-step method (8.8) to the differential system (8.4). This observation is especially
true for the Chebyshev acceleration since S, is a constant and «, converges to a
constant as « goes to infinity.

The context of a “higher order of accuracy” method may be different from that
of a “higher order of convergence” method. The former follows the solution curve of
(8.4) carefully (and hence may be slower) which eventually leads to the desired
solution of (8.1). The latter, in constrast, may be of fairly low order in the sense of
solving the differential equation. As an example, it can be shown easily that the
scheme (8.8) can be of order one only.
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