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1 Introduction

Many algorithms can be cast in the abstract form

{
xk+1 = f(yk),

yk+1 = g(xk+1),
k = 0, 1, . . . , (1)

where f : U → V and g : V → U , referred to henceforth as the generating functions, are maps
representing some black-box evaluations or some intermediate numerical procedures. The variables
x and y can be vectors, matrices, or even functions. The choice of U, V depends on the desired
properties of the variables x and y, which can be, for instance, nonnegative, orthogonal, or stochastic.
In this note, we focus only on finite dimensional variables, so the feasible sets U, V are subsets in
some Euclidean spaces with suitable dimensions and constraints. We shall give several interesting but
nontrivial examples in the later part of this discussion to demonstrate this point. For more complicated
problems involving n variables x(1), . . . ,x(n), a similar alternating iteration can be written in this form





x
(1)
k+1 = f (1)(x

(2)
k ,x

(3)
k , . . . ,x

(n)
k ),

x
(2)
k+1 = f (2)(x

(1)
k+1,x

(3)
k , . . . ,x

(n)
k ),

...

x
(n)
k+1 = f (n)(x

(1)
k+1,x

(2)
k+1, . . . ,x

(n−1)
k+1 ),

k = 0, 1, . . . . (2)

Perhaps the simplest algorithm in the form of (2) is the Gauss-Seidel iterative scheme used for solving
a linear system where all maps f (ℓ) are linear and x(ℓ) are scalars. Another example is the alternating
least squares (ALS) method used for low rank tensor approximations of a given order-n tensor [9,24,
30,35,33], where all variables are expected to be of unit length. We shall concentrate on the analysis
for (1) in this paper. The generalization to (2) can be accomplished in a similar way.

Obviously, the sequence {yk} generated by (1) can be obtained from the fixed-point iteration

yk+1 = g(f(yk)), k = 0, 1, . . . . (3)

If the composite F := g ◦f , referred to henceforth as the transition function (of one sweep for yk), is a
contraction map, then the Banach fixed-point theorem asserts that the iterates from (3) converge to a
unique fixed point. This is the most impeccable conclusion, but often proving that g◦f is a contraction
map is difficult or impossible. Likewise, if g◦f is continuous and maps a convex compact set into itself,
then the Brouwer fixed-point theorem asserts that there is a fixed-point y∗ such that g◦f(y∗) = y∗. In
general, however, not much is known about the limiting behavior of the sequence {yk} itself. For many
of the algorithms discussed in the literature and even used in practice, we find that lacking a rigorous
convergence analysis for the iterates {xk} and {yk} themselves is a serious and widespread shortfall
[2,24]. The main contribution of this paper is a general framework for characterizing the limiting
behavior of (1) under much easy-to-check criteria. We apply the framework to a variety of alternating
direction methods and, in particular, the alternating least squares algorithms to demonstrate how the
theory facilitates convergence analysis, some of which are difficult to come by otherwise.

This paper is organized as follows. In Section 2, we build our framework by progressively adding
in conditions. The theory works in its most basic form, but more conditions make it easier to draw
conclusions. As a demonstration, we apply the theory in Section 3 to a variety of classical results in
the literature. In this context, the proof of convergence is not new, but it shows the versatility of our
framework. In Section 4, we use our theory to argue the convergence of algorithms for the Tucker
nearest problem and the structured Kronecker approximation problem.
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2 Basic theory

We begin our theory with the most basic form, namely, checking the difference between every con-
vergent subsequence and its immediate next iterate. The following lemma, originally proved [25,
Lemma 4.10] and then reproved in [13, Lemma 2.7], asserts a sufficient condition for convergence.

Lemma 1 Assume that a∗ is an isolated accumulation point of a sequence {ak} such that for every
subsequence {akj

} converging to a∗, there is an infinite subsequence {akji
} such that |akji

+1−akji
| → 0.

Then the whole sequence {ak} converges to a∗.

To apply Lemma 1 to algorithms such as (1), we follow the steps that

a. Check to see that an accumulation point of a convergent subsequence {akj
} is isolated. (See the

remarks following Corollary 1 and Lemma 2.)
b. Search for a subsequence {akji

} such that after applying the transition map, say F , the difference
|F (akji

)− akji
| diminishes to zero.

For specific applications, see our recent work on the convergence of the ALS algorithm and the SVD-
based algorithm for the best rank-1 tensor approximations in [13,33].

By imposing the continuity on the generating function and the finiteness on isolated accumulation
points, the following lemma asserts a specific limiting behavior of the resulting iterates.

Theorem 1 Let F : U −→ U be a continuous map over a closed subset U ⊂ Rn. Suppose that the
sequence {zk} generated by iterative scheme zk+1 = F (zk) is well defined, bounded, and has finitely
many isolated accumulation points. Then

1. Either the sequence {zk} converges, or
2. There are disjoint neighborhoods of the accumulation points such that, for k large enough, the

consecutive elements zk, zk+1, . . . visit each neighborhood in a cyclic order.

Proof Let {zki
} denote an arbitrary convergent subsequence of {zk}. By continuity, the subsequence

{zki+1} also converges. Repeating this process, we denote the limiting behavior when i→ ∞ as

zki
−→ z∗0

zki+1 −→ z∗1 = F (z∗0)
zki+2 −→ z∗2 = F (z∗1)

...
...

(4)

The sequence {z∗0, z
∗
1, . . .} is part of the accumulation points of {zk} and thus must be finite. Let

s ≥ 0 be the smallest integers such that z∗s+p = z∗s for some positive integer p. Then by continuity, we
have z∗s+p+1 = z∗s+1, and so on. In this way, elements in {z∗0, . . . z

∗
s+p−1} are distinct and are the only

accumulation points in the process of (4).
As these points are isolated, there exists ǫ > 0 such that the spheres Nǫ(z

∗
q) centered at z∗q with

radius ǫ, q = 0, 1, . . . , s+ p− 1, are disjoint from each other. For each fixed integer t, all but finitely
many points from this sequence {zki+t} belong to Nǫ(z

∗
q) with

q :=

{
t, if 0 ≤ t ≤ s,

s+ ((t− s) mod p), if s < t.

On the other hand, for a fixed zki
with sufficiently large i, write zkj

= zki+tj with tj := kj − ki for
all j > i. Since zkj

∈ Nǫ(z
∗
0) when j is sufficiently large, we conclude that the two conditions

{
s = 0,

(kj − ki) mod p = 0, for all sufficiently large i, j
(5)
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must hold simultaneously.

Suppose
{
zℓj

}
is an arbitrary convergent subsequence of {zk}. For each ℓj , let kij be one of the

indices {ki} that is smaller than ℓj. Then zℓj = zkij
+(ℓj−kij

) and hence all but finitely many elements

in
{
zℓj

}
must belong to one of these balls Nǫ(z

∗
q). In this way, we have proved that all convergent

subsequences of {zk} satisfy (5).
If p = 1, then q = 0, the sequence {zk} converges to z∗0. If p > 1, then {zk} does not converge, but

its elements for sufficiently large k must be distributed in such a way as residing alternately among
Nǫ(z

∗
q) in the order q = 0, . . . , p− 1.

It is informative to remark further on the three conditions required by Theorem 1 as follows:

a. The sequence {zk} being bounded. This usually poses no additional burden because it is the pre-
requisite for convergence.

b. The generating function F being continuous. If F is given in analytic form, then its continuity
can easily be checked. However, if F is given as a computational procedure, then cautions should
be taken to ensure the continuity. For example, if F (Y ) refers to the orthogonal matrix U(Y ) in
the singular value decomposition of the matrix Y = UΣV ⊤, then in theory U can be made to
be continuously dependent on Y [4,34]. But if U is obtained by a certain SVD algorithm, then
the signs of columns of U(Y1) may differ from those of U(Y2) even if Y2 is close to Y1, leading to
discontinuous jumps in the numerical outcomes. An easy fix in the procedure is due.

c. The accumulation points being finite and geometrically isolated. This is the most demanding task.
Even so, there are multiple avenues to tackle this task. For example, in many algorithm formulations
the model (1) is actually a polynomial system in the variables x and y. The notion of algebraic
geometry might be used as a tool for arguing the finite cardinality and isolation of solutions.

The following lemma from the theory of parameter continuation [28, Theorem 7.1.1] is often useful
for checking the last condition above.

Lemma 2 Let P (z;q) be a system of n polynomials in variables z ∈ Cn and parameters q ∈ Cm.
Let N (q) denote the number of geometrically isolated solutions to P (z;q) = 0 over the algebraically
closed complex space. Then,

1. N (q) is finite, and it is the same, say N , for almost all q ∈ Cm;
2. For all q ∈ Cm, N (q) ≤ N ;
3. The subset of Cm where N (q) = N is a Zariski open set. That is, the exceptional subset of q ∈ Cm

where N (q) < N is an affine algebraic set contained within an algebraic set of codimension one.

Since Rn (indeed, the closure of any infinite subset) is Zariski dense in Cn, the above statements
hold for almost all parameters q ∈ Rm, except that the number of real-valued isolated solutions varies
as a function of q and is no longer a constant. For our applications, we only need the fact that the
real roots of a polynomial system are finite and geometrically isolated for generic q.

The argument in Theorem 1 can be generalized to multi-level iterative schemes such as (1). Suppose
that both functions f and g are continuous and that the sequences {xk} and {yk} generated are
bounded and have finitely many isolated accumulation points, respectively. Then any convergent
subsequence {yki

} will lead to a process

yki
−→ y∗

0

xki+1 −→ x∗
1 = f(y∗

0)
yki+1 −→ y∗

1 = g(x∗
1)

xki+2 −→ x∗
2 = f(y∗

1)
...

...

(6)
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From this point on, an argument can be made to draw the same conclusion as in Theorem 1 for both
{xk} and {yk} simultaneously. In this way, we may also interpret Theorem 1 as if F = g ◦ f applied
to y for (1) and similarly for the general scheme (2).

An obvious condition for convergence is the exclusion of any possible cyclic behavior. This often
can be accomplished if we know additional information such as some monotonicity associated with
the iteration.

Corollary 1 Suppose that the iteration (2) represents an alternating optimization mechanism for
an objective function h(x(1), . . . ,x(n)). Under the same conditions of Theorem 1 where F denotes the
transition function representing one complete sweep of the alternating procedure, the objective function
h assumes the same value at all accumulation points.

Proof By Theorem 1, we only need to consider the case when the sequence {zk} has cyclic behavior.
Without loss of generality, it suffices to consider the scheme (1) which involves only two variables
z = (x(1),x(2)). To fix the idea, we assume that the alternating optimization is doing minimization.

By the way the sequence {(x
(1)
k ,x

(2)
k )} is generated, we should have the relationship

h(x
(1)
k+1,x

(2)
k+1) ≤ h(x

(1)
k+1,x

(2)
k ) ≤ h(x

(1)
k ,x

(2)
k ).

Abbreviate (x
(1)
k ,x

(2)
k ) to zk. The sequence {h(zk)} is monotone and must converge. If there are more

than one isolated accumulation points, let z∗0 and z∗1 denote any two such points. The iterates {zk}
must visit arbitrarily diminishing vicinity of each accumulation point infinitely many times. Suppose
h(z∗0) < h(z∗1). Then there exists a neighborhood Nǫ(z

∗
0) of z

∗
0 such that the iterates cannot possibly

”return” to revisit the higher level z∗1 again once it has visited Nǫ(z
∗
0) because of the non-ascending

property mentioned earlier. Similarly, it cannot happen that h(z∗0) > h(z∗1). Therefore, the objective
function must assume the same value at all accumulation points.

Motivated by Corollary 1, we now impose some mild conditions of smoothness on the part of the
optimization mechanism. The following observation is handy for applications.

Theorem 2 Suppose that an alternating optimization method can be cast in form of (2). Write z =
(x(1), . . . ,x(n)) where x(ℓ) ∈ U (ℓ) and U (ℓ) ⊂ R

Iℓ . Assume that

1. The conditions in Theorem 1 are satisfied where F (z) denotes the transition function of one com-
plete sweep of the alternating optimization, zk+1 = F (zk).

2. Each generating function f (ℓ) represents the optimization mechanism in the ℓ-th direction, is con-

tinuously differentiable, and returns the unique global1 minimizer x
(ℓ)
k+1 of the restricted objective

function

hℓ(w) := h(x
(1)
k+1, . . . ,x

(ℓ−1)
k+1 ,w,x

(ℓ+1)
k , . . . ,x

(n)
k ).

3. The objective function h(z) is second order continuously differentiable.
4. One of the accumulation points z∗0 of {zk} is a local minimizer of h(z) at which the Hessian

∇2h(z∗0) is symmetric and positive definite.

Then the sequence {zk} converges.

Proof Let {zki
} be an arbitrary convergent subsequence with limit point z∗0. We claim that the spectral

radius ρ(F ′(z∗0)) is strictly less than 1. If this claim is true, then there exists a neighborhood Nǫ(z
∗
0)

in which F is a contraction. That is, for any convergent subsequence {zkj
} ⊂ Nǫ(z

∗
0), the subsequence

1 What is really needed in the proof is the continuous differentiability of the transition function F . The uniqueness

is to ascertain that f(ℓ) unambiguously defines x
(ℓ)
k+1. So long as this map f(ℓ) is well defined, the requirement of being

a global minimizer is not essential.
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{F (zkj
)} is also contained in Nǫ(z

∗
0). Since {zkj+1} must also converge by the continuity of F , it

converges to z∗0. By Lemma 1, we know the sequence {zk} converges.
It only remains to prove that ρ(F ′(z∗0)) < 1. It suffices to consider the case (1) only. The proof

can be extended to the general case (2). The following argument is modified from the ideas in [3,
Lemma 2]. Define H : U (1) × U (2) × U (1) × U (2) → U (1) × U (2) by

H(x(1),x(2);y(1),y(2)) :=

[
∂h

∂x(1) (x
(1),y(2))

∂h
∂x(2) (x

(1),x(2))

]
, (7)

where the right hand side denotes the partial gradient of H with respect to the variables (x(1),x(2)),
but evaluated at different points. Define also G : U (1) × U (2) → U (1) × U (2) by

G(y(1),y(2)) := H(F (y(1),y(2));y(1),y(2)). (8)

Given any (y
(1)
k ,y

(2)
k ) near z∗0, observe that

G(y
(1)
k ,y

(2)
k ) = H(y

(1)
k+1,y

(2)
k+1,y

(1)
k ,y

(2)
k ) =




∂h
∂y(1) (y

(1)
k+1,y

(2)
k )

∂h
∂y(2) (y

(1)
k+1,y

(2)
k+1)


 = 0,

because y
(1)
k+1 and y

(2)
k+1 are the respective global minimizers of the restrictive objective functions h1

and h2. We see that G ≡ 0 in a neighborhood Nǫ(z
∗
0). From (8), the evaluation of the Jacobian of G

at z∗0 yields

(
∂H

∂(x(1),x(2))

∂F

∂(y(1),y(2))
+

∂H

∂(y(1),y(2))
)

∣∣∣∣
z∗0

= 0, (9)

where by (7) we have

∂H

∂(x(1),x(2))
=

[
∂

∂x(1) (
∂h

∂x(1) ) 0

∂
∂x(1) (

∂h
∂x(2) )

∂
∂x(2) (

∂h
∂x(2) )

]
,

∂H

∂(y(1),y(2))
=

[
0 ∂

∂x(2) (
∂h

∂x(1) )

0 0

]
.

Note that the above two matrices make up

∇2h(z∗0) = (
∂H

∂(x(1),x(2))
+

∂H

∂(y(1),y(2))
)

∣∣∣∣
z∗0

,

which is assumed to be symmetric and positive definite. It follows from (9) that

F ′(z∗0) = −(
∂H

∂(x(1),x(2))

∣∣∣∣
z∗0

)−1(
∂H

∂(y(1),y(2))

∣∣∣∣
z∗0

) (10)

is well defined. Furthermore, we see in (10) that F ′(z∗0) is of the form −(D−L)−1U which is precisely
the iteration matrix if the (block) Gauss-Seidel scheme is applied to solving a linear equation where
the coefficient matrix A is split as A = D−L−U [27, Theorem 7.1.9]. Since the Gauss-Seidel method
converges when A is symmetric and positive definite, we know that ρ(F ′(z∗0)) < 1.

Alternating optimization, or more generally alternating direction, is not usually the best approach
for solving the underlying problem. However, swapping one complicated problem of many variables
with a sequence of simpler problems each of which handles and adjusts one subset of variables a time
can sometimes be implemented more easily and offer computational convenience. The above theory
outlines a basic convergence analysis framework for these types of alternating direction iterations. In
the remaining portion of this paper, we discuss some interesting applications. Some of the convergence
results are new.
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Line 1

Line 1

Line 1

Line 2

Line 2 Line 2

Fig. 1 Converging, cyclic, and diverging behavior of Gauss-Seidel iterations in R2.

3 Applications to some known cases

The convergence behavior of examples in this section is well understood in the literature. Certainly we
are not trying to reinvent the wheels. Rather, we use these known facts to demonstrate the subtleties
in dealing with convergence when some of the conditions mentioned in the preceding section are not
met. On the other hand, we also demonstrate that our framework offers an alternative and unified
proof of convergence which is much simpler than some of those already done in the literature.

3.1 The Gauss-Seidel method for solving a system of linear equations

The classical Gauss-Seidel iteration scheme is of the form (2). It is well known that the method
applied to the linear system Ax = b with non-zero elements on the diagonals does not always produce a
convergent result. Convergence is guaranteed only in a few cases such as the matrix A being diagonally
dominant or being symmetric and positive definite. In the event that the Gauss-Seidel method fails
to converge for a given A, what has happened is that either the iterates become unbounded or the
iterates go cyclically, as has been characterized in Theorem 1. The directions of variables are alternated
by satisfying one linear equation a time. See Figure 1 for a graphical interpretation of the Gauss-
Seidel method applied to a 2-dimensional problem. The scheme itself does not contain any type of
optimization in its iteration.

3.2 The power method for finding the dominant eigenvector

Given a matrix A ∈ Rn×n and an initial unit vector y0 ∈ Rn, the power method

{
xk+1 = Ayk,

yk+1 =
xk+1

‖xk+1‖∞
,

(11)

is in the form of (1). The sequences {xk} and {yk} are clearly bounded. The functions f (ℓ), ℓ = 1, 2, on
the right side of (11) are clearly continuous. Excluding the extraneous zero solution after scaling the
second equation by a multiplier ‖xk+1‖∞, the entire system can be regarded as a polynomial system
depending on the parameter A. By Lemma 2, we know that for almost all matrices A ∈ Rn×n, the
stationary points are finite and isolated. By Theorem 1, we conclude that the iterates generated by
the power method converge for a generic A. In numerical linear algebra, we know even more specifics
when the method fails to converge, e.g., when A has multiple dominant eigenvalues, in which case the
matrix A has a multi-dimensional eigenspace and the system (11) has non-isolated stationary points.
See also Section 3.5 for more detailed discussion from the perspective of the high-order power method.
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(   )

R(r)
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Fig. 2 Alternating projections between lower rank matrices and structured matrices

3.3 The alternating least squares method for computing the QR decomposition

There are efficient algorithms for computing the fundamentally important QR decomposition of a
given matrix A ∈ Rm×n. Surely it is of little value to try to find this decomposition by the alternating
least squares approach





Rk+1 := argmin
R = upper triangular

‖A−QkR‖F ,

Qk+1 := argmin
Q⊤Q=In

‖A−QRk+1‖F .
(12)

Despite its inefficiency, however, the scheme (12) is theoretically doable. Indeed, it can be argued that
Rk+1 is the upper triangular part of the matrix Q⊤

k A and Qk+1 is exactly the orthogonal portion
in the polar decomposition of AR⊤

k+1 (which is more expensive than the QR decomposition itself).
By construction, the objective values ‖A−QkRk‖F descend and converge, but possibly to a nonzero
value. Clearly, the sequences {Qk} and {Rk} are bounded and the abstract functions defining them
are continuous. The stationary points must satisfy the optimality conditions

{
R = triu(Q⊤A),

Q⊤AR⊤ = RA⊤Q,

which is a linear polynomial system in Q with A as the parameter and, by Lemma 2, has finitely many
isolated solutions for generic A ∈ Rm×n. The conditions in Theorem 2 are satisfied, so the iterates
{Qk} and {Rk} do converge, even though not necessarily they converge to the QR decomposition of
A.

3.4 The alternating projection method for finding structured low rank matrices

Let R(r) denote the set of all rank r matrices and Ω the set of matrices with a prescribed structure,
say, Toeplitz or Hankel matrices. Then the desired set of structured rank r matrices can be regarded as
the intersection of these two sets. To find a structured low rank matrix, if exist, the idea of alternating
projections between these two sets can be employed [5–7]. The process is to satisfy the rank constraint
and the structural constraint alternately while the distance in between is being reduced. The geometry
of lift and project is depicted in Figure 2. The procedures outlined in Algorithm 1 obviously fits the
basic model (1) where both actions of lifting and the projection are continuous. Since R(r) is not
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Algorithm 1 (Lift-and-project algorithm.)

Require: Given an arbitrary A(0) = A ∈ Ω

Ensure: A pair of matrices that locally minimizes the distance between R(r) and Ω

1: repeat

2: lift: Compute the rank r matrix B(ν) in R(r) that is nearest to A(ν).
3: project: Compute the projection A(ν+1) of B(ν) onto the subspace Ω.
4: until the sequence {A(ν)} meets stopping criteria

convex, the iteration might stagnate back and forth between R(r) and Ω. In that case, an intersection
has not been found, but still the iterates converge to a locally nearest location between the two
geometric entities by our theory.

3.5 Best rank-one tensor approximation

A tensor of the form

u(1)◦. . .◦u(k) := [u
(1)
i1
. . . u

(k)
ik

],

where elements are the products of entries from vectors u(j) ∈ RIj , j = 1, . . . , k, is said to be of rank
one. Given a real-valued tensor of order k

T = [τi1,...,ik ] ∈ R
I1×I2×...×Ik ,

one of the most challenging tasks is to find its low-rank approximation in either the general Tucker
decomposition form [10,11,29]

T ≈
∑

j1,j2,...,jk

βj1,j2,...,jku
(1)
j1

◦. . .◦u
(k)
jk

(13)

or the CANDECOMP/PARAFAC (CP) decomposition form [12,14,17,20]

T ≈
∑

j

λju
(1)
j ◦. . .◦u

(k)
j , (14)

where the summations involve only a few rank-1 tensors and each column vector is of unit length. It is
known that tensors beyond matrices can fail to have best low rank approximations, with the notable
exception that the best rank-one approximation always exists for tensors of any order and that when
a certain condition of orthogonality is imposed. We discuss the rank-one approximation first. The
Tucker nearest problem will be discussed in Section 4.1.

The most popular approach for the best rank-one approximation is the notion of alternating least
squares method. The procedures are described in Algorithm 2, where the subscript ·[p] indicates the

quantities resulting from the p-th iteration, û(ℓ) means to exclude this vector from the list, and

T⊛ℓ S := [〈τ:,νℓ,:, S〉] ∈ R
Iℓ , νℓ = 1, . . . , Iℓ, (15)

with τ:,νℓ,: denoting the νℓ-th “slice” of the tensor T in the ℓ-th direction and 〈·, ·〉 the Frobenius inner
product generalized to multi-dimensional arrays.

While the limiting behavior of the objective values {λ
(ℓ)
[p]} is easy to understand, it has taken

tremendous effort to prove the convergence of the iterates {u
(ℓ)
[p]} themselves [30,33]. We now apply

our theory to Algorithm 2 to demonstrate how the convergence can be argued in a quick and convenient
way.
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Algorithm 2 (High-order power method.)

Require: A generic order-k tensor T and k unit vectors u
(1)
[0]

∈ RI1 , . . . ,u
(k)
[0]

∈ RIk ,

Ensure: A local best rank-1 approximation to T

1: for p = 0, 1, · · · , do
2: for ℓ = 1, 2, · · · , k do

3: u
(ℓ)
[p+1]

= T⊛ℓ (u
(1)
[p+1]

◦. . .◦u
(ℓ−1)
[p+1]

◦û(ℓ)◦u
(ℓ+1)
[p]

. . .◦u
(k)
[p]

)

4: λ
(ℓ)
[p+1]

:= ‖u
(ℓ)
[p+1]

‖2

5: u
(ℓ)
[p+1]

:=
u
(ℓ)

[p+1]

λ
(ℓ)
[p+1]

6: end for

7: end for

First, the definition of u
(ℓ)
[p+1] in Line 3 followed by Line 5 gives rise to precisely the unique global

maximizer of the function

λ
(ℓ)
[p+1](w) := 〈T,u

(1)
[p+1]◦. . .◦u

(ℓ−1)
[p+1] ◦w◦u

(ℓ+1)
[p] . . .◦u

(k)
[p] 〉

which is the restriction of the objective function

λ(u(1), . . . ,u(k)) = 〈T,u(1)◦. . .◦u(k)〉 (16)

to the ℓ-th direction subject to the constraint of unit length. As a polynomial in variables u(1), . . . ,u(k),

the smoothness of λ and the associated λ
(ℓ)
[p+1] is guaranteed. The first order optimality condition for

a stationary point of (16) is to satisfy the system of
∑k

ℓ=1 Iℓ polynomials [23,33]

T⊛ℓ (u
(1)◦. . .◦û(ℓ)◦. . .◦u(k)) = 〈T,u(1)◦. . .◦u(k)〉u(ℓ), ℓ = 1, . . . , k, (17)

which, by Lemma 2, contains only geometrically isolated solutions for a generic tensor T . Conditions in

Theorem 1 are satisfied generically. It is easy to see that the sequence {λ(u
(1)
[p] , . . . ,u

(k)
[p] )} is monotone

non-decreasing. Assuming the generic condition that the Hessian of λ at such a local maximizer is

negative definite, then the convergence of the iterates {(u
(1)
[p] , . . . ,u

(k)
[p] )} is ensured by Theorem 2.

4 Applications to some new problems

In this section, we apply our theory to two important yet challenging problems in the field — the Tucker
nearest problem and the structured Kronecker approximation problem. While numerical algorithms
have been proposed and used in practice, we find little discussion of convergence analysis in the
literature. This is probably due to the fact that the algorithms usually involve complex algebraic
manipulations. Nonetheless, our framework requires fairly mild conditions on these manipulations.
We can explain the convergence.

For the ease of later reference, we first introduce the notion of orthogonality which will appear
in both problems. Let S (p, q) denote the Stiefel manifold of matrices in Rp×q with orthonormal
columns and Iq the identity matrix in Rq×q. The following lemma is essentially the well known polar
decomposition [15,16,19], yet its view as the normal bundle of an element Q on S (p, q) is useful for
the subsequent discussion [8].

Lemma 3 Given a matrix Q ∈ S (p, q), then a matrix Z ∈ Rp×q whose orthogonal projection to
S (p, q) is precisely Q if and only if Q⊤Z is symmetric.
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Proof Let Q⊥ denote the matrix in S (p, p− q) so that the augmented matrix [Q,Q⊥] is orthogonal.
It is easy to see that the tangent space TQS (p, q) at Q ∈ S (p, q) is made of matrices in the form

H = QK +Q⊥Q
⊤
⊥W,

where K ∈ Rq×q is skew-symmetric and W ∈ Rp×q is arbitrary. For the vector Z −Q to be perpen-
dicular to the surface S (p, q), it must be such that

ProjTQS (p,q)(Z −Q) = Q
Q⊤(Z −Q)− (Z −Q)⊤Q

2
+Q⊥Q

⊤
⊥(Z −Q) = 0. (18)

Note that the two terms in the middle equation of (18) are mutually orthogonal. Therefore, each term
must be zero by itself. Upon simplification, we see that Z −Q is perpendicular to S (p, q) if and only
if {

Q⊤Z = Z⊤Q,

Q⊤
⊥Z = 0.

(19)

Given Q, (19) is a homogeneous linear system of pq− q(q+1)
2 independent equations in pq unknowns of

Z. So the solutions form a subspace of dimension q(q+1)
2 . Indeed, if we write the columns of Z ∈ Rp×q

in terms of the orthonormal basis
Z = QS +Q⊥T,

where S ∈ Rq×q and T ∈ R(p−q)×q, then Z is a solution to (19) if and only if T = Q⊤
⊥Z = 0 and

S = Q⊤Z is symmetric.

In the above lemma, we look up from a given Q ∈ S (p, q) for its normal bundle in Rp×q. Now we
look down from a given Z ∈ Rp×q for its projection onto S (p, q).

Corollary 2 Given an arbitrary Z ∈ Rp×q, suppose that Z = UP is the polar decomposition of Z
where U ∈ S (p, q) and P ∈ R

q×q is symmetric and positive semi-definite. Then U is the projection
of Z onto S (p, q) and is the nearest matrix in S (p, q) to Z.

In the polar decomposition, we stress that the symmetric matrix P = U⊤Z is always unique, but
U is unique only if Z is of full column rank.

4.1 Tucker nearest problem

Given the rank parameter r = (r1, . . . , rk), an order-k tensor in the form

A =

r1∑

j1=1

. . .

rk∑

jk=1

βj1,...,jkv
(1)
j1

◦. . .◦v
(k)
jk

∈ R
I1×...×Ik (20)

with orthonormal vectors v
(ℓ)
jℓ

∈ RIℓ is said to be in the Tucker format with core tensor

β := [βj1,...,jk ] ∈ R
r1×...×rk . (21)

If we assemble the orthonormal vectors into factor matrices by denoting

V (ℓ) := [v
(ℓ)
1 , . . . ,v(ℓ)

rℓ
] ∈ R

Iℓ×rℓ , ℓ = 1, . . . , k, (22)

then V (ℓ) ∈ S (Iℓ, rℓ) and the tensor A in (20) can be written as

A = β ×1 V
(1) ×2 V

(2) ×3 . . .×k V
(k), (23)
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where ×d denotes the mode-d product2 [21]. Given an order-k tensor T ∈ RI1×...×Ik , the Tucker
nearest problem is to find a tenor in the Tucker form (23) with a fixed rank parameter r such that

h̃(β, V (1), . . . , V (k)) := ‖β ×1 V
(1) ×2 V

(2) ×3 . . .×k V
(k) − T ‖F (24)

is minimized.
For an order-k tensor T ∈ RI1×...×Ik , let vec(T ) denote the linear array where the entry τi1,...,ik

of T is saved at the location

i1 +
k∑

s=2

(is − 1)
s−1∏

t=1

It (25)

of the array. Then it can be verified that (23) is equivalent to [1, Formula (12)]

vec(A) = (V (k) ⊗ . . .⊗ V (1))vec(β), (26)

where ⊗ stands for the Kronecker product. The expression above sheds an important insight — entries
in vec(β) are the coordinates of vec(A) in terms of the orthonormal columns of V (k)⊗ . . .⊗V (1), i.e.,

vec(β) = (V (k) ⊗ . . .⊗ V (1))⊤vec(A). (27)

Therefore, given fixed matrices V (ℓ) ∈ S (Iℓ, rℓ), ℓ = 1, . . . , k, the minimizer β in (24) is given by the
projection of vec(T ) onto the column space of V (k) ⊗ . . .⊗ V (1), or equivalently,

β := T ×1 V
(1)⊤ ×2 V

(2)⊤ ×3 . . .×k V
(k)⊤ ∈ R

r1×...×rk . (28)

In this way, the Tucker nearest problem is equivalent to the problem of maximizing the Frobenius
norm of the tensor

π(V (1), . . . , V (k)) := T ×1 V
(1)⊤ ×2 V

(2)⊤ ×3 . . .×k V
(k)⊤, (29)

subject to the constraint that V (ℓ) ∈ S (Iℓ, rℓ), ℓ = 1, . . . , k.
The relationship (28) can further be expressed in terms of the mode-d unfolding [1, Formula (11)]

β(d) = V (d)⊤ T(d)(V
(k) ⊗ . . .⊗ V (d+1) ⊗ V (d−1) ⊗ . . .⊗ V (1))

︸ ︷︷ ︸
Υ(d)

, d = 1, . . . k, (30)

where the mode-d unfolding T(d) is simply a rearrangement of T into a matrix of size Id ×
∏

ℓ 6=d Iℓ by

assigning the element (T(d))id,j := τi1,...,ik with j = 1+
∑k

s=1,s6=d(is − 1)
∏s−1

t=1 It. Likewise, β(d) is an

unfolding of size rd×
∏

ℓ 6=d rℓ. Taking advantage of the form (30) by modifying one factor matrix V (ℓ)

a time via the singular value decomposition, Algorithm 3 therefore has been proposed in the field as
a way for tackling the Tucker nearest problem. By construction, we also know that

λ[p] :=‖π(V
(1)
[p] , . . . , V

(k)
[p] )‖F ≤ λ

(1)
[p+1] ≤ λ

(2)
[p+1] ≤ . . . ≤ λ

(k)
[p+1]

=‖π(V
(1)
[p+1], . . . , V

(k)
[p+1])‖F ,

(31)

so the convergence of scalars {λ[p]} is clear. Thus far, however, we have not seen any proof of conver-

gence for the iterates {(V
(1)
[p] , . . . , V

(k)
[p] )} in the literature. Using our framework, we can establish the

convergence as follows.

2 Given an order-k tensor T ∈ RI1×......×Id×...×Ik and a matrix M ∈ Rm×Id , the mode-d product Θ =
T ×d M is defined to be the tensor in R

I1×...×Id−1×m×Id+1×...×Ik with element fi1,...,id−1,t,id+1,...ik :=
∑Id

s=1 mt,sτi1,...,id−1,s,id+1,...ik .
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Algorithm 3 (HOSVD method for Tucker nearest problem.)

Require: A generic order-k tensor T , a fixed rank parameter r, and k initial matrix V
(ℓ)
[0]

∈ RIℓ×rℓ with orthonormal

columns,
Ensure: A local best Tucker approximation to T

1: for p = 0, 1, · · · , do
2: for ℓ = 1, 2, · · · , k do

3: B
(ℓ)
[p+1]

:= T(ℓ)(V
(k)
[p]

⊗ . . .⊗ V
(ℓ+1)
[p]

⊗ V
(ℓ−1)
[p+1]

⊗ . . .⊗ V
(1)
[p+1]

) {Of size Iℓ ×
∏k

j=1,j 6=ℓ rj .}

4: [U,S, ~] = svds(B
(ℓ)
[p+1]

, rℓ) {Compute the largest rℓ singular values and left singular vectors.}

5: V
(ℓ)
[p+1]

:= U

6: λ
(ℓ)
[p+1]

= ‖S‖F
7: end for

8: end for

Without loss of generality, consider the objective function to be maximized as

h(V (1), . . . , V (k)) =
1

2
‖π(V (1), . . . , V (k))‖2F =

1

2
〈V (d)⊤Υ(d), V

(d)⊤Υ(d)〉 (32)

which, as indicated in (30), has the same value
‖β‖2

F

2 for all d = 1, . . . , k. Clearly, h is secondly order

continuous differentiable. The definition of V
(ℓ)
[p+1] at Line 5 is the unique global maximizer of the

restricted function

hℓ(W ) :=
1

2
‖π(V

(1)
[p+1], . . . V

(ℓ−1)
[p+1] ,W, V

(ℓ+1)
[p] , . . . , V

(k)
[p] )‖

2
F , (33)

subject to the constraint that W ∈ S (Iℓ, rℓ), so Algorithm 3 is an ALS algorithm.
To apply our framework, we need to check out two additional conditions. First, the partial gradient

of h with respect to a general V (d) is given by

∇(d)h(V (d)) :=
∂h

∂V (d)
= Υ(d)Υ

⊤
(d)V

(d), d = 1, . . . , k. (34)

At a stationary point, the projection of ∇(d)h(V (d)) onto the tangent space of S (Id, rd) is zero,
implying that

Υ(d)Υ
⊤
(d)V

(d) = V (d)V (d)⊤Υ(d)Υ
⊤
(d)V

(d), d = 1, . . . , k. (35)

In other words, the stationary points of the objective function (32) are solutions to a system of∑k

d=1 Idrd polynomials (35) that is parameterized by T . By Lemma 2, we conclude that for almost
all tensors, the accumulation points of Algorithm 3 are finite and geometrically isolated.

Second, each of the constraint V (ℓ) ∈ S (Iℓ, rℓ), ℓ = 1, . . . , k, is a compact set. The local maximizer
for h does exist. The Hessian of h in (32), which depends on T , at its local maximizer is necessarily
negative semi-definite. Furthermore, positive definite matrices form an open set whose boundaries
consist of positive semi-definite matrices which resides on a submanifold of codimension 1. A small
perturbation can easily disrupt the semi-definiteness. We may therefore assume that for almost all
tensors, the Hessian of h at one of the stationary point is symmetric and positive definite.

By now, all conditions in Theorem 2 are satisfied. To our knowledge, the following result is new.

Theorem 3 For almost all order-k tensor T , the iterates {(V
(1)
[p] , . . . , V

(k)
[p] )} generated by Algorithm 3

converge to a local solution of the Tucker nearest problem.
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4.2 Structured Kronecker approximation

Given A ∈ Rm×n with m = m1m2 and n = n1n2 and a small enough but fixed integer r, the
Kronecker approximation problem concerns finding matrices Bi ∈ Rm1×n1 and Ci ∈ Rm2×n2 such
that the objective function

φA(B1, . . . , Br, C1, . . . , Cr) = ‖A−
r∑

i=1

Bi ⊗ Ci‖
2
F , (36)

is minimized [26]. The problem is equivalent to a rank-r approximation problem [32]

‖A−
r∑

i=1

Bi ⊗ Ci‖F = ‖R(A)−
r∑

i=1

vec(Bi)vec(Ci)
⊤‖F , (37)

where R(A) ∈ Rm1n1×m2n2 is a rearrangement of A as

R(A) :=




vec(A1,1)
⊤

vec(A2,1)
⊤

...
vec(Am1,n1)

⊤


 ,

if A is partitioned as a m1 × n1 block matrix with blocks Aij ∈ Rm2×n2 ,

A =




A11 A12 · · · A1,n1

A21 A22 · · · A2,n1

...
...

. . .
...

Am1,1 Am1,2 · · · Am1,n1


 .

The Kronecker approximation problem (36) therefore can be solved effectively by using the truncated
singular value decomposition.

It is important to note that the Kronecker product often inherits structures from its factors. For
example, the following properties are listed in [31].

If B and C are





nonsingular
lower(upper) triangular
banded
symmetric
positive definite
stochastic
Toeplitz
permutations
orthogonal





, then B ⊗ C is





nonsingular
lower(upper) triangular
banded
symmetric
positive definite
stochastic
Toeplitz
permutations
orthogonal





.

Also, with respect to factorizations, the LU -with-partial-pivoting, Cholesky, and QR factorizations
of B ⊗ C merely require the corresponding factorizations of B and C. An interesting question about
the converse then arises, which we refer to as the structured Kronecker approximation problem. Let
ΩB ⊂ R

m1×n1 and ΩC ⊂ R
m2×n2 denote the subsets of desired structures of factors, respectively.

How should the approximation (36) be accomplished if it is expected that Bi ∈ ΩB and Ci ∈ ΩC ,
even if the given A is not structured?

In what follows, we consider only the case r = 1. Generalizations to general r is possible but
with tedious manipulations. See, for example, the work in [18] for the block Toeplitz structure. Once
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Algorithm 4 (ALS method for structured Kronecker approximation.)

Require: A generic matrix A ∈ Rm1m2×n1n2 , two specific structures ΩB and ΩC , an initial matrix C0 ∈ ΩC ,
Ensure: A local best structured Kronecker approximation to A.

1: for k = 0, 1, · · · , do
2: Bk+1 = argmin

B∈ΩB

‖A− B ⊗ Ck‖F

3: Ck+1 = argmin
C∈ΩC

‖A−Bk+1 ⊗ C‖F

4: end for

the procedure such that the generating function is specified, we think that it is possible that our
framework is still applicable.

For the case r = 1, the following result naturally defines an alternating procedure. In [32, Theo-
rem 4.1], the result can be interpreted as the power method applied to R(A) for finding the left and
right singular vectors associated with its largest singular value.

Lemma 4 Let A ∈ Rm×n with m = m1m2 and n = n1n2 be given.

1. Suppose C ∈ Rm2×n2 is fixed, then the matrix B ∈ Rm1×n1 defined by

bij :=
〈Aij , C〉

〈C,C〉
, 1 ≤ i ≤ m1, 1 ≤ j ≤ n1, (38)

minimizes ‖A−B ⊗ C‖F .
2. Suppose B ∈ Rm1×n1 is fixed, then the matrix C ∈ Rm2×n2 defined by

cij :=
〈Ãij , B〉

〈B,B〉
, 1 ≤ i ≤ m2, 1 ≤ j ≤ n2, (39)

where Ãij = A(i : m2 : m, j : n2 : n) ∈ Rm1×n1 , minimizes ‖A−B ⊗ C‖F .

The above lemma can then be exploited to answer a few structured approximation problems,
provided that A is similarly structured. We mention, for example, the cases that

If A and B are





nonnegative
symmetric
positive definite



 , then the minimizer C of ‖A−B⊗C‖F is





nonnegative
symmetric
positive definite



 .

For other structures, including the case that the given A does not have any structure at all, the
formulas in Lemma 4 does not preserve the structures in general. Some other numerical procedures
are needed.

The prototypical ALS procedure proposed in Algorithm 4 is a plausible procedure to tackle the
structured Kronecker approximation problem, provided the structured least squares subproblems at
Lines 2 and 3 can be resolved. Even so, the nonlinear nature of the Kronecker product would make a
formal proof of convergence of the iterates for the general case challenging. Our contribution is that, if
the procedures can be checked to satisfy the conditions demanded in Theorem 2, then our framework
kicks in and the method will converge.

To demonstrate our point, we concentrate on two special structures — orthogonal factors and
stochastic factors — in the subsequent discussion. We propose algorithmic details for computing the
structured least squares solutions and carry out the crucial task of checking that the conditions in
Theorem 2 are met. At the end, we are able to draw the conclusion of convergence.

Orthogonal factors. To fix the idea, we restate our problem: Given A ∈ Rm1m2×n1n2 , where
m1 ≥ n1 and m2 ≥ n2, find Q1 ∈ S (m1, n1) and Q2 ∈ S (m2, n2) so that the objective function

g(Q1, Q2) :=
1

2
‖A−Q1 ⊗Q2‖

2
F (40)
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is minimized. We shall consider the constraint as the manifold S (m1, n1) × S (m2, n2) with the
product topology.

To find the critical point for the constrained optimization of (40), we compute the projected
gradient of g(Q1, Q2). We begin with the action of the Fréchet derivative of g(Q1, Q2) at a general point
(H1, H2) ∈ Rm1×n1 × Rm2×n2 . Under the product topology, we may consider the partial derivatives
separately. Thus, the action of the partial derivative of g with respect to Q1 on H1 is given by

∂g

∂Q1
.H1 = 〈−H1 ⊗Q2, A−Q1 ⊗Q2〉

= −〈vec(H1),R(A−Q1 ⊗Q2)vec(Q2)〉

= −〈H1,A⊛(m1,n1) Q2 − n2Q1〉,

where the block matrix A is considered as an order-4 tensor A ∈ Rm1×n1×m2×n2 and, similar to the
operation (15),

A⊛(m1,n1) Q2 := [〈Aij , Q2〉] ∈ R
m1×n1 .

Similarly,

∂g

∂Q2
.H2 = −〈H2,A⊛(m2,n2) Q1 − n1Q2〉

with
A⊛(m2,n2) Q1 :=

[
〈Ãij , Q1〉

]
∈ R

m2×n2 .

By the Riesz representation theorem, the partial gradients of g(Q1, Q2) can be interpreted as




∂g
∂Q1

= n2Q1 − A⊛(m1,n1) Q2,

∂g
∂Q2

= n1Q2 − A⊛(m2,n2) Q1.
(41)

We now project the partial gradients onto the tangent spaces of the respective Stiefel spaces.
Applying (18) to both partial gradients, we obtain





ProjTQ1S (m1,n1)
∂g
∂Q1

= Q1
(A⊛(m1,n1)Q2)

⊤Q1−Q⊤

1 (A⊛(m1,n1)Q2)

2 − (Im1 −Q1Q
⊤
1 )A⊛(m1,n1) Q2,

ProjTQ2S (m2,n2)
∂g
∂Q2

= Q2
(A⊛(m2,n2)Q1)

⊤Q2−Q⊤

2 (A⊛(m2,n2)Q1)

2 − (Im2 −Q2Q
⊤
2 )A⊛(m2,n2) Q1.

We now are ready to characterize the first order optimality condition for the orthogonal Kronecker
approximation problem (40).

Lemma 5 For (Q1, Q2) to be a critical point for (40), it must be such that

1. Q1 is the orthogonal portion in the polar decomposition of A⊛(m1,n1) Q2, and
2. Q2 is the orthogonal portion in the polar decomposition of A⊛(m2,n2) Q1

simultaneously.

Proof The first order optimality condition is that the projected gradients should be zero. The conclu-
sion follows from the argument used in proving Corollary 2.

Based on this characterization, we are now able to define the two steps at Lines 2 and 3 in Algo-
rithm 4 more specifically as in Algorithm 5 for the orthogonal Kronecker approximation. Furthermore,
using our framework, we are able to argue for the convergence of the algorithm under the following
assumptions.

Theorem 4 Assume that
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Algorithm 5 (Polar method for orthogonal Kronecker approximation.)

Require: A generic matrix A ∈ Rm1m2×n1n2 , and an initial matrix Q
(0)
2 ∈ S (m2, n2),

Ensure: A local best orthogonal Kronecker approximation to A

1: for p = 0, 1, · · · , do

2: [Q
(p+1)
1 , P

(p+1)
1 ] = poldec(A⊛(m1,n1) Q

(p)
2 ) {using polar decomposition.}

3: [Q
(p+1)
2 P

(p+1)
2 ] = poldec(A⊛(m2 ,n2) Q

(p+1)
1 ) {using polar decomposition.}

4: end for

1. The given matrix A is such that the Hessian of the corresponding objective function g defined in
(40) is positive definite at one of its local minimizers; and

2. The initial matrix Q
(0)
2 ∈ S (m2, n2) is such that the subsequent matrices {A⊛(m1,n1) Q

(p)
2 } and

{A⊛(m2,n2) Q
(p+1)
1 } defined in Algorithm 5 are of full column rank in Rm1×n1 and Rm2×n2 , re-

spectively.

Then the sequence {(Q
(p)
1 , Q

(p)
2 )} generated by Algorithm 5 converges to a local solution to the orthog-

onal Kronecker approximation problem.

Proof To apply our framework for convergence, the conditions needed by Theorem 2 should be satisfied
by Algorithm 5. We check out two particular conditions, while others are either obvious or assumed.

Observe first that the definitions at Lines 2 and 3 actually represent an ALS optimization mecha-
nism because

g(Q1, Q2) = ‖R(A)− vec(Q1)vec(Q2)
⊤‖2F = ‖A⊛(m1,n1) Q2 −Q1‖

2
F

and, by Corollary 2, the nearest Q ∈ S (p, q) to a fixed point Z ∈ Rp×q comes from the polar
decomposition of Z. The polar decomposition is unique for a full rank matrix and is continuous in its
parameters.

Observe next that the accumulation points of the iteration must satisfy the system of polynomials
[23,33] 




Q⊤
1 (A⊛(m1,n1) Q2) = (A⊛(m1,n1) Q2)

⊤Q1,

Q⊤
2 (A⊛(m2,n2) Q1) = (A⊛(m2,n2) Q1)

⊤Q2,

A⊛(m1,n1) Q2 = Q1Q
⊤
1 (A⊛(m1,n1) Q2),

A⊛(m2,n2) Q1 = Q2Q
⊤
2 (A⊛(m2,n2) Q1).

(42)

which, by Lemma 2, contains only geometrically isolated solutions for almost all data matrix A. The

iterates
{
(Q

(p)
1 , Q

(p)
2 )

}
are obviously bounded as they are from the Stiefel manifolds. Conditions in

Theorem 2 are satisfied.

We remark that the first assumption in Theorem 4 holds for generic A. We conjecture that the

second assumption is also true for generic A and Q
(0)
2 because, otherwise, rank deficient matrices are

the union of low dimensional manifolds and are susceptible to perturbations. At present we do not
have a formal proof of the genericity, so we state them as assumptions.

Stochastic factors. Again, we first restate the problem: LetM(q) denote the convex and compact
subset of all column stochastic matrices in R

q×q. Given A ∈ R
n1n2×n1n2 , the stochastic Kronecker

approximation concerns finding the factors B ∈ M (n1) and C ∈ M (n2) so that the objective function

ψ(B,C) :=
1

2
‖A−B ⊗ C‖2F (43)

is minimized.
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It is worth mentioning that the problem has an interesting interpretation. The entry of B ⊗ C

has the form bijcst. Thus, the approximation amounts to aggregating the n1n2 states into n1 groups
G1, . . . , Gn1 , each of size n2, such that the transition probability among states within each group is
the same. Thus, bij stands for the probability of transition from group Gj to state Gi while cst stands
for the probability of transition from state t to state s within any group.

Each of the two structured least squares subproblems in Algorithm 4 can easily be formulated to
take into the stochastic structure. For instance, the subproblem

min
1⊤
n1

B=1⊤
n1

,B≥0
‖A−B ⊗ C‖2F , (44)

where C ∈ M (n2) is fixed and 1n1 ∈ Rn1 is the column vector of all ones, is a classical constrained
linear least squares problem which can be solved via existent optimization software package [22].
Furthermore, the problem (44) is a convex programming problem. If we assume the generic condition
that the data are such that the objective function is strictly convex, then the solution to (44) is unique.
Replacing the constraints in Algorithm 4 by M (n1) and M (n2), and equipped with the ability to
solve each subproblem of the restricted objective functions, our concern is whether the iteration will
converge.

To apply our theory, we need to check in particular the finiteness and isolation of stationary points.
The procedure should be quite routine now, except that the feasible sets now have boundaries, i.e.,
some of the entries of B or C are zero. The projection at the boundaries is equivalent to the KKT
conditions. For simplicity, we shall omit the details. We only demonstrate the projected gradient for
the problem (44) at an interior point. The partial gradient of ψ with respect to B is

∂ψ

∂B
= B‖C‖2F − (A⊛(n1,n1) C) ∈ R

n1×n1 . (45)

The tangent space of M (n1) is made of matrices whose column sum is zero. The projection of any
Z ∈ R

n1×n1 onto the tangent space of M (n1) is trivially given by

ProjTB(M (n1))(Z) = Z − 1n1

[∑n1

i=1 zi,1

n1
, . . . ,

∑n1

i=1 zi,n1

n1

]
.

So the projected gradient can be calculated. Likewise, the projected gradient of ψ with respect to C
can be calculated. In all, setting the projected gradient of ψ(B,C) to zero is equivalent to a system of
polynomials which, by Lemma 2, contains finitely many geometrically isolated solutions for a generic
A. Without filling in more details, we have sketched a proof by using our theory that the matrices
generated by the ALS iteration for the stochastic Kronecker approximation problem converge almost
surely.

5 Conclusion

A general theory has been established in this paper as a useful tool for arguing that an alternating
optimization method will converge under mild conditions. The conditions are the continuity of the
algorithm, the differentiability of the objective function, the boundedness, finiteness, and geometri-
cal isolation of the accumulation points. An array of problems arising from different backgrounds
are demonstrated to be under this framework and satisfy these conditions. In particular, algorithms
designed for the Tucker nearest problem and the structured Kronecker approximation problems are
shown to converge, which is perhaps new in the literature. The theory might serve as an algorithmic
foundation for many other methods having the characteristics of iteration by alternating variables.
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