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Summary. A Newton-like iteration scheme is proposed for the tracing of an 
implicitly defined smooth curve. This scheme originates from the study of 
the continuous Newton-Raphson method for underdetermined systems and, 
hence, inherits the characteristic property of orthogonality. Its domain of 
attraction is formed and makes it possible to trace this curve more ef- 
ficiently. 

Subject Classifications: AMS (MOS): 65K05; CR: 5.15. 

1. Introduction 

The problem to be considered is the following: Suppose that a smooth curve 
F c A  "+ ~ is implicitly defined by the equation 

H(x,t)=O (1.1) 

where H: I R " x N ~ R "  is a C 2 function. We would like to numerically trace 
this curve F from the point (Xo, to) to the point (x*, t*). For the simplicity 
of discussion we shall assume that 0EIt" is a regular value for H, i.e., the 
n x (n+ 1) Jacobian matrix DH(x, t) has full rank at every point on F. 

in recent years a number of approaches have been proposed for the 
numerical computation of this curve-tracing problem [1, 2, 5, 6-9, 11, 13]. 
Essentially all these techniques are of the predictor-corrector type. A prototype 
algorithm usually takes steps of the following form: 

(i) Let Y~=(xi, tl)MR "+1 he a point being accepted as an approximating 
point for E Choose a predictor for the next approximating point. Usually this 
is done by setting 

Z o = Y~ + h i T~ (1.2) 

where h i is an appropriate step length and T~ is the (unit) tangent vector of F at 



324 M.T. Chu 

(ii) Starting from Z o, take a sequence of Newton iterations by requiring Z k 
to tie on the hyperplane normal to a certain prescribed vector (usually the 
tangent vector T 3. 

(iii) Set Yi+I=Z where Z is the point of convergence from the sequence 
{zk}. 

In this paper we study one of the many possible variations upon the above 
general frame. The aim is to establish a uniform domain of attraction for a 
Newton-like iteration scheme while this scheme, without specifying any normal 
vector, automatically will have the desired property of orthogonality as stated 
in (ii). Moreover, with this domain of attraction it is possible to use the secant 
vector S i joining the previously computed 11//-1 and Yi to replace the tangent 
vector T i at Yi in the predictor process (1.2). This approach, which somehow is 

most authors in the references, usually will save at least O (n~] ignored by 
"flops" per step while we still maintain a comparable accuracy. \ o ]  

This short paper consists of two major parts. We begin in the next section 
with a heuristic background by reviewing some theoretic results of the con- 
tinuous Newton method. This consideration more or less justifies the property 
of orthogonality. Then in the last section we establish the domain of attraction 
along the curve F which, in essence, is equivalent to the well-known Newton- 
Kantorovich theorem. 

2. P r e l i m i n a r i e s  

Henceforth we shall denote the point (x,t) in ~ ,+1  by Y. If we introduce a 
parameter a, say the arc length, along the curve F, then an initial value 
problem is implicitly defined by 

D H ( Y ) .  Y=0; Y(0)= Yo (2.1) 

d 
where = d a "  It can be shown [9] that the vector field Y is locally Lipschizian. 

Thus nowadays highly developed IVP-solvers certainly can be utilized to help 
solve this problem, see e.g., [13]. In doing so, however, no advantages is taken 
of the fact that the curve F satisfies the Eq. (1.1). 

On the other hand, if the continuous Newton method is applied to solve 
this underdetermined system (1.1), we will have to consider the differential 
system 

DH (Y).  Y' = - H (Y) (2.2) 

, d 
where =~-z and z is a certain appropriate parameter. It is obvious that any 

solution to (2.2) satisfies the equation 

H (V (z)) = e-~ H (Y  (O)). (2.3) 

Furthermore, if we assume that D H ( Y )  is always of full rank along the solution 



Curve-Tracing of the Homotopy Method 325 

curve, then (2.2) can be reduced to 

Y ' =  - D H + ( Y ) H ( Y )  (2.4) 

where O H  + (Y) = D H T ( y )  [ D H ( Y ) D H T ( y ) ]  - 1 is the Moore-Penrise generalized 
inverse of DH(Y) .  From the well-known fact that 

Range (DH +) = Range (DH T) = Kernel (DH) • (2.5) 

and the fact (2.3), we see that the solution Y(z) to (2.4) always moves in such a 
way not only to reduce the magnitude of H ( Y )  but also to remain perpendicu- 
lar to the 1-dimensional kernel space of DH(Y) .  

Consider now an Euler step of (2.4). This corresponds to the following 
Newton-like iteration scheme 

Yk + ~ = Yk-- DH + ( Yk)H ( Yk) �9 (2.6) 

The above arguments for the continuous case certainly are in favor of this 
discrete case as well. In particular, the resulting point Yk+I lies on the hyper- 
plane normal to the tangent vector of the curve {YelR"+~; H ( Y ) = H ( Y k )  }. 

Since these tangent vectors form a Lipschizian vector field on Y, we can 
expect the desired property of orthogonality from the scheme (2.6), provided 
the sequence {Yk} converges to a point on E This fact will be justified in the 
next section. To get enough motivations, however, we conclude this section 
with the modification of two theorems proved by Tanabe [10] concerning the 
convergence of the continuous scheme (2.4). 

Theorem2.1.  The set F = {  y ~ N n + I ;  H(Y)=0}  is a stable centre manifold (see 
[-4]) for  the system (2.4). 

Theorem 2.2. I f  the initial value Y(O) is close enough to the curve F,, then the 
solution Y(z) to (2.4) stays close to E lndeed, Y(T) converges to a point on F 
exponentially as z--* oo. 

3. Domain of Attraction 

In this section we analyze the local convergence behavior of the scheme (2.6). 
In fact, a modified version 

Yk+ I =  YR--DH+(Yo)H(Y  k) (3.1) 

has already been proposed by Ben-Israel [3] as early as 1965, and its con- 
vergence property is a consequence of a classical implicit function theorem. 
Recently, other versions of scheme (2.6), such as the least change secant update 
of DH(Yk) , have also been proposed [5, 6]. Although no theoretic work has 
been done for these methods at the present time, the reported numerical testing 
results apparently evidence the success. 

We first generalize the Banach perturbation lemma. 
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Lemma 3.1. Suppose that the matrix AeF,  "• is of full rank and the matrix 
Be~., "• is such that [tA-Bt[ [[A+]I < 1. Then 

(i) B is of full rank and 

IIA + II (3.2) 
(ii) lib + II < 

= 1 - ilA -BII IIA + I1 
where II II is the s 

Proof. Observe that, since A is of full rank, 

B = A (I  + A + (B - A ) )  (3 .3)  

where I is the identity matrix in F, ~'+ 1)• ~,+1). Classical Banach lemma implies 
that  I + A + ( B - A )  is invertible. Part (i) follows. Furthermore,  we have the 
estimate 

1 
II I-I + h + (B - Z)] - 11[ < . (3.4) 

= I - I I B - A I )  IIZ+ll 
Recall that 

B+ B=PBT (3.5) 

where PB~ is the projection onto the row space of B. Multiplying both sides of 
(3.5) by A +, we obtain 

B + =PB~.A+[I+(B-A)A+] -1 (3.6) 

Since LI Ps~ LI = 1, (3.2) follows from (3.4). 
The next very useful lemma is a classical result in advanced calculus. We 

simply state it without proof. 

Lemma3.2 .  Let F: D c I R " ~ , "  be a continously differentiable function such 
that 

]]DF(Y)- DF(Z)]] <=7 I] Y -  ZH (3.7) 

for every Y, ZeD. Then for every Y, ZeD, we have 

<Y-[I Y-Zl l  2. (3.8) I IF (Y ) -F (Z ) -DF(Z) (Y -Z ) I I  = 2  

We now establish the main result. 

Theorem 3.1. Let H: D~P,,"+I-~F," be a C 2 function such that 

IIDH ( Y ) -  DH (Z)II < ~ 11 Y-El i  (3.9) 

for every Y, Z~D. Suppose H ( Z * ) = 0  and DH(Z*) is of full rank. Choose 

0 < 8 < @  and define 

M = m i n {  2 dist(Z*, ~?D)} (3.10) 
3 ? II DH + (Z*)tl' 

I f  O<r < 6 M  is such that for every Z6B(Z*,r)  we have 



Curve-Tracing of the Homotopy Method 327 

c]TM 2 
]IH(Z)II< 2 ' (3.11) 

then with any Z o e B ( Z * , r ) c D  , the scheme (2.6) is well-defined and converges 
geometrically to a point in F ~B(Z* ,M) .  

Proof For  any Z~B(Z*,  M), observe that 

]IDH(Z)--DH(Z*)[[ ]]DH+(Z*)II <3, [ IZ-Z*I]  IlOH+(g*)ll <2  < 1. (3.12) 

It follows from Lemma 3.l that DH(Z) is of full rank and 

IIDH+ (Z)II <__3 I lon + (z*)ll. (3.13) 

Using the condit ion (3.11) we then have 

IlZl --/OH = IIDU+(Zo)g(Zo)ll <6M.  (3.14) 

It follows from the choice of c5 that I I Z I - Z * I I < M  and, thus, Z 2 is well- 
defined. Fur thermore ,  applying Lemma  3.2, we have 

I I z z - z l  II = ]IDH+(ZOH(Z1)H 

< IIDH + (zt)LI II H ( Z O -  H ( Z o ) - D H ( Z o ) ( Z I  - Zo)ll 

? 
< IIDH+(Z1)II~ IlZ1-2oll  2. (3.15) 

With the help of  (3.10) and (3.14), it follows that 

IIZ2-Z111 <(~ HZ1 -Z0ll (3.16) 
and 

1 
LIZ2-Z*[I < ] - - 6  IIZ~ -Z0l ]  + I[Zo-Z*II  < M .  (3.17) 

Now suppose that we have shown the following 

LI zk - z k  --1 II < ~ II zk_, - z k _  2 II (3.18) 
and 

? -Zk_211 < 6  (3.19) 3 HDH+(Z*)]I~ LIZk_ 1 

for all k = 2, 3, . . . ,  n. Then 

I Iz, , -  z *  li < L l l z j -  z j_ 11I + llZo - z *  II 
j = l  

1 
<- I Iz1-Zo l l  + I lZo-Z*H < M  (3.20) =1-,5 
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by our choice of ,5. Using (3.13) and (3.18), we also have 

7 II DH+ (Z.) II ~ IIZ. - Z ._ I  II < ,52 < ,5. (3.21) 

But then 

IiZ.+, - Z ,  II < LIDH+(Z,)II LIH(Z,)-H(Z,  , ) -DH(Z ,_I ) (Z , -Z , ,_ , ) ] I  

<= II DH + (Z.)II 7 II Z.  - Z._1 It 2 < ,5 II Z .  - Z ._I  II (3 o22~ 
Z 

By induction we see that {Zk} cB(Z* ,  M) and 

II z k  +,, - z k  II ~ 'Sk(1 - ,5") 1-,5 IIZi -Zoll. (3.23) 

If 2 is the limit point of this Cauchy sequence, then DH+(Z)H(2)=O. Since 
DH+(Z) is of full rank, it is necessary to have H ( 2 ) = 0 .  

Remark. Geometrically the condition (3.11) is used merely to monitor the 
magnitude of the projection of Z o - Z *  onto the kernel space of DH(Zo). It is 
possible to have other alternatives instead of (3.11). 

Remark. Suppose Yk 1 and Yk are two consecutive points which have been 
accepted as approximating points for/i. Let 

Sk = Yk -- Yk-I" (3.24) 

The predictor (1.2) can be replaced by 

Sk 
Zo = Yk + r - -  (3.25) 

tlSktk 

where the scalar r may be regarded as the acceleration or deceleration factor 
taking place along the curve E This adaptive procedure is quite nature and 
practical now since it has been shown that the curve F is enveloped in a 
(uniform) domain of attraction. As long as Z o stays in this envelope, this r can 
be adapted to be as large as possible. 

Remark. Although the rate of convergence of scheme (2.6) is shown to be 
geometric only, one should note that the strength of a proposed method also 
depends upon the strength of its computer implementation. For  example, the 
introduction of the Broyden secant update with special Powell steps and other 
special controls into our method have been proved to be able to reduce the 
total overhead significantly, see e.g. [5] and [6]. It is hoped that besides being 
of theoretical interest in itself, our result will be further developed and imple- 
mented. 
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