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Abstract
The educational testing problem is a convex non-smooth optimization problem.
We recast the problem so that classical non-smooth optimization techniques such
as the ellipsoid method can readily be applicable. Attention is paid to the Dikin’s
method where a special barrier function and interior ellipsoids for the feasible domain
are explicitly formulated. The implementation is much easier than that in [8]. The
convergence property is numerically demonstrated.



1. Introduction.

The educational testing problem (ETP) is a nonlinear programming problem
which arises in statistics [7]. The problem is to determine how much can be sub-
tracted from the diagonal of a given symmetric and positive definite matrix S such
that the resulting matrix is positive semi-definite. The (ETP) can be formulated as
follows:

(1) Maximize trace(D),
(2) subject to S—-D>0,D>0

where D = Diag{ds,...,d,} denotes a diagonal matrix and M > 0 means that the
matrix M is positive semi-definite. It is easy to see that the (ETP) is a convex
programming problem. A local solution that is also a global solution to the (ETP)
always exists.

For convenience we shall denote henceforth the column vector formed from the
diagonal entries of a matrix M by diag(M), and the diagonal matrix with diagonal
entries from a column vector d by D = Diag(d). Quite often, the distinction between
D and d is immaterial.

The structure of the feasible domain (2), including expressions for the normal
cone, feasible directions and optimality conditions, has been carefully studied by
Fletcher [8]. Based on this framework, Fletcher has proposed a quadratically con-
vergent algorithm which involves solving a sequence of subproblems, each defined by
a guess of the nullity of S — D and an exact penalty function. Fletcher’s key idea
was to replace the constraint (2) by a set of nonlinear algebraic equations [8, Formula
(3.3)].

In this paper we discuss how the (ETP) can be tackled differently. In particular,
we discuss how the constraint (2) can be realized more easily. We suggest two channels
of attack. Both are easy to be implemented and make many of the computational
concerns involved in Fletcher’s method [8] less significant. Furthermore, both of our
approaches are globally convergent.

Our first approach is to directly reformulate the (ETP) into two new but math-
ematically equivalent convex programming problems. The reformulation is quite
straightforward, but the constraint becomes more manageable. The advantage is
that many standard methods, the ellipsoid method in particular, are immediately
applicable.

Our second approach is to approximate the boundary of the feasible domain by
level curves of a special barrier function. The (ETP), therefore, is approximated by
a sequence of subproblems where linear objective functions are to be optimized over
ellipsoids. The advantage is that the solution to each subproblem is readily obtainable.

It should be mentioned that recently Glunt has proposed another approach to
the (ETP) on the basis of an alternating projection method [11]. A major component
in Glunt’s method is the use of Dkystra’s algorithm [5] for computing projections
onto the intersection of convex sets. It can be proved that Glunt’s method converges
globally at linear rate.

Discussion on the ellipsoid method is fairly rich in the literature. Far from being
complete, we simply mention references [2, 3, 12, 14, 21]. The application of this
method to the (ETP) is demonstrated in Section 2. Although the ellipsoid method
is known to converge eventually, the iterates (the centers) quite often are unfeasible,
and the so called constraint iteration has to take place to correct the points back to
the feasible domain. In contrast, the Dikin’s method is a variation of the interior
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point method. That is, all the iterates and the ellipsoids generated are interior to the
feasible domain. These features are discussed in Section 3. Numerical experiments
with comparison to existing results are presented in Section 4.

2. First Approach.

2.1. Reformulation.

We reformulate the (ETP) by taking into account the eigenvalues. We discuss
two reformulations.

First, by the inertia theorem, AS — D is positive definite if and only if AT —
S5-1/2D§-1/2 ig positive definite. So for fixed D > 0 the smallest A that makes
AS — D positive semi-definite is the largest eigenvalue of S~1/2DS~1/2, For any

symmetric matrix M, let A;(M) denote the largest eigenvalue of M. Define
(3) w(D) := A (S™Y2DS~ 2,

The diagonal matrix % is invariant under scalar multiplication. So the (ETP) can
be formulated as

(4) Minimize (D),
(5) subject to trace(D) =1, —D < 0.

We note from (3) that u(D) is the composition of the convex function A; and the
linear function $~1/2DS~1/2, and hence is still convex. The equality constraint in
(5) can easily be removed by defining, for example, d, =1 — E?:_ll d;. The (ETP) is
equivalent to

(6) Minimize f(de,. .., dn_1),
n—1

(7) subject to —d; <0, Zdi —-1<0
=1

where

n—1
(8) A(diy ... dn_1) ::,u(dl,...,dn_l,l—z:di>.
=1

It is worth mentioning that one may replace the square root matrix $'/2 in the above
discussion by the Cholesky factor L of S and form a similar problem.
Our second reformulation comes from the observation that S — D > 0 if and only

if
(9) (D) := Ay (D — S) < 0.
Thus the (ETP) may also be expressed as

(10) Minimize —trace(D),
(11) subject to v(D)<0, -D<0.

Once again, we note that v(D) is a convex function.
Both reformulations involve some eigenvalue inequalities.



2.2. Subgradient.

A particular difficulty associated with eigenvalue optimization problems is that
the eigenvalues of a differentiable matrix function are not themselves differentiable
at points where they coalesce. Furthermore, it has been observed quite so often
that at an optimal solution the eigenvalues coalesce [19]. To overcome this difficulty
we can employ special techniques developed in, for example, [18, 19]. For convex
programming problems, however, there are simple and effective algorithms that do
not require smooth constraints or differentiable objectives. For the above (ETP) in
particular, the notion of subdifferential is easy to be implemented.

Given a convex function f : R® — R, any vector ¢ € R"™ such that

(12) f(2) > f(z) + g% (z — 2) for all z

is called a subgradient of f at z. A basic result of convex analysis is that every
convex function always has at least one subgradient at every point. The notion of
subgradients has an important implication. That is,

(13) f(2) > f(z) whenever g7z > g a.

Thus if we want to reduce the values of f and if we know a subgradient g of f at =,
then we only need to consider variables in the half-space

(14) H(z,g) == {z € R"|g" (z — z) < 0}.

The difficulty associated with the constraint (2) is that it is not clear how to
express the positive semi-definite constraints explicitly with m smooth and convex
inequalities ;(D) < 0 where m is small. Discussion for this class of constraints
can be found, for example, in [1, 4, 8, 11, 19]. One naive way of representing (2)
is that all its principal minors are non-negative. Such an expression, however, is
very expensive. Fletcher has tried to depict the normal cone [8, Formula (4.4)] by
approximated algebraic conditions. The implementation then involves some tailored
SQP techniques. In contrast, by reformulating the problem the subgradients of either
(D) or v(D) are very easy to compute as will be illustrated below.

Let A(D) denote either the matrix S~*/2DS~1/2 or the matrix D—S. The partial
derivatives

(15) Ay(D) :=

are trivial to compute. The following result has been proved in [19, Theorem 3].

THEOREM 2.1. Suppose A1(A(D)) has muliiplicity t. Let columns of Q1(D) :=
[g1(D),...,q:(D)] be a corresponding orthonormal basis of eigenvectors. Then the
subgradients of A1 (A(D)) form the set

OM(A(D) ={g€ B"| gr= (U,Q1(D)" 4x(D)Q:1(D)),
(16) for some U € R™*, U =UT,U > 0,trace(U) = 1}.

In particular, regardless of the multiplicity, we have
COROLLARY 2.2. Let g(D) be any normalized eigenvector of A1(A(D)). Then the
vector g = [g1,...,9n]T with

(17) gi := g(D)" A(D)q(D)
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is o subgradient of A1 (A(D)).

Without causing any ambiguity, we use the same notation 8f(z) to denote any
subgradient of f at z. Let ¢(D) denote a normalized eigenvector of the corresponding
A(D), we have

(18) ouD) = (572q(D)) o (57*/%(D)),
(19) ov(D) = q(D)oq(D),
(20) 6i(D) = Tou(D)

where o denotes the Hadamard product and T is the (n — 1) x n constant matrix

10 ... 0 —1

01 -1
T:.=

0 1 -1

2.3. Ellipsoid Method.
We briefly describe the ellipsoid method for a general convex programming prob-
lem

(21) Minimize é(z)
(22) subject to P(z) < 0.

The method was first proposed by Shor [21] and is best known for being adapted
by Khachiyan [14] to prove the polynomial time solvability of linear programming
problem. More details can be found, for example, in [2, 12].

An ellipsoid F C R™ can best be characterized by a vector ¢ € R™ and a symmetric
and positive definite matrix B € R™*™ in such a way that

(23) E = E(B,a) := {mER”|(m—a)TB_1(m—a)§ 1}.

The ellipsoid method generates a sequence of ellipsoids {E(*) = E(B®*), z(*)} with
decreasing volumes such that
1. EM contains the feasible minimizer z*.

2. E(k+1) is the ellipsoid of minimum volume (the Léwner-John ellipsoid) that
contains the half-sliced ellipsoid E(*) N (z(*), g(¥)) where

k) . [ 0s(=®)), if (=) < 0;
(24) g k) .— { a¢(m(k)), if ¢(m(k)) > 0.

The idea in (24) is to throw away points that are not helpful in determining the
minimizer z*. So using the property (13) of subgradients, if z(*) is feasible then we
discard all points where objective values are greater than or equal to ¢>(m(k)), and
if #(*) is not feasible then we discard all points which are further guaranteed to be
infeasible.

It turns out that B(*+1) and z(¥*1) can be explicitly described in terms of B(*),
z(*) and g(*). See, for example, [12, Formulas (3.1.11-12)] or [2, Appendix B]. Thus
a basic ellipsoid algorithm for problem (21) and (22) can be summarized as follows:

ALGORITHM 2.1. (Basic Ellipsoid Method)

Given B and z(1) 5o that E(Y) contains a feasible minimizer, do:
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Compute h(z(*)),
Ifg(2*)) >0,
Compute any g(*¥) € dy(z(*));
v =1/ g T BE)g(k).

g,
J

;

o
IFyp(zF) —v >0, quit.

Else,
Compute any g*) € dp(z(*));
v = 1/g®) T BE)g().
(%)
gi= 1
b:= Bklg;
pl+1) .— p(k) _ _®

ntl’

B+ = 2t (B — 2yh");

IF(2*)) < 0 and v < ¢, stop.

A nice feature of the ellipsoid method is that

vol(E(k‘H)) n \"M n \"! : —1
(25) = <emm,
vol( E(¥)) n+1 n—1

Thus the ellipsoid method always converges (but slowly). It should be noted, how-
ever, that in finite precision arithmetic roundoff error will almost invariably cause the
computed matrix B(¥) to become indefinite. Consequently, the quantity v may not be
a real number. Fortunately, this numerical unstability can be remedied by updating,
instead of B(¥), the factor of B(¥) = J®E 7T 1 this way, the square root is avoided.
The modified algorithm is as follows:
ALGORITHM 2.2. (Modified Ellipsoid Method)
Given B() = J(l)J(l)T and (1) so that E(Y) contains a feasible minimizer, do:
Compute 1,b(1:(k)),
Ifg(=2*)) >0,
Compute any g(*¥) € dy(z(*));
v i= I8 B

T )
=t
IFyp(zF) —v >0, quit.

Else,
Compute any g*) € dp(z(*));
7i= 7B 9B
T )

b:.= J(k)g;
z(k4]) 1= g() b
JEH) = o J(*) (I -1 n_i)-"-"T)"

n+
IF(2*)) < 0 and v < ¢, stop.
Furthermore, the J(*) can be taken to a lower triangular matrix (the Cholesky
factor) and hence a lower triangular J#+1) can be obtained at the mild cost of O(n?)
operations. More details can be found in [2, Section 6].
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As is seen, the ellipsoid method requires only the evaluation of function values
and any one (of the possibly many) subgradients of functions. On the other hand,
Corollary 2.2 shows how convenient a subgradient for either u(D) or v(D) can be
calculated. Thus the ellipsoid method is readily applicable to the (ETP) in either the
form (6) and (7) or the form (10) and (11).

3. Second Approach.

3.1. Barrier Function. Let ;(D) denote the i** eigenvalue of S— D. Consider
the function

(26) $(D) = ; In 375 (1D) + ; In dii

Since the logarithm is undefined for non-positive arguments, the function ¢ is defined
only for strictly feasible D in (2). For computational purpose, we may write ¢ as

(27) #(D) =1Indet(S — D)~ ' +Indet D~1.

The idea of introducing the so called barrier function ¢ is that its level curves should
be reasonable approximations to the boundary of the feasible domain (2). For a 2-

dimensional example where S = jg \ég
and the level curves of ¢ are plotted in Figure 1.

We first derive formulas for the gradient Vé(D) and the Hessian VZ¢(D). More
general results can be found in [4, 16].

LeMMA 3.1. The gradient vector of ¢(D) is given by

], the boundary of the feasible domain

(28) V$(D) = diag (S — D)™ — D).

Proof. The derivatives of the second term in (27) is trivial. So the only concern
is the partial derivative of the first term %(D) = Indet(S — D)~ . It is a well known

fact that if a matrix M has columns [mq, ..., my,], then
d d d
—det M =det [—mqy,ma,...,mn| + ...+ det |mi,ma,...,—my]| .
dz dz dz

It follows that

8 1 8
5'P) = ~TaE—Dyaq 5 D)
0'“'(5 — D)
det(S — D)

where 0;;(M) denotes the cofactor of the elements m;; of the matrix M. Recall the
fact that

(adjM )M = (det M)I
where

adjM := [oy; (M)]T.
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d2

18

* = boundary of feasible domain
1.6 - = |evel curves of barrier function
14 . = iterates of Newton method

0 = analytic center

0 0.5 1 15 2 2.5 3 35
di

Fi1c. 1. Boundary of feasible domain, level curves of barrier function and analytic center.

The assertion follows. O
LemMMA 3.2. The Hessian matrizc H(D) of ¢(D) is given by

(29) HD)=(S-D)'o(S-D)"'+DtoD™™

Proof. Let =; denote the square unit matrix whose only non-zero entry with value

1 is at the (4,4) position. From Lemma 3.1, we may rewrite
7}
ad,;

%(D) = (S — D)™, Ej)
where

< M,N >:= trace M NT = ZZmijnij

1=1j=1
denotes the Frobenius inner product of two matrices M and N. The second order

derivative can now be conveniently calculated as follows:
a2 a
D) = —
dd; dd; ¥(D) <6d]-
= ((S-D)'E;(S-D) ' E)
= (8(5-D)7', (S~ D) "E).

7
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In the last equality above, we have used the facts that
(PM, N) = (M, PTN)

and that S — D is symmetric. 0

We note from the well known Schur product theorem [13, Theorem 7.5.3] that
H(D) is positive definite if D is feasible, which also shows that the function ¢ is
strictly convex over the feasible domain.

3.2. Inner Ellipsoid.

We have mentioned that the boundary of the feasible domain (2) can be ap-
proximated by the level curves of ¢. In this section we describe how the latter can be
approximated by inscribed ellipsoids determined by the Hessians of ¢. More precisely,
we have the following theorem where, in relation to the iteration that will be referred
to in section 3.4, we denote the current iteration by the superscript (¢) and the next
iteration by (*).

THEOREM 3.3. Suppose D) is ¢ strictly feasible point with respect to (2). Then
every diagonal matriz DY) with ) from the ellipsoid E(H(D(?))~1,d(°)) is also
strictly feasible.

Proof. Denote A := D) — D(?) and § = diag(A). By Lemma 3.2 and the
definition in (23), we have

(30) 67 ((5- D)o (s— D)) 5+67 (DO oD ) s <1,

Consider the second term in (30) first. Since both (S — D(C))_1 o(S— D(C))_1

and D(® " o DO are positive definite, we have
67 (DO oD 5 < 1.
It follows that
|6;] < dz(c)

for each i. This shows that D(*) > 0.
To show that S — D(*) > 0, we observe that

(S — DEN)=3(§ — D)Y(S — D))=5 =T — (§ — DN~ A(S — D))~ 3,
Thus it suffices to show that
(31) I(§ — DI))=3A(S = D) 735 < 1.
But (31) follows from the observation that

I(S = D))=3A(S — D)~ 3|}

(S = DIN)=3A(S — D=3, (S — DN~ A(S — D(9))~3)
(S — DN)'A, A(S — D))

— 4T ((5 _DE)1o(s - D(C))‘l) §<1

whereas the last inequality follows from the first term in (30). O
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3.3. Analytic Center.

Being strictly convex over the the feasible domain (2), the barrier function ¢(D)
has a unique minimizer D. Such a point is called the analytic center of ¢. From
Lemma 3.1 we see that D must satisfy the equation

(32) V(D) = diag(S — D)"* — D! =o.

The analytic center can be computed by a Newton method with damping [4, 17]:
ALGORITHM 3.1. (Nesterov and Nemirovsky’s Method)
Given any nitial point D(©) that is feasible, do:
Compute V(D*)) and H(D®));
Solve H(DW))?¢ = V(D®);
p = Il
Ifp<i,
alk) .= 1;
Else,
NOPEE

1+p°
Solve H(D®)6() = —a(¥)Vp(D*));
D(k+1) = D(k) =+ Dzag(&(k))
It can be proved that the damping factor a(*) results in D(*+1) being feasible [17].

4

Iterations illustrating the above iteration for the matrix S = [ V3 3 ] are plotted

2
in Figure 1. Together with the notion of inner ellipsoids mentioned in Theorem 3.3,
the analytic center serves as a good starting point for the so called Dikin’s method.

3.4. Dikin’s Method.
Suppose D(¢) is a feasible point. Dikin’s method [6] amounts to approximating
the (ETP) locally by the following subproblem

(33) Maximize eld,
(34) subject to  d € E(H(D()1, d(e))

where d(¢) = diag(D(®)) and e :=[1,...,1]7.

Optimizing linear objective function over ellipsoids is easy. In fact, it can be
proved that [12, Page 68]

LEMMA 3.4. For p # 0, the mazimal value of p'z subject to the condition
¢ € E(B,a) occurs at

1
——_Bp.
vpTBp

Thus a basic Dikin’s algorithm can be stated as follows:
ALGORITHM 3.2. (Basic Dikin’s Method)
Given z(1) € R™ strictly feasible, do:
If S — Diag(z(*)) is singular,
Stop;
Else,
Solve H(Diag(z*)))b = e for b;
2(B+1) .= 5(k) L \/%b_

(35) ¥ i=a-+

Clearly, using (30), Dikin’s method is extremely easy to be implemented. It should
be cautioned, however, that the afore-mentioned stopping criterion is not sufficient
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for ensuring that trace(D) is maximized when the algorithm stops. Theorem 3.3
guarantees that z(¥) is strictly feasible and hence S — Diag(m(k)) is never singular
in exact arithmetic. However, in floating point arithmetic, one has to settle the
singularity (as well as the rank) of a matrix for an eigenvalue (or a singular value)
that is less than a prescribed tolerance. A usual choice of tolerance for zero is ¢||S||
where € is the machine dependent floating point relative accuracy. For this reason it
is possible that the algorithm may stop at a point where S — D is numerically semi-
definite yet trace(D) may have not reached its maximal value. Indeed, one difficulty
in implementing Dikin’s method is that, in contrast to the ellipsoid methods, there
is no general stopping criterion [15]. To reduce the risk of hitting boundaries of the
feasible domain too soon, we find it is a good idea to start out the Dikin’s method
from a point that is most interior to the feasible domain. Our numerical experiences
seem to indicate the analytic center, for example, is always a good starting point.

4. Numerical Experiment.

We have applied the algorithms discussed in this paper to solve the set of edu-
cational testing problems given by Woodhouse [22]. The Woodhouse data set is in
general an N x m matrix X = [x;;] where 2;; gives the score of student i on subject
j. Test problems are generated by selecting various subsets of columns for form the
matrix S. More precisely, let v = {v1,...,v,} with n < m denote the subset of
column indices being considered. Then S = 5, = [s;;] is the n X n matrix generated

by

N
(36) Sik = N > (@i, — Ba,) (Biny, — By)

=1

where Z; = Efvzl z;; /N is the column mean.

Our results are compared against those given by Fletcher [8] where a specific
64 x 20 matrix X is used [7, 22] . The computations have been carried out by
MATLAB on a DECstation 5000/200. We should point out that the efficiency of the
basic algorithms described in the paper can be greatly improved by taking into account
more careful programming details. Nevertheless, even with the simple version, our
results show that the methods are effective and reliable.

We first compute the analytic center. For simplicity, the starting point D(®) of
Algorithm 3.1 for every test case is taken to be

(37) D) :=0.92,(9)I

where A, is the smallest eigenvalue of the underlying S. The iteration stops when
the 2-norm of the difference between consecutive iterates is less than €||S|| where €
is the machine dependent floating point relative accuracy and is ~ 2.2204 x 106
in our case. In Table 1 we list the column indices used to generate the matrix S,
the analytic centers and the number of iterations needed for convergence. So as to
fit the data comfortably in the running text, we display all the numbers with only
four decimal digits. It should be pointed out that Algorithm 3.1 eventually become
quadratically convergent. As a matter of fact, Nesterov and Nemirovsky even provide
a sharp bound on the number of iterations required to compute the analytic center
within a given accuracy.

Using the analytic center as the starting point, we tabulate in Table 2 the optimal
solutions computed from Algorithm 3.2 and the number of iterations required for
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v Analytic Center Iteration
1,2,5,6 | 130.3018 137.0515 64.2004 23.8803 9
1,3,4,5 | 103.3142 126.0694 85.1781 65.0063 9
1,2,3,6, | 28.6016 50.3854 43.1713 21.6472
8,10 40.8325  37.7731 9
1,2,4,5, | 47.6804 114.1003 71.4372 63.9306

6,8 24.5235  48.0063 9

1:6 101.3008  49.7498 53.2610 74.4367

64.3381  22.7019 9

1:8 37.5094  48.7373 49.0590 78.7444

63.2342  22.5123 57.4478 46.7986 9
1:10 17.0703  48.0679 45.1975 70.8547
63.9691  21.2662 55.9627 40.4653
46.9100  37.4983 10
1:12 13.4577  47.5093 44.9369 70.8163
58.6676  20.9336 54.2917 39.1942
36.6014  37.1797 49.9820 42.3908 11
1:14 6.5662  42.5043 46.6774 62.6464
54.0793  18.5147 41.3755 32.8890
37.5776  35.9830 33.5691 43.5142
13.4953  10.3959 13
1:16 3.8189  42.3981 43.5428 59.6363
51.9807  18.2824 43.8108 30.0555
34.6286  34.5487 30.5031 39.2808
14.7268  10.4285  5.0935 18.8981 15
1:18 2.2427  42.1140 44.0036 59.5748
46.6077  17.4513 42.9404 27.7346
36.2674  35.6251 29.0568 36.6165
13.5875  10.0714  5.1555 17.1592
37.3088  26.8049 18
1:20 2.3241  40.5550 45.2906 55.3856
41.5906  16.2843 31.7069 21.6311
34.1435  30.8012 27.2964 30.9536
13.7232 8.6853  4.8949 15.1030
31.8938  27.3978 43.3779 69.2924 20
TaBLE 1

Analytic Centers
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Dikin’s method. The matrix S — Diag(m(k)) is assumed to be singular if the minimum
eigenvalue of S — Diag(z(*)) is less than €||S||. We indicate earlier that quite often
at the optimal solution the eigenvalues coalesce. This is evidenced in Table 2 by
the multiplicity of the eigenvalue 0 at the optimal solution. Using the same analytic
center as the starting point, we also have applied Algorithm 2.2 to solve the (ETP) in
the form of (6) and (7). Table 3 provides information similar to Table 2. We observe
that the ellipsoid method is notably slow in convergence.

In certain cases, we find our results are different from Fletcher’s results [8] by
a substantial discrepancy that is beyond what should be if the correct answer is
rounded to four or five digits. The 2-norm of the discrepancy is also recorded in
Table 2 and 3 where the number inside the parentheses is the exponent in base 10.
We note particularly the case v = {1,...,10} where Fletcher’s result is wrong in
that d7 and dg were transposed. Since it has been noted that Glunt [11] was able
to reproduce Fletcher’s results by using the alternating projection method, it seems
to imply that our algorithms are not reliable. However, we should point out that
Glunt has only reported on the relative discrepancy. When comparing the absolute
discrepancy, Glunt’s results seem to have the worst accuracy among the four numerical
methods as will be exemplified below. On the other hand, since our two methods agree
more closely with each other than with Fletcher’s results, it also seems to imply that
our results should be trustworthy. This paradox is even more perplexing when one
examine the result for the case v = {1, 2,5, 6} carefully — The first result in Table 3
agrees closely with Fletcher’s result, and the one in Table 2 does not. This suggests
one of the methods may have failed.

In an attempt to resolve the above enigma, we list in Table 4 the computed
solution D in all available digits (Fletcher’s and Glunt’s results are available only up
to 6 digits from the literature.) We then calculate all eigenvalues of the corresponding
matrix S — D in Table 5.

As can be seen, Fletcher’s result gives rise to a small negative eigenvalue which
should be theoretically zero. The magnitude in the order of 1076 is expectable given
the fact Fletcher has only reported 6 digits of accuracy. The ellipsoid method produces
a result that is close to Fletcher’s, except that a smaller negative number in the order
of 10713 is taken to be the zero eigenvalue. The threshold for determining singularity
in this case is €||S|| ~ 1.2038 x 10713, So in our view the ellipsoid method has carried
out its best possible accomplishment.

Dikin’s method, on the other hand, produces a substantially different result in
this case. We first observe that the feasibility is maintained since the zero eigenvalue
of § — D is approximated by a small positive quantity or order 10~1%. If we assume
that the true solution to the (ETP) is better approximated by the ellipsoid method
than by Fletcher’s method, then it is rather surprising to see that the component-
wise maximal discrepancy between the matrices D generated by the ellipsoid method
and by Dikin’s method is as large as &~ 0.3473. While the ellipsoid method gives a
slightly larger objective value trace(D) a 5.427735615069689 x 102 by violating the
feasible constraints within the machine precision, Dikin’s method ensures feasibility
by returning a slightly smaller objective value trace(D) ~ 5.427730183170040 x 102.
From this viewpoint, it is truely difficult to judge which method is most satisfactory.
Apparently this proves that finding the exact solution to the (ETP) is a very delicate
task. Fortunately, as far as its application in statistics is concerned, the objective
value trace(D) usually does not require very high accuracy [7].

In fact, we have checked all 12 test cases and observed that Dikin’s method did
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v Optimal Solution Iteration | Multiplicity | Discrepancy
1,2,5,6 | 173.4639 236.6797 103.7673  28.8621 34 1 0.4122(0)
1,3,4,5 | 156.2324 240.9354 128.7423 107.2478 17 2 5.1485(-5)
1,2,3,6, 0.0000 102.0203  19.8772  31.4606
8,10 82.2832  69.8404 20 1 2.7509(-4)
1,2,4,5, | 59.6233 214.0318  69.8054 115.7325
6,8 47.0397  58.2305 28 2 0.0212(0)
1:6 152.7058  54.4757  82.9314  99.6415

104.6550  40.9529 20 2 9.1933(-5)

1:8 14.0323  38.5418  95.0990 158.9009

120.3823  28.3713 106.7753  79.7356 29 2 5.8057(-5)
1:10 0.0000  43.8923  80.7165 132.8874

126.8620  28.0302  92.6100  56.6200

61.3363  67.8258 39 2 50.8976(0)
1:12 18.6332  61.8632  63.4274 127.5681

99.9735  30.7704  96.5349  45.2875

41.6016  45.3291  64.0408  52.4596 38 3 7.1738(-5)
1:14 0.0000  59.4989  62.9123 109.9237

99.9491  32.7194  79.0728  31.7381

47.4210  33.7888  41.9528  63.5956

4.2517 4.4508 38 2 6.3563(-5)
1:16 0.0000 63.4868  52.3890 108.1923

92.3952  34.5616  85.7551  21.9573

37.56494 32,9670 28.5112  54.5709

12.9296 4.1035 6.7064  27.3866 37 2 0.0032(0)
1:18 0.0000 58.3802  62.1620 107.2306

80.2873  25.3833  70.7034  24.3173

52.4379  41.6948  24.2924  39.1760

15.7610 6.8615 3.2590  14.5931

68.8044  52.1616 44 3 4.2067(-5)
1:20 0.0000 47.3728  76.5817 101.0016

63.4500  13.3822  41.4830 4.3003

56.3649  33.9832  33.7699  29.9598

17.5971 0.0000 4.3281 13.6903

45.5872  51.5863  57.2066 128.6977 45 2 6.4933(-5)

TABLE 2

Results for Algorithm 3.2.
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v Optimal Solution Iteration | Multiplicity | Discrepancy
1,2,5,6 | 173.1170 236.8681 103.8767  28.9118 209 1 4.5646(-4)
1,3,4,5 | 156.2324 240.9354 128.7423 107.2478 351 2 5.0141(-5)
1,2,3,6, 0.0000 102.0203  19.8771  31.4606
8,10 82.2833  69.8404 702 1 2.2068(-4)
1,2,4,5, | 59.6236 214.0323  69.8051 115.7325
6,8 47.0397  58.2302 797 2 0.0206(0)
1:6 152.7057  54.4758  82.9313  99.6415

104.6550  40.9529 805 2 2.4789(-4)

1:8 14.0325  38.5418  95.0989 158.9009

120.3821  28.3714 106.7753  79.7356 1511 2 3.4259(-4)
1:10 0.0000  43.8922  80.7168 132.8876
126.8620  28.0300 92.6101  56.6198
61.3362  67.8258 2499 2 50.8974(0)
1:12 18.6332  61.8634  63.4275 127.5681
99.9734  30.7703  96.5348  45.2876
41.6014  45.3290  64.0409  52.4597 3957 3 3.2475(-4)
1:14 0.0000  59.4991  62.9122 109.9236
99.9492  32.7194 79.0728  31.7385
47.4209  33.7889  41.9526  63.5956
4.2515 4.4508 4714 2 6.3563(-5)
1:16 0.0000 63.4867  52.3890 108.1923
92.3953  34.5616  85.7551  21.9572
37.56494 32,9671  28.5111  54.5709
12.9297 4.1036 6.7065  27.3866 6110 2 0.0032(0)
1:18 0.0000 58.3802  62.1620 107.2305
80.2874  25.3833  70.7033  24.3174
52.4379  41.6949  24.2924  39.1760
15.7607 6.8615 3.2590 14.5931
68.8044  52.1617 8575 3 3.6876(-4)
1:20 0.0000 47.3731  76.5815 101.0017
63.4505 13.3822  41.4829 4.3001
56.3649  33.9834  33.7696  29.9599
17.5970 0.0000 4.3280 13.6901
45.5872  51.5863  57.2065 128.6977 9526 2 7.9265(-4)
TABLE 3
Results for Algorithm 2.2.

Fletcher Ellipsoid Dikin Glunt

1.731174(2) | 1.731165897531778(2) | 1.734639095485107(2) | 1.731324(2)

2.368681(2) | 2.368683462604490(2) | 2.366797403246821(2) | 2.368578(2)

1.038765(2) | 1.038767739770922(2) | 1.037672671785132(2) | 1.038729(2)

2.891159(1) | 2.891185151624995(1) | 2.886210126529794(1) | 2.89103(1)

TABLE 4
Computed solution D for v = {1,2,5,6}.
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Fletcher Ellipsoid Dikin Glunt
4.2694(1) 4.2694(1) 4.2809(1) 4.2700(1)
2.7741(1) 2.7741(1) 2.7796(1) 2.7743(1)
-7.1236(-6) | -2.7356(-13) | 5.6843(-14) | 4.0113(-05)
3.4974(2) 3.4975(2) 3.4958(2) 3.4974(2)

TABLE 5

Eigenvalues of S — D for v = {1,2,5,6}.

Fletcher Ellipsoid Dikin Glunt
2.4226(-7) | 7.9784(-14) | 3.4497(-13) | 4.7439(-5)
1.9311(-6) | 3.1757(-10) | 2.4975(-13) | 5.7266(-5)
-8.1763(-6) | 5.7458(-9) | 2.2659(-12) | 1.9844(-5)
2.5072(1) 2.5072(1) 2.5072(1) 2.5072(1)
9.2006(0) 9.2006(0) 9.2006(0) 9.2009(0)
4.0672(1) 4.0672(1) 4.0672(1) 4.0672(1)
6.3500(1) 6.3500(1) 6.3500(1) 6.3501(1)
8.7266(1) 8.7267(1) 8.7266(1) 8.7266(1)
1.1460(2) 1.1460(2) 1.1460(2) 1.1460(2)
1.7187(2) 1.7187(2) 1.7187(2) 1.7187(2)
4.0826(2) 4.0826(2) 4.0826(2) 4.0826(2)
1.5977(3) 1.5977(3) 1.5977(3) 1.5977(3)

TABLE 6
Eigenvalues of S — D for v ={1,...,12}.

not give negative eigenvalues for any of the test problems while the other two method
do sometimes give small negative eigenvalues with Fletcher’s in the order of 1075 to
10~7 and the ellipsoid method in the order of 1071° to 10~%. Another interesting
observation, as is demonstrated in Table 6 for the case v = {1,...,12}, is that the
coalescent zero eigenvalues resulted from Dikin’s method usually cluster together while
those from the ellipsoid method spread over a wider range.

Finally, we point out that Glunt’s method converges linearly and usually returns
values in the order of 1075 as the zero eigenvalue. It is not clear how long Glunt’s
method will take to reach the same accuracy as that of the ellipsoid method or Dikin’s
method.

It is remarkable that Dikin’s method can obtain convergence quite rapidly, even
for the 20 x 20 test case. We do not completely understand the theory of convergence
for Dikin’s method. For the time being, we can only refer readers to the recent review
article [15] and the many references contained therein. In particular, we are aware of
the long step version of the Dikin’s method in which the next iterate is determined
by taking a fixed fraction A € (0,2/3] of the whole step to the boundary of the inner
ellipsoid. (See (35) and Algorithm 3.2.) Global convergence for the long step version
of Dikin’s method applied to degenerate linear programming problems can be proved
[15]. The proof probably needs substantial modification for our problem. On the
other hand, by using the long step version, i.e.,

2/3
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we find that the inconsistency mentioned above between Algorithm 2.2 and 3.2 for the
case v = {1,2,5,6} is fixed, confirming that the result from the ellipsoid method is
better; nevertheless, the substantial discrepancy between Fletcher’s results and ours
for the cases v = {1,2,4,5,6,8} and v = {1,..., 16} still prevails.

We mention earlier that Dikin’s method maintains the feasibility throughout the
iteration. We demonstrate the convergence behavior of the ellipsoid method in Fig-
ure 2 and Figure 3. Figure 2 demonstrates the history of the first 400 iterations for the
case v = {1,2,3,6,8,10}. Since the optimal solution occurs at the boundary d; = 0,
conceivably the centers of the ellipsoids will often fall outside the feasible domain.
When this happens, a constraint iteration where the subgradient is taken from the
constraints (rather then the objective function) must take place. This is recorded in
Figure 2 by the symbol +. Figure 3 demonstrates the history of the first 400 iterations
for the case v = {1, 2,4,5,6,8}. Since the optimal solution is strictly interior to the
feasible domain, we see that the constraint iteration occurs only at the beginning. It
is clear that the ellipsoid method is not necessarily a descent method for the objective
function .

5. Acknowledgements.

The first author learned of the ideas presented in this paper from lectures given
by Professor Stephen Boyd while attending the NATO ASI at Leuven, Belgium. The
aftermath discussion which Professor Boyd has tirelessly provided is especially appre-
ciated.

16



(21]

(22]

REFERENCES

F. Alizadeh, Optimization over the positive semi-definite cone: Interior point methods and
combinatorial applications, in Advances in Optimization and Parallel Computing, ed., P.
Pardalos, North-Holland, Amsterdam, 1992, 1-25.

R. G. Bland, D. Goldfarb and M. J. Todd, The ellipsoid method: A survey, Operations Re-
search, 29(1981), 1039-1091.

S. Boyd and C. Barrat, Linear Controller Design: Limits of Performance, Information and
System Sciences Series, Prentice-Hall, New Jersey, 1990.

S. Boyd and L. E. Ghaoui, Method of centers for minimizing generalized eigenvalues, preprint,
Stanford University, 1992.

J. P. Boyle and R. L. Dykstra, A method for finding projections onto the intersection of convex
sets in Hilbert space, in Advances in Order Restricted Statistical Inference, ed. R. Dykstra,
T. Robertson and F. T. Wright, Lecture Notes in Statistics, 37, Springer-Verlag, New York,
1986, 28-47.

I. Dikin, Iterative solution of problems of linear and quadratic programming, Soviet Math.
Dokl., 8(1967), 674-675.

R. Fletcher, A nonlinear programming problem in statistics (Educational testing), SIAM J. Sci.
Stat. Comput., 2(1981), 257-267.

R. Fletcher, Semi-definite matrix constraints in optimization, SIAM J. Control Optim.,
23(1985), 493-513.

R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley and Sons, Chichester,
1987.

S. Friedland, J. Nocedal and M. L. Overton, The formulation and analysis of numerical methods
for inverse eigenvalue problems, SIAM J. Numer. Anal. 24(1987), 634-667.

W. K. Glunt, An alternating projections method for certain linear problems in a hilbert space,
University of Kentucky, preprint, 1991.

M. Grotschel, L. Lovész and A. Schrijver, Geometric Algorithms and Combinatorial Optimiza-
tion, Springer-Verlag, Berlin, 1988.

R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1991.

L. G. Khachiyan, Polynomial algorithms in linear programming, USSR Computational Math-
ematics and Mathematical Physics, 20(1980), 53-72.

R. D. C. Monteiro, T. Tsuchiya and Y. Wang, A simplified global convergence proof of the
affine scaling algorithm, University of Arizona, preprint, 1992.

Yu. E. Nesterov and A. S. Nemirovsky, Self-concordant functions and polynomial time methods
in convex programming, Technical report, Centr. Econ. & Math. Inst. USSR Adad. Sci.,
Moscow, USSR, 1989.

Yu. E. Nesterov and A. S. Nemirovsky, Interior Point Polynomial Methods in Convex Program-
ming: Theory and Applications, SIAM, to be published.

M. L. Overton, On minimizing the maximum eigenvalue of a symmetricmatrix, SIAM J. Matrix
Anal. Appl., 9(1988), 256-268.

M. L. Overton, Large-scale optimization of eigenvalues, SIAM J. Optimization, 2(1992), 88-120.

R. T. Rockafellar, The Theory of Subgradients and Its Applications to Problems of Opti-
mization: Convex and Nonconvex Functions, Research and Education in Mathematics 1,
Heldermann, Berlin, 1981.

N. Z. Shor, Cut-off method with space extension in convex programming problems, Cybernetics
13(1977), 94-96.

B. Woodhouse, Lower bounds for the reliability of a test, M. S. Thesis, Dept. Statistics, Uni-
versity Wales, Aberystwyth, 1976.

17



