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Abstract

The educational testing problem is a convex non�smooth optimization problem�
We recast the problem so that classical non�smooth optimization techniques such
as the ellipsoid method can readily be applicable� Attention is paid to the Dikin�s
method where a special barrier function and interior ellipsoids for the feasible domain
are explicitly formulated� The implementation is much easier than that in ���� The
convergence property is numerically demonstrated�



�� Introduction�

The educational testing problem �ETP� is a nonlinear programming problem
which arises in statistics ���� The problem is to determine how much can be sub�
tracted from the diagonal of a given symmetric and positive de	nite matrix S such
that the resulting matrix is positive semi�de	nite� The �ETP� can be formulated as
follows


Maximize trace�D�����

subject to S �D � �� D � ��
�

where D � Diagfd�� � � � � dng denotes a diagonal matrix and M � � means that the
matrix M is positive semi�de	nite� It is easy to see that the �ETP� is a convex
programming problem� A local solution that is also a global solution to the �ETP�
always exists�
For convenience we shall denote henceforth the column vector formed from the

diagonal entries of a matrix M by diag�M �� and the diagonal matrix with diagonal
entries from a column vector d by D � Diag�d�� Quite often� the distinction between
D and d is immaterial�
The structure of the feasible domain �
�� including expressions for the normal

cone� feasible directions and optimality conditions� has been carefully studied by
Fletcher ���� Based on this framework� Fletcher has proposed a quadratically con�
vergent algorithm which involves solving a sequence of subproblems� each de	ned by
a guess of the nullity of S � D and an exact penalty function� Fletcher�s key idea
was to replace the constraint �
� by a set of nonlinear algebraic equations ��� Formula
�������
In this paper we discuss how the �ETP� can be tackled di�erently� In particular�

we discuss how the constraint �
� can be realized more easily� We suggest two channels
of attack� Both are easy to be implemented and make many of the computational
concerns involved in Fletcher�s method ��� less signi	cant� Furthermore� both of our
approaches are globally convergent�
Our 	rst approach is to directly reformulate the �ETP� into two new but math�

ematically equivalent convex programming problems� The reformulation is quite
straightforward� but the constraint becomes more manageable� The advantage is
that many standard methods� the ellipsoid method in particular� are immediately
applicable�
Our second approach is to approximate the boundary of the feasible domain by

level curves of a special barrier function� The �ETP�� therefore� is approximated by
a sequence of subproblems where linear objective functions are to be optimized over
ellipsoids� The advantage is that the solution to each subproblem is readily obtainable�
It should be mentioned that recently Glunt has proposed another approach to

the �ETP� on the basis of an alternating projection method ����� A major component
in Glunt�s method is the use of Dkystra�s algorithm ��� for computing projections
onto the intersection of convex sets� It can be proved that Glunt�s method converges
globally at linear rate�
Discussion on the ellipsoid method is fairly rich in the literature� Far from being

complete� we simply mention references �
� �� �
� ��� 
��� The application of this
method to the �ETP� is demonstrated in Section 
� Although the ellipsoid method
is known to converge eventually� the iterates �the centers� quite often are unfeasible�
and the so called constraint iteration has to take place to correct the points back to
the feasible domain� In contrast� the Dikin�s method is a variation of the interior
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point method� That is� all the iterates and the ellipsoids generated are interior to the
feasible domain� These features are discussed in Section �� Numerical experiments
with comparison to existing results are presented in Section ��

�� First Approach�

���� Reformulation�

We reformulate the �ETP� by taking into account the eigenvalues� We discuss
two reformulations�
First� by the inertia theorem� �S � D is positive de	nite if and only if �I �

S����DS���� is positive de	nite� So for 	xed D � � the smallest � that makes
�S � D positive semi�de	nite is the largest eigenvalue of S����DS����� For any
symmetric matrix M � let ���M � denote the largest eigenvalue of M � De	ne

��D� 
� ���S
����DS���������

The diagonal matrix D
��D� is invariant under scalar multiplication� So the �ETP� can

be formulated as

Minimize ��D�����

subject to trace�D� � �� �D � �����

We note from ��� that ��D� is the composition of the convex function �� and the
linear function S����DS����� and hence is still convex� The equality constraint in
��� can easily be removed by de	ning� for example� dn � ��

Pn��
i�� di� The �ETP� is

equivalent to

Minimize ���d�� � � � � dn�������

subject to �di � ��
n��X
i��

di � � � ����

where

���d�� � � � � dn��� 
� �

�
d�� � � � � dn��� ��

n��X
i��

di

�
����

It is worth mentioning that one may replace the square root matrix S��� in the above
discussion by the Cholesky factor L of S and form a similar problem�
Our second reformulation comes from the observation that S �D � � if and only

if

��D� 
� ���D � S� � �����

Thus the �ETP� may also be expressed as

Minimize �trace�D������

subject to ��D� � �� �D � ������

Once again� we note that ��D� is a convex function�
Both reformulations involve some eigenvalue inequalities�
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���� Subgradient�

A particular di�culty associated with eigenvalue optimization problems is that
the eigenvalues of a di�erentiable matrix function are not themselves di�erentiable
at points where they coalesce� Furthermore� it has been observed quite so often
that at an optimal solution the eigenvalues coalesce ����� To overcome this di�culty
we can employ special techniques developed in� for example� ���� ���� For convex
programming problems� however� there are simple and e�ective algorithms that do
not require smooth constraints or di�erentiable objectives� For the above �ETP� in
particular� the notion of subdi�erential is easy to be implemented�
Given a convex function f 
 Rn �� R� any vector g � Rn such that

f�z� � f�x� � gT �z � x� for all z��
�

is called a subgradient of f at x� A basic result of convex analysis is that every
convex function always has at least one subgradient at every point� The notion of
subgradients has an important implication� That is�

f�z� � f�x� whenever gT z � gTx�����

Thus if we want to reduce the values of f and if we know a subgradient g of f at x�
then we only need to consider variables in the half�space

H�x� g� 
� �z � RnjgT �z � x� � �� �����

The di�culty associated with the constraint �
� is that it is not clear how to
express the positive semi�de	nite constraints explicitly with m smooth and convex
inequalities �i�D� � � where m is small� Discussion for this class of constraints
can be found� for example� in ��� �� �� ��� ���� One naive way of representing �
�
is that all its principal minors are non�negative� Such an expression� however� is
very expensive� Fletcher has tried to depict the normal cone ��� Formula ������ by
approximated algebraic conditions� The implementation then involves some tailored
SQP techniques� In contrast� by reformulating the problem the subgradients of either
��D� or ��D� are very easy to compute as will be illustrated below�
Let A�D� denote either the matrix S����DS���� or the matrixD�S� The partial

derivatives

Ak�D� 
�
�A�D�

�dk
����

are trivial to compute� The following result has been proved in ���� Theorem ���
Theorem ���� Suppose ���A�D�� has multiplicity t� Let columns of Q��D� 
�

�q��D�� � � � � qt�D�� be a corresponding orthonormal basis of eigenvectors� Then the
subgradients of ���A�D�� form the set

����A�D�� � fg � Rn j gk � hU�Q��D�
TAk�D�Q��D�i�

for some U � Rt�t� U � UT � U � �� trace�U� � �� �����

In particular� regardless of the multiplicity� we have
Corollary ���� Let q�D� be any normalized eigenvector of ���A�D��� Then the

vector g � �g�� � � � � gn�
T with

gk 
� q�D�TAk�D�q�D�����
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is a subgradient of ���A�D���
Without causing any ambiguity� we use the same notation �f�x� to denote any

subgradient of f at x� Let q�D� denote a normalized eigenvector of the corresponding
A�D�� we have

���D� �
�
S����q�D�

�
�
�
S����q�D�

�
�����

���D� � q�D� � q�D������

����D� � T���D��
��

where � denotes the Hadamard product and T is the �n� ��� n constant matrix

T 
�

�
����
� � � � � � ��
� � ��
���

� � �
���

� � ��

	



� �

���� Ellipsoid Method�

We brie�y describe the ellipsoid method for a general convex programming prob�
lem

Minimize ��x��
��

subject to ��x� � ���

�

The method was 	rst proposed by Shor �
�� and is best known for being adapted
by Khachiyan ���� to prove the polynomial time solvability of linear programming
problem� More details can be found� for example� in �
� �
��
An ellipsoidE � Rn can best be characterized by a vector a � Rn and a symmetric

and positive de	nite matrix B � Rn�n in such a way that

E � E�B� a� 
�
�
x � Rnj�x� a�TB���x� a� � �� ��
��

The ellipsoid method generates a sequence of ellipsoids fE�k� � E�B�k�� x�k��g with
decreasing volumes such that

�� E��� contains the feasible minimizer x��

� E�k��� is the ellipsoid of minimum volume �the L�owner�John ellipsoid� that
contains the half�sliced ellipsoid E�k� �H�x�k�� g�k�� where

g�k� 
�

�
���x�k��� if ��x�k�� � ��
���x�k��� if ��x�k�� � ��

�
��

The idea in �
�� is to throw away points that are not helpful in determining the
minimizer x�� So using the property ���� of subgradients� if x�k� is feasible then we
discard all points where objective values are greater than or equal to ��x�k��� and
if x�k� is not feasible then we discard all points which are further guaranteed to be
infeasible�
It turns out that B�k��� and x�k��� can be explicitly described in terms of B�k��

x�k� and g�k�� See� for example� ��
� Formulas ���������
�� or �
� Appendix B�� Thus
a basic ellipsoid algorithm for problem �
�� and �

� can be summarized as follows


Algorithm ���� �Basic Ellipsoid Method�
Given B��� and x��� so that E��� contains a feasible minimizer� do�

�



Compute ��x�k���
If ��x�k�� � ��

Compute any g�k� � ���x�k���

	 
�

q
g�k�

T
B�k�g�k��

g 
� g�k�

�
�

If ��x�k�� � 	 � �� quit�
Else�

Compute any g�k� � ���x�k���

	 
�

q
g�k�

T
B�k�g�k��

g 
� g�k�

� �

b 
� B�k�g�
x�k��� 
� x�k� � b

n�� �

B�k��� 
� n�

n���

�
B�k� � �

n��bb
T
�
�

If ��x�k�� � � and 	 � 
� stop�
A nice feature of the ellipsoid method is that

vol�E�k����

vol�E�k��
�

�

n

n� �

�n��

n

n� �
�n��� �

�

� e
��
�n ��
��

Thus the ellipsoid method always converges �but slowly�� It should be noted� how�
ever� that in 	nite precision arithmetic roundo� error will almost invariably cause the
computed matrixB�k� to become inde	nite� Consequently� the quantity 	 may not be
a real number� Fortunately� this numerical unstability can be remedied by updating�

instead of B�k�� the factor of B�k� � J �k�J �k�
T
� In this way� the square root is avoided�

The modi	ed algorithm is as follows

Algorithm ���� �Modi�ed Ellipsoid Method�

Given B��� � J ���J ���
T
and x��� so that E��� contains a feasible minimizer� do�

Compute ��x�k���
If ��x�k�� � ��

Compute any g�k� � ���x�k���

	 
� kJ �k�Tg�k�k�
g 
� J�k�T g�k�

�
�

If ��x�k�� � 	 � �� quit�
Else�

Compute any g�k� � ���x�k���

	 
� kJ �k�Tg�k�k�
g 
� J�k�T g�k�

� �

b 
� J �k�g�
x�k��� 
� x�k� � b

n�� �

J �k��� 
� np
n���J

�k�
�
I � ��	

q
n��
n�� �gg

T
�
�

If ��x�k�� � � and 	 � 
� stop�
Furthermore� the J �k� can be taken to a lower triangular matrix �the Cholesky

factor� and hence a lower triangular J �k��� can be obtained at the mild cost of O�n��
operations� More details can be found in �
� Section ���
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As is seen� the ellipsoid method requires only the evaluation of function values
and any one �of the possibly many� subgradients of functions� On the other hand�
Corollary 
�
 shows how convenient a subgradient for either ��D� or ��D� can be
calculated� Thus the ellipsoid method is readily applicable to the �ETP� in either the
form ��� and ��� or the form ���� and �����

�� Second Approach�

���� Barrier Function� Let �i�D� denote the i
th eigenvalue of S�D� Consider

the function

��D� 
�
nX
i��

ln
�

�i�D�
�

nX
i��

ln
�

di
�
��

Since the logarithm is unde	ned for non�positive arguments� the function � is de	ned
only for strictly feasible D in �
�� For computational purpose� we may write � as

��D� � ln det�S �D��� � ln detD����
��

The idea of introducing the so called barrier function � is that its level curves should
be reasonable approximations to the boundary of the feasible domain �
�� For a 
�

dimensional example where S �

�
�

p
�p
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�
� the boundary of the feasible domain

and the level curves of � are plotted in Figure ��
We 	rst derive formulas for the gradient r��D� and the Hessian r���D�� More

general results can be found in ��� ����
Lemma ���� The gradient vector of ��D� is given by

r��D� � diag
�
�S �D��� �D��

�
��
��

Proof� The derivatives of the second term in �
�� is trivial� So the only concern
is the partial derivative of the 	rst term ��D� � lndet�S �D���� It is a well known
fact that if a matrix M has columns �m�� � � � �mn�� then

d

dx
detM � det

�
d

dx
m��m�� � � � �mn

�
� � � �� det

�
m��m�� � � � �

d

dx
mn

�
�

It follows that

�

�di
��D� � � �

det�S �D�

�

�di
det�S �D�

�
�ii�S �D�

det�S �D�

where �ij�M � denotes the cofactor of the elements mij of the matrix M � Recall the
fact that

�adjM �M � �detM �I

where

adjM 
� ��ij�M ��
T �

�
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The assertion follows�
Lemma ���� The Hessian matrix H�D� of ��D� is given by

H�D� � �S �D��� � �S �D��� �D�� �D����
��

Proof� Let �i denote the square unit matrix whose only non�zero entry with value
� is at the �i� i� position� From Lemma ���� we may rewrite

�

�di
��D� � h�S �D�����ii

where

� M�N �
� traceMNT �
nX
i��

nX
j��

mijnij

denotes the Frobenius inner product of two matrices M and N � The second order
derivative can now be conveniently calculated as follows


��

�dj�di
��D� � h �

�dj
�S �D�����ii

� h�S �D����j�S �D�����ii
� h�j�S �D���� �S �D����ii�

�



In the last equality above� we have used the facts that

hPM�N i � hM�PTN i

and that S �D is symmetric�
We note from the well known Schur product theorem ���� Theorem ������ that

H�D� is positive de	nite if D is feasible� which also shows that the function � is
strictly convex over the feasible domain�

���� Inner Ellipsoid�

We have mentioned that the boundary of the feasible domain �
� can be ap�
proximated by the level curves of �� In this section we describe how the latter can be
approximated by inscribed ellipsoids determined by the Hessians of �� More precisely�
we have the following theorem where� in relation to the iteration that will be referred
to in section ���� we denote the current iteration by the superscript �c� and the next
iteration by ����

Theorem ���� Suppose D�c� is a strictly feasible point with respect to ���� Then
every diagonal matrix D��� with d��� from the ellipsoid E�H�D�c����� d�c�� is also
strictly feasible�

Proof� Denote � 
� D��� � D�c� and 
 � diag���� By Lemma ��
 and the
de	nition in �
��� we have


T
�
�S �D�c���� � �S �D�c����

�

 � 
T

�
D�c��� �D�c���

�

 � ������

Consider the second term in ���� 	rst� Since both �S � D�c���� � �S � D�c����

and D�c��� �D�c��� are positive de	nite� we have


T
�
D�c��� �D�c���

�

 � ��

It follows that

j
ij � d
�c�
i

for each i� This shows that D��� � ��
To show that S �D��� � �� we observe that

�S �D�c���
�
� �S �D�����S �D�c���

�
� � I � �S �D�c���

�
���S �D�c���

�
� �

Thus it su�ces to show that

k�S �D�c���
�
���S �D�c���

�
� k�F � ������

But ���� follows from the observation that

k�S �D�c���
�
���S �D�c���

�
� k�F

� h�S �D�c���
�
���S �D�c���

�
� � �S �D�c���

�
���S �D�c���

�
� i

� h�S �D�c��������S �D�c����i
� 
T

�
�S �D�c���� � �S �D�c����

�

 � �

whereas the last inequality follows from the 	rst term in �����

�



���� Analytic Center�

Being strictly convex over the the feasible domain �
�� the barrier function ��D�
has a unique minimizer �D� Such a point is called the analytic center of �� From
Lemma ��� we see that �D must satisfy the equation

r�� �D� � diag�S � �D��� � �D�� � ����
�

The analytic center can be computed by a Newton method with damping ��� ���

Algorithm ���� �Nesterov and Nemirovsky�s Method�
Given any initial point D��� that is feasible� do�
Compute r��D�k�� and H�D�k���

Solve H�D�k��
�
� � � r��D�k���

� 
� k�k�
If � � �

� �

��k� 
� ��
Else�

��k� 
� �
��� �

Solve H�D�k��
�k� � ���k�r��D�k���
D�k��� 
� D�k� �Diag�
�k���
It can be proved that the damping factor ��k� results in D�k��� being feasible �����

Iterations illustrating the above iteration for the matrix S �

�
�

p
�p

� 


�
are plotted

in Figure �� Together with the notion of inner ellipsoids mentioned in Theorem ����
the analytic center serves as a good starting point for the so called Dikin�s method�

���� Dikin�s Method�

Suppose D�c� is a feasible point� Dikin�s method ��� amounts to approximating
the �ETP� locally by the following subproblem

Maximize eT d�����

subject to d � E�H�D�c����� d�c������

where d�c� � diag�D�c�� and e 
� ��� � � � � ��T �
Optimizing linear objective function over ellipsoids is easy� In fact� it can be

proved that ��
� Page ���
Lemma ���� For p 
� �� the maximal value of pTx subject to the condition

x � E�B� a� occurs at

x� 
� a�
�p
pTBp

Bp�����

Thus a basic Dikin�s algorithm can be stated as follows

Algorithm ���� �Basic Dikin�s Method�
Given x��� � Rn strictly feasible� do�
If S �Diag�x�k�� is singular�

Stop�
Else�

Solve H�Diag�x�k���b � e for b�
x�k��� 
� x�k� � �p

eT b
b�

Clearly� using ����� Dikin�s method is extremely easy to be implemented� It should
be cautioned� however� that the afore�mentioned stopping criterion is not su�cient

	



for ensuring that trace�D� is maximized when the algorithm stops� Theorem ���
guarantees that x�k� is strictly feasible and hence S � Diag�x�k�� is never singular
in exact arithmetic� However� in �oating point arithmetic� one has to settle the
singularity �as well as the rank� of a matrix for an eigenvalue �or a singular value�
that is less than a prescribed tolerance� A usual choice of tolerance for zero is 
kSk
where 
 is the machine dependent �oating point relative accuracy� For this reason it
is possible that the algorithm may stop at a point where S �D is numerically semi�
de	nite yet trace�D� may have not reached its maximal value� Indeed� one di�culty
in implementing Dikin�s method is that� in contrast to the ellipsoid methods� there
is no general stopping criterion ����� To reduce the risk of hitting boundaries of the
feasible domain too soon� we 	nd it is a good idea to start out the Dikin�s method
from a point that is most interior to the feasible domain� Our numerical experiences
seem to indicate the analytic center� for example� is always a good starting point�

�� Numerical Experiment�

We have applied the algorithms discussed in this paper to solve the set of edu�
cational testing problems given by Woodhouse �

�� The Woodhouse data set is in
general an N �m matrix X � �xij� where xij gives the score of student i on subject
j� Test problems are generated by selecting various subsets of columns for form the
matrix S� More precisely� let v � fv�� � � � � vng with n � m denote the subset of
column indices being considered� Then S � Sv � �sij� is the n � n matrix generated
by

sjk 
�
�

N � �
NX
i��

�
xivj � xvj

�
�xivk � xvk�����

where xj �
PN

i�� xij�N is the column mean�
Our results are compared against those given by Fletcher ��� where a speci	c

�� � 
� matrix X is used ��� 

� � The computations have been carried out by
MATLAB on a DECstation �����
��� We should point out that the e�ciency of the
basic algorithms described in the paper can be greatly improved by taking into account
more careful programming details� Nevertheless� even with the simple version� our
results show that the methods are e�ective and reliable�
We 	rst compute the analytic center� For simplicity� the starting point D��� of

Algorithm ��� for every test case is taken to be

D��� 
� ����n�S�I����

where �n is the smallest eigenvalue of the underlying S� The iteration stops when
the 
�norm of the di�erence between consecutive iterates is less than 
kSk where 

is the machine dependent �oating point relative accuracy and is � 
�

�� � �����
in our case� In Table � we list the column indices used to generate the matrix S�
the analytic centers and the number of iterations needed for convergence� So as to
	t the data comfortably in the running text� we display all the numbers with only
four decimal digits� It should be pointed out that Algorithm ��� eventually become
quadratically convergent� As a matter of fact� Nesterov and Nemirovsky even provide
a sharp bound on the number of iterations required to compute the analytic center
within a given accuracy�
Using the analytic center as the starting point� we tabulate in Table 
 the optimal

solutions computed from Algorithm ��
 and the number of iterations required for

�
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Dikin�s method� The matrix S�Diag�x�k�� is assumed to be singular if the minimum
eigenvalue of S � Diag�x�k�� is less than 
kSk� We indicate earlier that quite often
at the optimal solution the eigenvalues coalesce� This is evidenced in Table 
 by
the multiplicity of the eigenvalue � at the optimal solution� Using the same analytic
center as the starting point� we also have applied Algorithm 
�
 to solve the �ETP� in
the form of ��� and ���� Table � provides information similar to Table 
� We observe
that the ellipsoid method is notably slow in convergence�
In certain cases� we 	nd our results are di�erent from Fletcher�s results ��� by

a substantial discrepancy that is beyond what should be if the correct answer is
rounded to four or 	ve digits� The 
�norm of the discrepancy is also recorded in
Table 
 and � where the number inside the parentheses is the exponent in base ���
We note particularly the case v � f�� � � � � ��g where Fletcher�s result is wrong in
that d	 and d
 were transposed� Since it has been noted that Glunt ���� was able
to reproduce Fletcher�s results by using the alternating projection method� it seems
to imply that our algorithms are not reliable� However� we should point out that
Glunt has only reported on the relative discrepancy� When comparing the absolute
discrepancy� Glunt�s results seem to have the worst accuracy among the four numerical
methods as will be exempli	ed below� On the other hand� since our two methods agree
more closely with each other than with Fletcher�s results� it also seems to imply that
our results should be trustworthy� This paradox is even more perplexing when one
examine the result for the case v � f�� 
� �� �g carefully  The 	rst result in Table �
agrees closely with Fletcher�s result� and the one in Table 
 does not� This suggests
one of the methods may have failed�
In an attempt to resolve the above enigma� we list in Table � the computed

solution D in all available digits �Fletcher�s and Glunt�s results are available only up
to � digits from the literature�� We then calculate all eigenvalues of the corresponding
matrix S �D in Table ��
As can be seen� Fletcher�s result gives rise to a small negative eigenvalue which

should be theoretically zero� The magnitude in the order of ���� is expectable given
the fact Fletcher has only reported � digits of accuracy� The ellipsoid method produces
a result that is close to Fletcher�s� except that a smaller negative number in the order
of ����� is taken to be the zero eigenvalue� The threshold for determining singularity
in this case is 
kSk � ��
���� ������ So in our view the ellipsoid method has carried
out its best possible accomplishment�
Dikin�s method� on the other hand� produces a substantially di�erent result in

this case� We 	rst observe that the feasibility is maintained since the zero eigenvalue
of S �D is approximated by a small positive quantity or order ������ If we assume
that the true solution to the �ETP� is better approximated by the ellipsoid method
than by Fletcher�s method� then it is rather surprising to see that the component�
wise maximal discrepancy between the matrices D generated by the ellipsoid method
and by Dikin�s method is as large as � ������� While the ellipsoid method gives a
slightly larger objective value trace�D� � ���
�������������� ��� by violating the
feasible constraints within the machine precision� Dikin�s method ensures feasibility
by returning a slightly smaller objective value trace�D� � ���
�������������� ����
From this viewpoint� it is truely di�cult to judge which method is most satisfactory�
Apparently this proves that 	nding the exact solution to the �ETP� is a very delicate
task� Fortunately� as far as its application in statistics is concerned� the objective
value trace�D� usually does not require very high accuracy ����
In fact� we have checked all �
 test cases and observed that Dikin�s method did

��
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not give negative eigenvalues for any of the test problems while the other two method
do sometimes give small negative eigenvalues with Fletcher�s in the order of ���� to
���	 and the ellipsoid method in the order of ����� to ������ Another interesting
observation� as is demonstrated in Table � for the case v � f�� � � � � �
g� is that the
coalescent zero eigenvalues resulted fromDikin�s method usually cluster together while
those from the ellipsoid method spread over a wider range�
Finally� we point out that Glunt�s method converges linearly and usually returns

values in the order of ���� as the zero eigenvalue� It is not clear how long Glunt�s
method will take to reach the same accuracy as that of the ellipsoid method or Dikin�s
method�
It is remarkable that Dikin�s method can obtain convergence quite rapidly� even

for the 
��
� test case� We do not completely understand the theory of convergence
for Dikin�s method� For the time being� we can only refer readers to the recent review
article ���� and the many references contained therein� In particular� we are aware of
the long step version of the Dikin�s method in which the next iterate is determined
by taking a 	xed fraction � � ��� 
��� of the whole step to the boundary of the inner
ellipsoid� �See ���� and Algorithm ��
�� Global convergence for the long step version
of Dikin�s method applied to degenerate linear programming problems can be proved
����� The proof probably needs substantial modi	cation for our problem� On the
other hand� by using the long step version� i�e��

x�k��� 
� x�k� �

��p
eT b

b�

��



we 	nd that the inconsistency mentioned above between Algorithm 
�
 and ��
 for the
case v � f�� 
� �� �g is 	xed� con	rming that the result from the ellipsoid method is
better� nevertheless� the substantial discrepancy between Fletcher�s results and ours
for the cases v � f�� 
� �� �� ���g and v � f�� � � � � ��g still prevails�
We mention earlier that Dikin�s method maintains the feasibility throughout the

iteration� We demonstrate the convergence behavior of the ellipsoid method in Fig�
ure 
 and Figure �� Figure 
 demonstrates the history of the 	rst ��� iterations for the
case v � f�� 
� �� �� �� ��g� Since the optimal solution occurs at the boundary d� � ��
conceivably the centers of the ellipsoids will often fall outside the feasible domain�
When this happens� a constraint iteration where the subgradient is taken from the
constraints �rather then the objective function� must take place� This is recorded in
Figure 
 by the symbol �� Figure � demonstrates the history of the 	rst ��� iterations
for the case v � f�� 
� �� �����g� Since the optimal solution is strictly interior to the
feasible domain� we see that the constraint iteration occurs only at the beginning� It
is clear that the ellipsoid method is not necessarily a descent method for the objective
function �
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