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Abstract. In various applications, data in multi-dimensional space are normalized to unit length. This paper
considers the problem of best fitting given points on the m-dimensional unit sphere Sm−1 by k-dimensional great
circles with k much less than m. The task is cast as an algebraically constrained low-rank matrix approximation
problem. Using the fidelity of the low-rank approximation to the original data as the cost function, this paper
offers an analytic expression of the projected gradient which, on one hand, furnishes the first order optimality
condition and, on the other hand, can be used as a numerical means for solving this problem.
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1. Introduction. Given n points on the unit sphere Sm−1 in Rm, we concern ourselves
in this paper with the question of best fitting these points by a “great circle” which is understood
to mean the intersection of Sm−1 with a certain k-dimensional subspace of Rm. Because the
approximation is by points restricted to Sm−1, we are not dealing with an ordinary data fitting
problem. Denoting the given points as rows of a data matrix A, the task of best fitting can be
recast as a constrained low-rank matrix approximation problem as follows:

Given a matrix A ∈ Rn×m whose rows are of unit length, find an approximation

matrix Z ∈ Rn×m of A whose rows are also of unit length, but rank(Z) = k where

k < min{m,n}.

Structured low-rank approximation problems arise in many important applications [3, 4, 13,
24, 33]. Some basic theory and computation schemes, including a generic alternating projection
algorithm and a robust equality constrained optimization formulation, can be found in a recent
article [9] by the first author and the references contained therein. The structure in our current
problem assumes the form that each row of Z has unit length. A similar setting appears in an
application to designing structured tight frames [34] where the alternating projection method
is used as an effective tool. When the row number n is much larger than the rank k, however,
reformulations of this problem as the two schemes proposed in [9] would involve significant amount
of redundancies in the constraints which, in turn, might cause computational difficulties. The
approximation obtained by a linear combination of concept vectors generated by the spherical
k-means method [14], on the other hand, lacks the normalization and is limited only to the
subspace spanned by the concept vectors. In this paper we propose using the projected gradient
approach as an alternative means to tackle the problem. Three types of measurement of best
fitting will be used and their results will be compared.

The need of normalizing data before approximations can be performed emerges from many
applications. See, for example, the book [12] about pattern classification, the monograph [21]
and the vast literature on principal component analysis, the required goal in positive matrix
factorization [26], and the spherical k-means method for concept mining in [14]. It might be
illuminating to brief readers by some simple examples of why such a normalized low-rank ap-
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†Dipartimento di Matematica, Università degli Studi di Bari, Via E. Orabona 4, I-70125 Bari, Italy. (del-
buono@dm.uniba.it)
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proximation problem is of importance in practice. To set the stage, let Y = [yij ] ∈ Rn×` denote
the matrix of “observed” data. The entry yij represents, in a broad sense, the standard score

obtained by entity j on variable i. By a standard score we mean that a raw score per variable has
been normalized to have mean 0 and standard deviation 1. After this normalization, the matrix

R :=
1

`
Y Y >, (1.1)

represents the correlation matrix of all n variables. Note that rii = 1 and |rij | ≤ 1 for all
i, j = 1, . . . n. In a linear model, it is assumed that the score yij is a linearly weighted score by
entity j based on several factors. We shall temporarily assume that there are m factors, but it
is precisely the point that the factors are to be retrieved in the mining process. A linear model,
therefore, assumes the relationship

Y = AF, (1.2)

where A = [aik] ∈ Rn×m is a loading matrix with aik denoting the influence of factor k on

variable i, and F = [fkj ] ∈ Rm×` is a scoring matrix with fkj denoting the response of entity j
to factor k. Depending on the application, often only a portion of the matrices in equation (1.2)
is known and the goal is to retrieve the remaining information. The linear model (1.2) can have
different interpretations. We sketch two scenarios below.

Scenario 1. Assume that each of the ` columns of the observed matrix Y represents the
transcript of a college student (an entity) at the end of freshman year on n fixed subjects (the
variables). It is generally believed that a college freshman’s academic performance depends on a
number of preexistent factors. Upon entering the college, each student could be asked to fill out
a questionnaire inquiring his or her backgrounds (scores) with respect to these factors. These
responses are placed in the corresponding column of the scoring matrix F . What is not clear to
the administrators in the first place is how to choose the factors to compose the questionnaire
or how each of the chosen factors would be weighted (the loadings) to reflect their effect on each
particular subject. In practice, we usually do not have a priori knowledge about the number and
character of underlying factors in A. Sometimes we do not even know the factor scores in F .
Only the data matrix Y is observable. Explaining the complex phenomena observed in Y with
the help of a minimal number of factors extracted from the data matrix is the primary and most
important goal of factor analysis.

To collectively gather students’ academic records from wide variations (of grading rules and
difficulties of subjects) for the purpose of analyzing some influential factors in A, it is essential
that all these scores should be evaluated on the same basis. Otherwise, the factors cannot be
correctly revealed. Statistically, the same basis of scores means the standardization (of rows)
of Y . For our purpose, it is reasonable to assume that all sets of factors being considered are
uncorrelated with each other. (See [21] for the case of stochastic independence.) As such, rows
of F should be orthogonal to each other. We should further assume that the scores in F for
each factor are normalized. Otherwise, one may complain that the factors being considered
are not neutral to begin with and the analysis would be biased and misinformed. Under these
assumptions, we have

1

`
FF> = Im, (1.3)

where Im stands for the identity matrix in Rm×m. It follows that the correlation matrix R can
be expressed directly in terms of the loading matrix A alone, i.e.,

R = AA>. (1.4)
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Factor extraction now becomes a problem of decomposing the correlation matrix R into the
product AA> using as few factors as possible [18]. Due to the normalization we point out that

the rows of A always are of unit length.

The kth column of A may be interpreted as correlations of the data variables with that
particular kth factor. Those data variables with high factor loadings are considered to be more
influenced by the factor in some sense and those with zero or near-zero loadings are treated
as being unlike the factor. The quality of this likelihood, indicating the significance of the
corresponding factor, is measured by the norm of the kth column of A. One basic idea in factor
analysis is to rewrite the loadings of variables over some newly selected factors so as to manifest
more clearly the correlation between variables and factors [17, 21]. Those factors with smaller
significance are likely to be dropped to reduce the number of effectual factors. This notion of

factor reduction amounts to a low-rank approximation of A.

Scenario 2. Assume now that the textual documents are collected in an indexing matrix

H = [hik] in Rn×m. Each document is represented by one row in H. The entry hik represents
the weight of one particular term k in document i whereas each term could be defined by just one
single word or a string of phrases. A natural choice of the weight hik is by counting the number
of times that the term k occurs in document i. Many more elaborate weighting schemes that
yield better performance have been devised in the literature. See, for example, lists in [23, 28]
and comparisons in [31]. One commonly used term-weighting scheme to enhance discrimination
between various documents and to enhance retrieval effectiveness is to define

hik = tikgkni, (1.5)

where tik captures the relative importance of term k in document i, gk weights the overall
importance of term k in the entire set of documents, and

ni =

(

m
∑

k=1

tikgk

)−1/2

(1.6)

is the scaling factor for normalization. The normalization by (1.6) is necessary because, otherwise,
one could artificially inflate the prominence of document i by padding it with repeated pages or
volumes. After the normalization, one sees that the rows of H are of unit length.

One usage of the indexing matrix is for information retrieval, particularly in the context of
latent semantic indexing (LSI) application [2, 16]. Each query is represented as a column vector
q>j = [q1j , . . . , qmj ] in Rm where qkj represents the weight of term k in the query j. Similar to
(1.5), more elaborate schemes can also be employed to weight terms in a query. To measure how
the query qj matches the documents, we calculate the column vector

cj = Hqj (1.7)

and rank the relevance of documents to qj according to the scores in cj .
To put the notation in the context of linear model (1.2), we observe the follow analogies

between the two examples:

indexing matrix H ←→ loading matrix A

document i←→ variable i

term k ←→ factor k

one query qj ←→ one column in scoring matrix F

weight hik of term k in document i←→ loading aik of factor k on variable i

weights qkj of term k in query qj ←→ response fkj of entity j to factor k

rank cij of document i in query qj ←→ score yij of variable i in entity j

3



It is important to note the different emphasis in the two examples. In Scenario 1 the data
matrix Y is given and the factors in A are to be retrieved while in Scenario 2 the terms in the
indexing matrix H are predetermined and the scores cj are to be calculated.

The computation involved in the LSI application is more on the vector-matrix multiplication
(1.7) than on factor retrieval, provided that H is a “reasonable” representation of the relationship
between documents and terms. In practice, however, the matrix H is never exact nor perfect.
How to represent the indexing matrix and the queries in a more compact form so as to facilitate
the computation of the scores therefore become a major challenge in the field [14, 27]. One
idea, with the backing of both statistical analysis [7] and empirical testing [2], is to represent H
by its low-rank approximation. A constrained low-rank approximation problem therefore arises.
We shall point out in our numerical examples that the fidelity to H by merely normalizing a
truncated singular value decomposition is not as high as what our method can achieve.

One final point connecting Scenario 1 to Scenario 2 is worth mentioning. It is plausible that
once we have accumulated enough experiences C = [c1, . . . , c`] from queries q1, . . . ,q`, we should
be able to employ whatever factor retrieval techniques developed for Scenario 1 to reconstruct
terms (factors) for Scenario 2. That is, after the standardization of the scores, the information
gathered in C may be used as a feedback to the process of selecting newer and more suitable H.
Recall from (1.4) that no reference to the queries is needed. This learning process with feedback
from C can be iterated to reduce and improve the indexing matrix H.

2. Low Rank Approximation. The linear model (1.2) can have a much broader in-
terpretation than the two applications we have demonstrated. Its interpretation in Scenario 1
for factor analysis manifests the critical role that the loading matrix A will play. Our low-rank
approximation problem means the need to retrieve a few principal factors to represent the origi-
nal A. Likewise, the interpretation in Scenario 2 for the information retrieval suggests that the
indexing matrix H is playing an equally important role as the loading matrix A. Our low-rank
approximation problem in the context of LSI means the need to derive an approximation of H
to allow fast computation. In this section, we introduce a notion that can be employed to deal
with this algebraically constrained low-rank approximation problem.

The quality of the approximation by a lower rank matrix Z to A can be measured in different
ways. In the following, we shall describe three kinds of measurements and use them to form our
objective functions. For convenience, the notation diag(M) henceforth refers to the diagonal
matrix of the matrix M .

2.1. Fidelity Test. Considering A as the indexing matrix in the LSI, one way to infer
whether Z is a good (but low-rank) representation of A is to use documents (rows) in A as queries
themselves to inquire about document information from Z. If the document-term relationships
embedded in Z adhere to those in A, then the scores of the query qj applied to Z, where q>

j

is the j-th row of A, should point to the most relevant document j. It should be so for each
j = 1, . . . , n. In other words, in the product ZA> the highest score per column should occur
precisely at the diagonal entry. This notion of self-examination is referred to as the fidelity test
of Z to A.

Ideally, the fidelity test should product the maximum value 1 along the diagonal. Since the
indexing matrix A is never perfect, we may as well be settled with the collective effect for the sake
of easy computation. We say that the approximation Z remains in “good” fidelity to the original
A if the trace of ZA> is sufficiently close to trace(AA>) = n. This low-rank approximation
problem therefore becomes the problem of maximizing

trace(ZA>) = 〈Z,A〉, (2.1)

where 〈M,N〉 stands for the Frobenius inner product of matrices M and N in Rn×m. The
objective, in short, is to maximize the fidelity of Z to A while maintaining its low rank.
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In order to characterize the properties that the matrix Z is of rank k with unit-length rows,
we introduce the parametrization that

Z =
(

diag
(

USS>U>
))−1/2

USV >, (2.2)

where U ∈ On, S ∈ Rk, V ∈ Om, and On denotes the group of orthogonal matrices of size n×n.
The task now is equivalent to maximizing the functional

F (U, S, V ) := 〈
(

diag
(

USS>U>
))−1/2

USV >, A〉, (2.3)

subject to the orthogonal conditions of U and V . In the above, we have used the same symbol
S ∈ Rk to denote, without causing ambiguity, the “diagonal matrix” in Rn×m whose first k

diagonal entries are those of S. Observe that by limiting S to Rk, the rank of the matrix
X = USV > ∈ Rn×m is guaranteed to be at most k, and is exactly k if S contains no zero entry.

The Fréchet derivative of F at (U, S, V ) acting on any (H,D,K) ∈ Rn×n ×Rk ×Rm×m can
be considered as the sum of three operations,

F ′(U, S, V ).(H,D,K) =
∂F

∂U
.H +

∂F

∂S
.D +

∂F

∂V
.K, (2.4)

where the operation Λ.η denotes the result of the action by the linear operator Λ on the η. For
convenience, define

α(U, S) :=
(

diag
(

USS>U>
))−1

. (2.5)

We now calculate each action in (2.4) as follows.
First, it is easy to see that

∂F

∂V
.K = 〈α(U, S)1/2USK>, A〉. (2.6)

Using the property that

〈MN,P 〉 = 〈M,PN>〉 = 〈N,M>P 〉 (2.7)

for any matrices M , N and P of compatible sizes, it follows from the Riesz representation theorem
that, with respect to the Frobenius inner product, the partial gradient can be represented as

∂F

∂V
= A>α(U, S)1/2US. (2.8)

Observe next that

∂F

∂S
.D = 〈α(U, S)1/2UDV >, A〉+ 〈

(

∂α(U, S)1/2

∂S
.D

)

USV >, A〉. (2.9)

By the chain rule we have

∂α(U, S)1/2

∂S
.D =

1

2
α(U, S)−1/2

(

−α(U, S)diag
(

UDS>U> + USD>U>
)

α(U, S)
)

= −
1

2
α(U, S)3/2diag

(

UDS>U> + USD>U>
)

, (2.10)

where we have used the fact that diagonal matrices are commutable. Denoting the diagonal
matrix

ω(U, S, V ) := α(U, S)3/2diag
(

AV S>U>
)

, (2.11)
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and taking advantage of the fact that 〈M,diag(N)〉 = 〈diag(M),diag(N)〉, the action in (2.9)
can be expressed as

∂F

∂S
.D = 〈D,U>α(U, S)1/2AV 〉 −

1

2
〈UDS>U> + USD>U>, ω(U, S, V )〉

= 〈D,diag
(

U>α(U, S)1/2AV
)

〉 − 〈D,diag
(

U>ω(U, S, V )US
)

〉. (2.12)

We thus conclude that

∂F

∂S
= diagk

(

U>α(U, S)1/2AV
)

− diagk
(

U>ω(U, S, V )US
)

, (2.13)

where, for clarity, we use diagk to denote the first k diagonal elements and to emphasize that the
partial gradient ∂F

∂S is in fact a vector in Rk.
Finally,

∂F

∂U
.H = 〈α(U, S)1/2HSV >, A〉+ 〈

(

∂α(U, S)1/2

∂U
.H

)

USV >, A〉, (2.14)

whereas by chain rule again we know that

∂α(U, S)1/2

∂U
.H =

1

2
α(U, S)−1/2

(

−α(U, S)diag
(

HSS>U> + USD>H>
)

α(U, S)
)

= −
1

2
α(U, S)3/2diag

(

HSS>U> + USS>H>
)

. (2.15)

Together, we obtain

∂F

∂U
.H = 〈H,α(U, S)1/2AV S>〉 −

1

2
〈HSS>U> + USS>H>, ω(U, S, V )〉

= 〈H,α(U, S)1/2AV S>〉 − 〈H,ω(U, S, V )USS>〉, (2.16)

and hence

∂F

∂U
= α(U, S)1/2AV S> − ω(U, S, V )USS>. (2.17)

Formulas (2.8), (2.13), and (2.17) constitute the gradient

∇F (U, S, V ) =

〈

∂F

∂U
,
∂F

∂S
,
∂F

∂V

〉

of the objection function F . Because our parameters (U, S, V ) must come from the manifold
On × Rk ×Om, we want to know further the projection of ∇F into the feasible set.

By taking advantage of the product topology, the tangent space T(U,S,V )(On × Rk ×Om) of

the product manifold On × Rk × Om at (U, S, V ) ∈ On × Rk × Om can be decomposed as the
product of tangent spaces, i.e.,

T(U,S,V )(On × Rk ×Om) = TUOn × Rk × TVOm. (2.18)

The projection of ∇F (U, S, V ) onto T(U,S,V )(On × Rk × Om), therefore, is the product of the

projections of ∂F
∂U , ∂F

∂S , and ∂F
∂V onto TUOn, Rk, and TVOm, respectively. Each of the projections

can easily be calculated by using the techniques developed in [8] which we summarize below.
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Observe that any matrix M ∈ Rn×n has a unique orthogonal splitting,

M = U

{

1

2
(U>M −M>U)

}

+ U

{

1

2
(U>M + M>U)

}

, (2.19)

as the sum of elements from the tangent space TUOn and the normal space NUOn. Thus the
projection PTUOn

(M) of M onto TUOn is given by the matrix

PTUOn
(M) = U

{

1

2
(U>M −M>U)

}

. (2.20)

Replacing M by ∂F
∂U in (2.20), we thus obtain the explicit formulation of the projection of ∂F

∂U
onto the tangent space TUOn, that is,

PTUOn
(
∂F

∂U
)=
{

(

XXTω(U, S, V )−ω(U, S, V )XXT
)

+
(

α(U, S)1/2AXT−XATα(U, S)1/2
)} U

2
.

Similarly, the projection of ∂F
∂V onto tangent spaces TVOm can be calculated. The projection of

∂F
∂S onto Rk is just itself. These projections characterize precisely the projected gradient of the
objective function F (U, S, V ) on the manifold On × Rk ×Om.

The explicit formulation of the project gradient serves as the first order optimality condition
that any local solution must satisfy. Many iterative methods making use of projected gradient
for constrained optimization are available in the literature [11, 19]. On the other hand, we find
it most natural and convenient to use the dynamical system,

dU

dt
= PTUOn

(
∂F

∂U
),

dS

dt
=
∂F

∂S
, (2.21)

dV

dt
= PTV Om

(
∂F

∂V
),

to navigate a flow on the manifold On × Rk × Om. The flow, called the fidelity flow for later
reference, moves along the steepest ascent direction to maximize the objective functional F . Since
(2.21) defines an ascent flow by an analytic vector field, by the well-known ÃLojasiewicz-Simon
theorem [6, 25, 30] the flow converges to a single point (U∗, S∗, V∗) of equilibrium at which

Z∗ =
(

diag
(

U∗S∗S
>
∗ U

>
∗

))−1/2
U∗S∗V

>
∗ (2.22)

is locally the best rank k approximation to A subject to constraint of unit row vectors.

2.2. Nearness Test. In the context of LSI, each document is represented by a single
point in the term space Rm. It is natural to evaluate the quality of an approximation Z to A

by measuring how far Z is from A. The low-rank approximation problem therefore becomes the
problem of minimizing the functional

E(U, S, V ) :=
1

2
〈α(U, S)1/2USV > −A,α(U, S)1/2USV > −A〉, (2.23)

subject to the constraints that U ∈ On, S ∈ Rk, and V ∈ Om. This notion of finding low-
rank matrices nearest to the given A is called the nearest test. Nearest low-rank approximation
problems under different (linear) structures have been considered in [9, 14, 27]. By a linear
structure, we mean that all matrices of the same structure form an affine subspace. Our structure,
defined by the requirement that each row is of unit length, is not a linear structure.
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We quickly point out the fact that

1

2
〈Z −A,Z −A〉 =

1

2
(〈Z,Z〉+ 〈A,A〉)− 〈Z,A〉. (2.24)

Note that 〈Z,Z〉 = 〈A,A〉 = n. Therefore, minimizing the functional E(U, S, V ) in (2.23) is
equivalent to maximizing the functional F (U, S, V ) in (2.3). The fidelity test is exactly the same
as the nearest test under the Frobenius inner product.

2.3. Absolute Fidelity Test. The data matrix A in general might contain negative
entries. In this case, cancellations among terms in the trace calculation might inadvertently
reduce the fidelity quality. To prevent cancellation, we might want to consider maximizing the
sum of squares of the diagonal elements of ZA>. The objective functional to be maximized is

G(U, S, V ) :=
1

2
〈diag

(

α(U, S)1/2USV >A>
)

,diag
(

α(U, S)1/2USV >A>
)

〉, (2.25)

subject to the constraints that U ∈ On, S ∈ Rk, and V ∈ Om. We remark in passing that in
a certain sense the absolute fidelity test has the effect of rewarding both anti-correlation and
positive correlation between matrices A and Z. In certain applications, such as identifying genes
with similar functionalities, detecting anti-correlated gene clusters sometimes is as important as
detecting positively correlated genes [15].

Once again, denote the Fréchet derivative of G at (U, S, V ) acting on any (H,D,K) ∈ Rn×n×
Rk × Rm×m as

G′(U, S, V ).(H,D,K) =
∂G

∂U
.H +

∂G

∂S
.D +

∂G

∂V
.K. (2.26)

We can calculate each partial derivative in (2.26) to obtain the gradient ∇G.
For convenience, denote

θ(U, S, V ) := diag
(

α(U, S)1/2USV >A>
)

. (2.27)

Observe that diag(·) is a linear operator, so its derivative is just itself. It follows that

∂G

∂V
.K = 〈α(U, S)1/2USK>A>, θ(U, S, V )〉. (2.28)

Using (2.7) and the fact that diagonal matrices commute, we see that

∂G

∂V
= A>θ(U, S, V )>α(U, S)1/2US = A>α(U, S)diag

(

USV >A>
)

US. (2.29)

Likewise,

∂G

∂S
.D = 〈diag

(

α(U, S)1/2UDV >A>
)

, θ(U, S, V )〉+

+〈diag

((

∂α(U, S)1/2

∂S
.D

)

USV >A>

)

, θ(U, S, V )〉,

whereas the action ∂α(U,S)1/2

∂S .D is already calculated in (2.10). Upon substitution, we obtain

∂G

∂S
.D = 〈D,diag

(

U>α(U, S)1/2θ(U, S, V )AV
)

〉

−
1

2
〈diag

(

UDS>U> + USD>U>
)

, α(U, S)3/2θ(U, S, V )diag
(

AV S>U>
)

〉

= 〈D,diag
(

U>α(U, S)1/2θ(U, S, V )AV
)

〉

−〈D,diag
(

U>α(U, S)3/2θ(U, S, V )diag(AV S>U>)US
)

〉. (2.30)
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We thus conclude that

∂G

∂S
= diagk

(

U>α(U, S)1/2θ(U, S, V )AV
)

−diagk

(

U>α(U, S)3/2θ(U, S, V )diag
(

AV S>U>
)

US
)

. (2.31)

Finally,

∂G

∂U
.H = 〈diag

(

α(U, S)1/2HSV >A>
)

, θ(U, S, V )〉+

〈diag

((

∂α(U, S)1/2

∂U
.H

)

USV >A>

)

, θ(U, S, V )〉.

Substituting the expression of ∂α(U,S)1/2

∂U .H computed in (2.15) and simplifying, we see that

∂G

∂U
.H = 〈H,α(U, S)1/2θ(U, S, V )AV S>〉

−
1

2
〈diag

(

HSS>U> + USS>H>
)

, α(U, S)3/2θ(U, S, V )AV S>U>〉

= 〈H,α(U, S)1/2θ(U, S, V )AV S>〉

−〈H,α(U, S)3/2θ(U, S, V )diag
(

AV S>U>
)

USS>〉

and obtain

∂G

∂U
= α(U, S)1/2θ(U, S, V )AV S> − α(U, S)3/2θ(U, S, V )diag

(

AV S>U>
)

USS>). (2.32)

Formulas (2.29), (2.31), and (2.32) constitute the gradient,

∇G =

〈

∂G

∂U
,
∂G

∂S
,
∂G

∂V

〉

,

of the objection function G in the general ambient space Rn×n × Rk × Rm×m. Similar to the
preceding section, we can express by using (2.20) the projected gradient of G in explicit form
to establish the first order optimality condition. We can also formulate the absolute fidelity flow
that evolves on the manifold On × Rk ×Om to maximize G(U, S, V ).

We conclude this section by pointing out that the formulas of the vector fields discussed
above are not as computationally extensive as they appear to be. Many blocks of expressions
repeat themselves in the formulas whereas all radicals of matrices acquired involve only diagonal
matrices.

3. Compact Form and Stiefel Manifold. The above discussion provides a basis for
computing the low-rank approximation. We must notice, however, that the square matrices are
employed just for the sake of deriving the formulas. A lot of information computed is not needed
in defining Z in (2.2). It suffices to know only a portion of columns of U ∈ On and V ∈ Om,
particularly when the desirable rank k of Z is assumed to be much smaller than m and n. Indeed,
we may write Z precisely in the same way as (2.2), but assume that

U ∈ O(n, k), S ∈ Rk, and V ∈ O(m, k), (3.1)

where

O(p, q) := {Q ∈ Rp×q|Q>Q = Iq} (3.2)

9



denotes the set of all p×q real matrices with orthonormal columns. This set, known as the Stiefel
manifold, forms a smooth manifold [32].

The set O(p, q) enjoys many properties similar to those of the orthogonal group. Upon close
examination, it can be checked that all expressions derived above for the gradients of F (U, S, V )
and G(U, S, V ) remain valid, even if we restrict U to O(n, k) and V to O(m, k). It only remains
to compute the projected gradients onto the Stiefel manifolds. We outline in this section some
main points for this purpose.

Embedding O(p, q) in the Euclidean space Rp×q which is equipped with the Frobenius inner
product, it is easy to see that any vector H in the tangent space TQO(p, q) is necessarily of the
form

H = QK + (Ip −QQ>)W, (3.3)

where K ∈ Rq×q and W ∈ Rp×q are arbitrary, and K is skew-symmetric. Furthermore, the space
Rp×q can be written as the direct sum of three mutually perpendicular subspaces

Rp×q = QS(q)⊕N (QT )⊕QS(q)⊥, (3.4)

where S(q) is subspace of q×q symmetric matrices, S(q)⊥ is the subspace of q×q skew-symmetric
matrices, and N (Q>) := {X ∈ Rp×q|Q>X = 0}. Any M ∈ Rp×q can be uniquely split as

M = Q
Q>M −M>Q

2
+ (I −QQ>)M + Q

Q>M + M>Q

2
. (3.5)

Similar to (2.20), it follows that the projection PO(p,q)(M) of M ∈ Rp×q onto the tangent space
TQO(p, q) is given by

PO(p,q)(M) = Q
Q>M −M>Q

2
+ (I −QQ>)M. (3.6)

Note that in case p = q so that Q is orthogonal, the second term in (3.6) is identically zero and
the above notion is identical to that of (2.20).

We may now project each of the partial gradients calculated in the preceding sections onto
the appropriate Stiefel subspace according to (3.6) and obtain projected gradient flows. The gain
is that the dimensionality is much reduced and the computation is much more cost efficient. For
a given A ∈ Rn×m and a desirable rank k, the gradient flow on the orthogonal group would
involve n2 + k + m2 dependent variables whereas the flow on the Stiefel manifold involves only
(n + m + 1)k variables.

Be cautious that because O(m, k) is a subspace of Om, the projections onto O(m, k) and
Om are different in general. The resulting dynamics of the gradient flows on the manifolds will
behave differently. For computation, we prefer the compacted flows on the Stiefel manifolds.

4. Numerical Experiments. The information of projected gradients can be utilized in
various ways to tackle the low-rank approximation problem. See, for example, the review article
[20] where a variety of Lie group methods, continuous or discrete, have been discussed. For
demonstration purpose, we report in this section some preliminary numerical results from using
the gradient flow approach only. To make a distinction between the two gradient flows related to
(2.3) and (2.25), we further denote the corresponding solutions by ZF and ZG, respectively. For
convenience, we shall employ existing routines in Matlab as the ODE integrators, even though
more elaborate coding, especially the recently developed geometric integrators techniques, might
be more effective. At the moment, our primary concern is to focus more on the dynamical
behavior of the resulting flows than on the efficiency. Lots more can be done to improve the
efficiency.
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The ODE Suite [29] in Matlab contains several variable step-size solvers at our disposal.
Considering the fact that the original data matrix A is not precise in its own right in practice, high
accuracy approximation of A is not needed. We set both local tolerance AbsTol = RelTol = 10−6

while maintaining all other parameters at the default values of the Matlab codes.

Example 1. To visualize the effect of data fitting by great circles, consider the case where
A ∈ Rn×3. These points on S2 can be conveniently represented in R2 by their azimuths θ and
elevations φ. A rank 2 approximation of A corresponds to points on the intersection of S2 with
a plane passing through the origin. The fidelity test is equivalent to finding the nearest great
circle to the original points on S2 in the sense of least squares.

In the left drawing of Figure 4.1, we randomly generate n = 120 uniformly distributed angles
0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. These angles are used as azimuths and elevations to produce the
120 × 3 matrix A. A total of 248 independent variables are involved in the dynamical system
(2.21) to calculate the rank 2 approximation matrix ZF which then is converted into azimuths
and elevations. The resulting more regular pattern (sinuous curve) of the angles for ZF in the
left drawing of Figure 4.1 demonstrates the great circle approximation.

Suppose we limit the elevations to be in between the cones π
6 ≤ φ ≤ π

4 . These rows of A
reside within a circular band in the northern hemisphere. It would be difficult to predict how a
great circle would fit these data. In the right drawing of Figure 4.1, it is interesting to observe
that the azimuths θ on the best great circle approximation are distributed over only half of a
circle.
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Fig. 4.1. Big circle approximation of points on the unit sphere S2.

Example 2. Given a matrix A and a desirable low rank k, it is known that the (globally)
nearest approximation of rank k to A is given by the truncated SVD A(k) of A. However, A(k)

generally does not satisfy the normalization condition. Let Z
(k)
0 denote the row-wise normalized

A(k). This example demonstrates that the normalized TSVD Z
(k)
0 generally does not maintain

the highest fidelity.

Let Z
(k)
∗ denote the (nearly) limit point of the fidelity flow using Z

(k)
0 as the starting value.
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rank k ‖A(k) −A‖2 ‖A(k) −A‖F ‖Z
(k)
0 −A‖F ‖Z

(k)
∗ −A‖F ‖Z

(k)
0 − Z

(k)
∗ ‖F

1 1.5521 2.7426 3.4472 3.3945 0.9227
2 1.4603 2.2612 2.6551 2.5330 2.1866
3 1.3056 1.7264 1.9086 1.8588 0.8085
4 1.1291 1.1296 1.1888 1.1744 0.3341
5 0.0237 0.0343 0.0343 0.0343 5.5969× 10−7

6 0.0183 0.0248 0.0248 0.0248 2.1831× 10−7

7 0.0141 0.0167 0.0167 0.0167 1.1083× 10−7

8 0.0083 0.0089 0.0089 0.0089 6.4180× 10−9

9 0.0034 0.0034 0.0034 0.0034 2, 7252× 10−9

Table 4.1

Comparison of nearness of TSVD and fidelity flow

Table 4.1 compares the distances ‖A(k) − A‖F , ‖Z
(k)
0 − A‖F , ‖Z

(k)
∗ − A‖F , and ‖Z

(k)
0 − Z

(k)
∗ ‖F

of a 10× 10 random matrix A with controlled singular values. For reference, we have also listed
‖A(k) −A‖2 which is known to be the (k + 1)-th singular value of A.

Because
∑10

i=1 σ
2
i = 10, we purposefully control the singular values of A so that five singular

values are relatively larger than the other five. We then notice that the gap ‖Z
(k)
0 − Z

(k)
∗ ‖F is

relatively significant up to k = 4. Since the local tolerance in the ODE integrator is set only at

10−6, the difference between Z
(k)
0 and Z

(k)
∗ is probably negligible when k ≥ 5.

Example 3. We measure the fidelity and the absolute fidelity by the ratios

r(ZF ) =
trace(ZFA

>)

trace(AA>)
=

trace(ZFA
>)

n
, (4.1)

q(ZG) =
‖diag(ZGA

>)‖22
‖diag(AA>)‖22

=
‖diag(ZGA

>)‖22
n

, (4.2)

respectively. The highest attainable value for either r(ZF ) or q(ZG) should be one.
The left drawing in Figure 4.2 represents a typical attainable r(ZF ) of a rank k approximation

ZF to a matrix A of size 120× 50. For each k = 2, . . . , 50, we are solving a dynamical system of
171k many independent variables. These are fairly large-scale dynamical systems when k is large.
Our proposed projected gradient flow approach thus connects to and can benefit from another
interesting research subject — model reduction. See, for example, [1, 5] for an overview and many
other studies in the literature. The right drawing in Figure 4.2 compares the attainable r(ZF )
and q(ZG) to a matrix A of size 200× 50 with rank k = 2, . . . , 14. The plots in Figure 4.2 seem
to suggest that the value of fidelity is an increasing function of k. However, such an observation
is true only because we systematically modify the initial values one column a time. The different
scales along the y-axis in the left and right drawings clearly illustrate the effect of different initial
values for the flows. The initial values for experiments involved in the left drawing are randomly
generated and are very far away from A, while those for experiments in the right drawing are
built to have at least 80% fidelity to A to begin with.

5. Conclusion and Future Work. Motivated by the fact that in many applications
data in high dimensional space are normalized to unit length, this paper touches upon the issue of
best approximation by low dimensional data while maintaining unit length. The problem is cast
as a low-rank matrix approximation subject to row normalization. After proper parametrization
of the feasible set, we offer explicit formulas for the project gradients which can be turned into a
numerical means for computing the approximation.
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Fig. 4.2. Attainable fidelity with various rank values and initial values. Left: A ∈ R
120×50 and random

initial values. Right: A ∈ R
200×50 and high fidelity initial values.

We experiment with a projected gradient flow approach. The capacity of the differential
equation approach is limited only by current development of numerical ODE techniques. Thus
far, a direct ODE approach can handle matrices of sizes up to thousands within a reasonable
frame of time, say, a few CPU minutes in a desktop computing environment. However, it may not
be efficient enough to handle very large-scale problem which often is the case in real applications.
Other techniques such as model reduction might prove beneficial, but are not discussed in the
presentation. The availability of projected gradient in explicit form also makes it possible to
apply other optimization techniques including iterative methods. It might be worth further
investigation in this direction. It is our hope that this study will have shed some light on the
interesting low-rank approximation problem.
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