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Abstract. Quadratic pencils, λ2M + λC + K, where M , C, and K are n× n real matrices with or without some
additional properties such as symmetry, connectivity, bandedness, or positive definiteness, arise in many important
applications. Recently an existence theory has been established, showing that almost all n-degree-of-freedom second
order systems can be reduced to n totally independent single-degree-of-freedom second order subsystems by real-
valued isospectral transformations. In contrast to the common knowledge that generally no three matrices can be
diagonalized simultaneously by equivalence transformations, these isospectral transformations endeavor to maintain
a special linearization form called the Lancaster structure and do break down M , C and K into diagonal matrices
simultaneously. However, these transformations depend on the matrices in a rather complicated way and, hence, are
difficult to construct directly. In this paper, a second part of a continuing study, a closed-loop control system that
preserves both the Lancaster structure and the isospectrality is proposed as a means to achieve the diagonal reduction.
Consequently, these transformations are acquired.
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1. Introduction. Given n× n real matrices M0, C0 and K0, the task of finding scalars λ ∈ C

and nonzero vectors u ∈ Cn satisfying

Q(λ)u = 0, (1.1)

where

Q(λ) := Q(λ; M0, C0, K0) = λ2M0 + λC0 + K0, (1.2)

is known as the quadratic eigenvalue problem (QEP). The scalars λ and the corresponding vectors x

are called, respectively, eigenvalues and eigenvectors of the quadratic pencil Q(λ). It is known that
the QEP possesses 2n eigenvalues over the complex field, provided the leading coefficient matrix M
is nonsingular. The eigeninformation (λ,u) is critical to the understanding of the dynamical system

M0ẍ + C0ẋ + K0x = f(t), (1.3)

which arises frequently in many important applications, including applied mechanics, electrical os-
cillations, vibro-acoustics, fluid mechanics, and signal processing.

There are extensive discussions about the QEPs. Both the theory and the numerical methods
are fairly complete. See, for example, the review article [15], the books [9, 13] and the references
contained therein. One principal tool used for analyzing QEPs is to linearize a quadratic pencil
to a linear pencil. The linearization may appear in several different forms among which one is of
particular interest to us — the so called Lancaster structure in the linear pencil

L(λ) := L(λ; M0, C0, K0) =

[
C0 M0

M0 0

]
λ +

[
K0 0
0 −M0

]
. (1.4)
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The equivalence between Q(λ) and L(λ) can be seen from the fact that

([
C0 M0

M0 0

]
λ +

[
K0 0
0 −M0

])[
u

v

]
= 0 (1.5)

if and only if

{
(λC0 + K0)u + λM0v = 0,

λM0u − M0v = 0.
(1.6)

Indeed, if M is nonsingular, then we know further that v = λu. Obviously, the Lancaster structure
implies that if Q(λ) is self-adjoint, then so is L(λ).

The main reason that the Lancaster structure is important to us is because it has been proved
recently that for almost all quadratic pencils there exists real-valued 2n × 2n real matrices Πℓ and
Πr such that

Π⊤
ℓ L(λ)Πr = L(λ; MD, CD, KD) =

[
CD MD

MD 0

]
λ +

[
KD 0
0 −MD

]
, (1.7)

where MD, CD, KD are all real-valued n × n diagonal matrices [2, 5, 6]. In other words, there
exists a real-valued equivalence transformation which not only preserves the Lancaster structure
but also transforms the pencil L(λ) isospectrally into a pencil with diagonal blocks. Note that the
eigenstructure is equivalent in the sense that

(
λ2MD + λCD + KD

)
z = 0 ⇔

[
u

λu

]
= Πr

[
z

λz

]
.

Such a transformation is significant in that it links the dynamical behavior of a multiple-degree-
of-freedom system directly to that of a system consisting of n independent single-degree-of-freedom
subsystems. It breaks down the interlocking connectivity in the original system into totally discon-
nected subsystems while preserving the entire spectral properties. Thus it will be of great value
in practice if the transformations Πℓ and Πr can be found from any given pencil. The theory of
existence of Πℓ and Πr in [2, 5] was established on the basis of the complete spectral information of
L(λ). To construct Πℓ and Πr from the availability of spectral information certainly is impractical.
The focus of this paper is to construct Πℓ and Πr numerically by structure preserving isospectral
flows without knowing the spectral information.

The isospectral transformation from the triplet (M0, C0, K0) to the triplet (MD, CD, KD) is not
an ordinary equivalence transformation. It depends nonlinearly on matrices (M0, C0, K0). To see
this relationship, denote

Πℓ =

[
ℓ11 ℓ12

ℓ21 ℓ22

]
, Πr =

[
r11 r12

r21 r22

]
, (1.8)

where each ℓij or rij is an n × n matrices. In order to maintain the Lancaster structure in the
product Π⊤

ℓ L(λ)Πr, it is necessary that the following five equations hold:

−ℓ⊤11K0r12 + ℓ⊤21M0r22 = 0,

−ℓ⊤12K0r11 + ℓ⊤22M0r21 = 0,

ℓ⊤12C0r12 + ℓ⊤22r12 + ℓ⊤12M0r22 = 0, (1.9)

ℓ⊤11C0r12 + ℓ⊤21M0r12 + ℓ⊤11M0r22 = ℓ⊤12C0r11 + ℓ⊤22M0r11 + ℓ12M0r
⊤
21

= −ℓ⊤12K0r12 + ℓ⊤22M0r22.
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Additionally, the matrices Πℓ and Πr must be such that the left-hand sides of the following three
expressions,

−ℓ⊤12K0r12 + ℓ⊤22M0r22 = MD,

ℓ⊤11C0r11 + ℓ⊤21M0r11 + ℓ⊤11M0r21 = CD, (1.10)

ℓ⊤11K0r11 − ℓ⊤21M0r21 = KD,

are diagonal matrices. The conditions (1.9) and (1.10) together constitute a homogeneous second-
degree polynomial system of 8n2 − 3n equations in 8n2 unknowns. It is not obvious how the system
could be solved analytically. The underdetermined system does suggest, however, that there is
plenty of leeway to choose the transformation matrices Πℓ and Πr. In particular, the “orbit" of
L(λ) under (Lancaster) structure preserving equivalence transformations is a nontrivial manifold on
which perhaps a smooth path connecting (M0, C0, K0) to (MD, CD, KD) can be defined.

A special kind of isospectral flow preserving the Lancaster structure has been proposed in [7].
What is needed is a more specific control of the flow so that it starts from (M0, C0, K0) and moves
toward (MD, CD, KD). Our contribution in this paper is that we describe a closed-loop feedback
control system to drive such a flow. The resulting dynamical system can be tracked numerically.

2. Isospectral flow. Our closed-loop feedback control system is built upon the structure pre-
serving isospectral flows proposed in [7]. For later reference, we briefly review what has been intro-
duced in [7]. It is important to note that the flows described in this section can only maintain the
Lancaster structure and the isospectrality. The flows will have to be modified in order to acquire
the additional capability of reducing matrices to diagonals.

For convenience, denote the Lancaster pair in (1.4) by (A0, B0), that is,

A0 =

[
K0 0
0 −M0

]
, B0 =

[
C0 M0

M0 0

]
. (2.1)

We are interested in characterizing two one-parameter families of structured preserving transfor-
mations TL(t), TR(t) ∈ R2n×2n, with TL(0) = TR(0) = I2n. Let the actions of these families of
transformations on (A0, B0) be denoted by

A(t) = T⊤
L (t)A0TR(t), B(t) = T⊤

L (t)B0TR(t), (2.2)

respectively. Clearly, regardless how TL(t) and TR(t) are defined, (A(t), B(t)) is isospectral to
(A0, B0) for any t. A special class of transformations is to require that matrices TL(t) and TR(t)
satisfy, respectively, the following differential systems:

dTL(t)

dt
= TL(t)L(t)= TL(t)

[
L11(t) L12(t)
L21(t) L22(t)

]
, (2.3)

dTR(t)

dt
= TR(t)R(t)= TR(t)

[
R11(t) R12(t)
R21(t) R22(t)

]
, (2.4)

where each Lij(t) or Rij(t), i, j = 1, 2, is a n × n real one-parameter matrix yet to be defined. The
task now is to impose conditions on the matrices L(t) and R(t) so that the resulting (A(t), B(t))
maintains the Lancaster structure for every t.

For convenience, denote the differentiation dg
dt

of any function g(t) by the symbol ġ. It is easy
to see from (2.2) that

Ȧ = Ṫ⊤
L A0TR + TLA0ṪR= L⊤A + AR,

Ḃ = Ṫ⊤
L B0TR + TLB0ṪR= L⊤B + BR.
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It is interesting to note that these differential equations are similar to those discussed in [1] which
leads to a Lie-Poisson system. By insisting that (A(t), B(t)) maintains the Lancaster structure, that
is,

A(t) =

[
K(t) 0

0 −M(t)

]
, B(t) =

[
C(t) M(t)
M(t) 0

]
, (2.5)

we see that
[

K̇ 0

0 −Ṁ

]
=

[
L⊤

11K + KR11 −L⊤
21M + KR12

L⊤
12K − MR21 −L⊤

22M − MR22

]
, (2.6)

[
Ċ Ṁ

Ṁ 0

]
=

[
L⊤

11C + CR11 + L⊤
21M + MR21 L⊤

11M + MR22 + CR12

L⊤
12C + L⊤

22M + MR11 L⊤
12M + MR12

]
. (2.7)

It follows that the following five equations must be satisfied by the matrices Lij and Rij , i, j = 1, 2:

KR12 − L⊤
21M = 0,

L⊤
12K − MR21 = 0,

L⊤
12M + MR12 = 0, (2.8)

L⊤
11M − L⊤

22M + CR12 = 0,

MR11 − MR22 + L⊤
12C = 0.

The conditions in (2.8) constitute a homogeneous linear system of 5n2 for the 8n2 entries in the
matrices Lij and Rij , i, j = 1, 2. It is a much easier system than the nonlinear system (1.9) and
(1.10). Its solution space contains 3n2 free parameters which we can identify as three n × n matrix
parameters. The transformations TL(t) and TR(t) can now be characterized in terms of these three
free matrix parameters.

In fact, by assuming that the matrix M(t) is invertible, we may set forth the first matrix
parameter D(t) ∈ Rn×n by requiring that the relationship

R12(t) = −D(t)M(t)

holds between R12(t) and M(t). It is not difficult to derive after some algebraic manipulations that
the solutions to the system (2.8) can now be identified as follows:

R12 = −DM, (2.9)

R21 = DK, (2.10)

L12 = D⊤M⊤, (2.11)

L21 = −D⊤K⊤, (2.12)

L11 − L22 = D⊤C⊤, (2.13)

R11 − R22 = −DC. (2.14)

Now that we have obtained these formulas, it is worth mentioning in retrospect that even without
the assumption that M(t) is nonsingular the matrices defined by (2.9) to (2.14) satisfy the system
(2.8). Note also that implicit in (2.13) and (2.14) are the other two free matrix parameters. There
are several possible ways to arrange the diagonal blocks of L(t) and R(t). The choice suggested in
[7] is to define L(t) and R(t) according to the following formulas:

L =

[
D⊤ 0
0 D⊤

] [
C⊤

2
−M⊤

−K⊤ −C⊤

2

]
+

[
N⊤

L 0
0 N⊤

L

]
, (2.15)

R =

[
D 0
0 D

] [
−C

2
−M

K C
2

]
+

[
NR 0
0 NR

]
, (2.16)
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where the matrices D(t), NL(t) and NR(t) are free matrix parameters in Rn×n. Upon substituting
the blocks of L and R into the differential system (2.6) and (2.7), we obtain a flow of the triplet
(M(t), C(t), K(t)) which is governed by the autonomous system:

K̇ =
1

2
(CDK − KDC) + N⊤

L K + KNR,

Ċ = (MDK − KDM) + N⊤
L C + CNR, (2.17)

Ṁ =
1

2
(MDC − CDM) + N⊤

L M + MNR.

We could also choose to define L(t) and R(t), for example, in the following way,

L =

[
D⊤ 0
0 D⊤

] [
0 −M⊤

−K⊤ C⊤

]
+

[
NL 0
0 NL

]
, (2.18)

R =

[
D 0
0 D

] [
0 −M
K C

]
+

[
NR 0
0 NR

]
. (2.19)

The corresponding differential system for (M(t), C(t), K(t)) becomes somewhat simpler:

K̇ = N⊤
L K + KNR

Ċ = (MDK − KDM) + N⊤
L C + CNR (2.20)

Ṁ = (MDC − CDM) + N⊤
L M + MNR

It is interesting to note that simplicity does not necessarily mean benefit because the first equation
in (2.20) implies K(t) is an equivalent transformation of K0, which might limit the way K(t) can
change. We shall concentrate on the system defined in (2.17) henceforth. The main question now is
how to exploit the three free matrix parameters D, NL, and NR so that the resulting flow behaves
in some desirable ways.

3. Selecting free parameters. In this section we demonstrate some of the possible choices
of the three parameters in the system (2.17). Ultimately, we want to control the free parameters D,
NL and NR in such a way that the isospectral flow (M(t), C(t), K(t)) is driven into a block diagonal
triplet (MD, CD, KD).

3.1. Maintaining symmetry. In additional to the Lancaster structure, it might be desirable
to maintain the symmetry in the initial value (M0, C0, K0), if there is any, throughout the flow
(M(t), C(t), K(t)) for all t. This task can be accomplished by selecting the free matrix parameters
with proper symmetric properties. Several sufficient conditions have already been mentioned in [5].
For example, by assuming NR(t) = NL(t), the symmetry specified for the matrix parameter D in
Table 3.1 will preserve the symmetry for the flow (M(t), K(t), C(t)) defined by the dynamical system
(2.17).

D(t) M(t) C(t) K(t)

skew-symmetric symmetric symmetric symmetric
symmetric symmetric skew-symmetric symmetric
symmetric skew-symmetric skew-symmetric skew-symmetric

skew-symmetric skew-symmetric symmetric skew-symmetric
Table 3.1

Preserving symmetries of (M(t), C(t), K(t)) by D(t), if NR(t) = NL(t).
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3.2. Nahm equations. Another choice of the free matrix parameters might be worth men-
tioning because it makes a remarkable connection to the Nahm equations [17]. More specifically, if
we choose NR(t) = NL(t) = N(t) to be an arbitrary one-parameter flow and define

D(t) := S(t)T (t), (3.1)

where S(t) and T (t) are solution flows to the linear system

Ṡ = −NS, (3.2)

Ṫ = −TN⊤, (3.3)

then D(t) satisfies the differential equation

Ḋ = −ND − DNT (3.4)

and remains skew-symmetric if D(0) is skew-symmetric. In this way, we know from Table 3.1 that
the triplet (M(t), C(t), K(t)) defined by (2.17) remains symmetric if (M0, C0, K0) is symmetric to
begin with. Using S(t) and T (t) to define the equivalent transformation:

M̃(t) = T (t)M(t)S(t), C̃(t) = T (t)C(t)S(t), K̃(t) = T (t)K(t)S(t), (3.5)

we find from straightforward substitution that the transformed triplet (M̃(t), C̃(t), K̃(t)) satisfies
the differential system

˙̃
M = [M̃,

1

2
C̃],

˙̃
C = [M̃, K̃], (3.6)

˙̃
K = [

1

2
C̃, K̃],

where [X, Y ] := XY −Y X represents the Lie bracket operator. The system (3.6) bears considerable
resemblance to the system known as the Nahm equations arising in the study of Yang-Hills theory.
On the other hand, observe that the solution flow (M̃(t), C̃(t), K̃(t)) in (3.6) depends only on the

initial value (M̃(0), C̃(0), K̃(0)) and is independent of how S(t) and T (t) at any other t. In other
words, the selection of N(t) will not affect the dynamics of the system (3.6). Though interesting,
this choice of free matrix parameters might not be helpful in diagonalizing the triplet (M0, C0, K0).

3.3. Gradient flow. One possible way to force the flow (M(t), C(t), K(t)) to converge to the
diagonal form (MD, CD, KD) is to construct the structure preserving isospectral flow (A(t), B(t))
defined in (2.5) in such a way that it is also a gradient flow for a certain properly selected objective
function. To see how this can be achieved, we outline the idea below.

Consider the following open-loop optimal control problem:

min
x∈Rn

f(x),

subject to ẋ = g(x)u, x(0) = x0, (3.7)

where the objective function f : R
n → R is sufficient smooth, g : R

n → R
n×p is piecewise continuous

with rank(g(x)) = p, and u = u(t) ∈ Rp is the control. The problem as is given is not well-posed in
that there are infinitely many ways to administer the control. Some additional constraints must be
imposed on the admissible control u(t). We shall not pursue that avenue in this discussion. For our
application, however, we notice that without the differential equation constraint, a natural direction
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for x to move to minimize f(x) is the steepest descent direction. Now that the motion of x is
governed by (3.7), perhaps one way we can do is to choose the control u so that the vector ẋ is as
close to −∇f(x) as possible. This amounts to the selection of the least squares solution u defined
by

u(t) = −g(x(t))†∇f(x(t)), (3.8)

where g(x)† stands for the Moore-Penrose generalized inverse of g(x). In this way, the closed-loop
dynamical system,

ẋ = −g(x)g(x)†∇f(x), (3.9)

defines a descent flow x(t) for the objective function f(x).
In our setting, we seek matrix parameters NR, NL and D to minimize the following objective

function

f(K, C, M) :=
1

2

{
‖offdiag(M)‖2

F + ‖offdiag(C)‖2
F + ‖offdiag(K)‖2

F

}

+ δh(diag(M), diag(C), diag(K)), (3.10)

subject to the condition that (M(t), C(t), K(t)) is governed by the differential system (2.17). In
the above, ‖ · ‖F denotes the Frobenius matrix norm, diag(M) denotes the diagonal matrix of M ,
offdiag(M) denotes the complementary part of diag(M) in M , and h is a scalar function depending
upon the diagonal entries of M , C and K. Our idea is to minimize the off-diagonal entries of
(M, C, K) while using the function h to monitor the behavior of diagonal entries by a factor of δ.
Such a monitoring is sometimes important because our structure preserving isospectral flows are
not norm preserving. Our experience indicates that the diagonal entries can evolve to fairly large or
small numbers. By choosing, for example,

h1(diag(M), diag(C), diag(K)) =
1

(min(diag(M)))2
+

1

(min(diag(C)))2
+

1

(min(diag(K)))2
, (3.11)

where min(diag(M)) denote the minimum entry in the diagonal of M , we can penalize small diagonal
entries in M , C and K and, hence, avoid singular pencils. Likewise, by choosing

h2(diag(M), diag(C), diag(K)) = ‖diag(M)‖2
F + ‖diag(C)‖2

F + ‖diag(K)‖2
F , (3.12)

we can damp the growth of diagonal entries. At the moment, the choice of h is on an ad hoc basis
which varies from problem to problem. We do not know of a general rule by which h should be used,
but we do want to point out that modifying the definition of h and, hence, the objection function f
with the hope to effect the behavior of the isospectral flow is not difficult to do. We even can modify
the objective function adaptively during the integration and, hence, offer a dynamical control of
the flow. The free matrix parameters D, NL and NR are used as controls to direct the flow. It is
important to note that the dynamical system (2.17) is linear in the matrix parameters D, NL and
NR. So our situation fits well to the model described in (3.8). In particular, the “controls" D, NL

and NR can be obtained as the least squares solution to the equation



1

2
(K ⊗ C − C ⊗ K) K ⊗ I I ⊗ K
K ⊗ M − M ⊗ K C ⊗ I I ⊗ C

1

2
(C ⊗ M − M ⊗ C) M ⊗ I I ⊗ M





vec(D)
vec(N⊤

L )
vec(NR)


 =



vec(−offdiag(K) − δ ∂h

∂K
)

vec(−offdiag(C) − δ ∂h
∂C

)
vec(−offdiag(M) − δ ∂h

∂M
)


 , (3.13)

where vec(X) denotes the vectorization of the matrix X by columns and ∂h
∂K

denotes the partial
gradient of h with respect to K. Once these controls are calculated, they are fed to (2.17) to define
the flow (M(t), C(t), K(t)).
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4. Self-adjoint pencils. Thus far, we have been considering general quadratic pencils. In
applications, often we are facing a self-adjoint quadratic pencil, that is, the matrix coefficients M , C
and K are all symmetric. Many of the discussions above can be simplified due to the fact established
in [2] that a self-adjoint quadratic pencil can be totally decoupled by congruence transformations.

To exploit this congruence transformation, we may take TR(t) = TL(t) := T (t) and reduce the
transformations (2.2) to merely

A(t) = T⊤(t)A0T (t), B(t) = T⊤(t)B0T (t), (4.1)

while T (t) satisfies (2.4). The algebraic system (2.8) which is necessary for maintaining the Lancaster
structure is reduced to

KR12 − R⊤
21M = 0,

R⊤
12M + MR12 = 0, (4.2)

MR11 − MR22 + R⊤
12C = 0.

Note the second equation in (4.2) is symmetric, so the conditions (4.2) constitute a linear algebraic
system of n(n + 1)/2 + 2n2 equations in the 4n2 unknowns matrices Rij . In other words, in the
self-adjoint case, a total of n(n − 1)/2 + n2 parameters can be chosen arbitrarily for the structure
preserving isospectral flows. Motivated by the fact that MR12 has to be skew-symmetric, we set
forth the first matrix parameters D(t) by assuming that the matrix M(t) is invertible and that

R12 = −DM

for some skew-symmetric matrix D ∈ R
n×n. Upon substitution, we find that the solution to the

system (4.2) can be parameterized as follows:

R12 = −DM, with D⊤ = −D, (4.3)

R21 = DK, (4.4)

R11 − R22 = −DC. (4.5)

We choose to define the R matrix in (2.4) in exactly the same way as in (2.16), i.e.,

R =

[
D 0
0 D

] [
−C

2
−M

K C
2

]
+

[
N 0
0 N

]
(4.6)

where the matrices N ∈ Rn×n is the second free matrix parameter. The corresponding differential
equations for (M(t), C(t), K(t)) are given by

K̇ =
1

2
(CDK − KDC) + N⊤K + KN,

Ċ = (MDK − KDM) + N⊤C + CN, (4.7)

Ṁ =
1

2
(MDC − CDM) + N⊤M + MN,

respectively. The system (4.7) is a special case of (2.17) under the additional conditions that NL =
NR and D⊤ = −D.

In the same spirit as that proposed in Section 3.3, we may choose the controls D and N to
formulate structure preserving isospectral gradient flow with the hope that the self-adjoint triplet
(M(t), C(t), K(t)) will converge to a diagonal triplet (MD, CD, KD). Obviously, the symmetry has
the advantage that the size of the optimal control problem is nearly halved. The implementation,
however, requires some extra efforts to reflect that D is skew-symmetric and that only the upper
triangular part of (M(t), C(t), K(t)) is needed for the computation. We shall report some numerical
experiments in the next section without elaborating upon the programming details.
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5. Coordinate transformation flows. We have developed a gradient flow for the triplet
(M(t), C(t), K(t)) which in theory preserves the Lancaster structure and maintains the isospectrality.
In practice, however, we have to caution that traditional ODE integrators generally cannot preserve
these properties in the long run. Isospectral flows need to be solved by using special integration
techniques. The recently developed research area, known as the geometric integration, is for that
purpose. In geometric integration the underlying geometric structure which influences the qualitative
nature of the phenomena are built into the numerical method, which gives the method markedly
superior performance and accuracy. See for example, the web site [4], the review paper [12] and the
many linkages or references contained therein. In this paper we have not investigated the applicability
of any geometric integration method to our flow yet. We do want to point out, however, that for
our application maybe it is sufficient to consider only the flow for the transformations TL(t) and
TR(t) instead of the flow for the triplet (M(t), C(t), K(t)). Our idea is that the geometric structure
imposed on the transformation matrices are automatically satisfied by the way we define the matrices
L and R. We apply the transformations to (A0, B0) as in (2.2) only at the end of integration to
obtain the reduced form. In this way, we are saved from worrying about the loss of isospectrality in
the course of integration.

Using the self-adjoint pencils to illustrate the approach and writing

T (t) =

[
T11(t) T12(t)
T21(t) T22(t)

]
,

we see that the differential system governing the transformation flow T (t) is given by

Ṫ11 = T11

(
N−

D
(
T⊤

11C0T11+T⊤
11M0T21+T⊤

21M0T21

)

2

)
+T12D

(
T⊤

11K0T11−T⊤
21M0T21

)
,

Ṫ12 = T11D
(
T⊤

12K0T12−T⊤
22M0T22

)
+T12

(
N +

D
(
T⊤

11C0T11+T⊤
11M0T21+T⊤

21M0T21

)

2

)
,

Ṫ21 = T21

(
N−

D
(
T⊤

11C0T11+T⊤
11M0T21+T⊤

21M0T21

)

2

)
+T22D

(
T⊤

11K0T11−T⊤
21M0T21

)
,

Ṫ22 = T21D
(
T⊤

12K0T12−T⊤
22M0T22

)
+T22

(
N +

D
(
T⊤

11C0T11+T⊤
11M0T21+T⊤

21M0T21

)

2

)
,

which makes no reference to the intermediate values M(t), C(t) and K(t). The computation is not
as complicated as it appears because many of the matrices repeatedly occur. We can rewrite the
objective function (3.10) in terms of T whose gradient can easily be calculated. Since Ṫ depends
linearly on D and N , the model (3.7) remains applicable. The idea of closed loop control described
in Section 3.3 can now be used to obtain the matrix parameters D and N for a gradient flow T (t).

6. Numerical experiments. In this section we report some experimental results from using
the above-mentioned dynamical system of gradient flow. At the moment, our primary concern
is not so much on the efficiency of the method. Rather, our goal is to establish some numerical
evidence showing that the proposed structure preserving isospectral gradient flows work. To make
this approach computationally effective requires additional ruminations, such as a specially designed
geometric integrator, which are not investigated in this paper.

For demonstration purpose, we shall employ existing routines in Matlab as the ODE integrator.
It is understood that many other ODE solvers can be used as well, although none of these packages
are designed to preserve our geometric properties for a long period of time. The ODE Suite [14] in
Matlab contains in particular a Klopfenstein-Shampine, quasi-constant step size stiff system solver
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ode15s and the classical Adams-Bashforth-Molton solver ode113. We find that the isospectrality
is deteriorated quicker by ode15s than by ode113, though neither solver can maintain the isospec-
trality in the long run. We set both local tolerance AbsTol = RelTol = 10−12 while maintaining
all other parameters at the default values of the Matlab codes. The numerical tests have been con-
ducted using randomly generated initial values for the dynamical system matrices in M, C, K. The
choice of the penalty function h depends on how we want to effect the flow. In the first two examples
below, h2 is used where the penalty factor is taken to be δ = 10−1. In the third example, h1 with
δ = 10−8 is used to keep the flow from converging to a singular pencil. For the ease of running text,
we shall report all numerals in 5 digits only.

Example 1. Consider the three-degree of freedom mass-spring system depicted in Figure 6.1.

Fig. 6.1. A three-degree-of-freedom system (from www.efunda.com).

Assume that the mass, damping and stiffness matrices given by

M0 =

2

4

0.5056 0 0

0 0.9198 0

0 0 0.9440

3

5 C0 =

2

4

0.9814 0 0

0 0.9602 −0.4582
0 −0.4582 1.0794

3

5 , K0 =

2

4

1.1550 −0.4673 −0.2788
−0.4673 0.5849 −0.1176
−0.2788 −0.1176 0.3964

3

5

Our theory asserts that this interlocking self-adjoint system can be decoupled into three single-
degree-of-freedom subsystems which bear exactly the same spectral information. To obtain these
subsystems, we integrate our gradient flow (4.7) with D and N being defined in the same spirit of
(3.8), that is, the free matrix parameters D and N are selected in such a way that the resulting

vector field (Ṁ, Ċ, K̇) is the least squares approximation to the negative gradient of the objection
function (3.10). At t ≈ 16 we find that the triplet (M, C, K) has evolved into

M =

2

4

2.6362e+00 1.5263e−08 1.7655e−08

1.5263e−08 3.8736e+00 2.4375e−08

1.7655e−08 2.4375e−08 4.8376e+00

3

5 ,

C =

2

4

4.0251e+00 5.0428e−08 −9.0397e−09

5.0428e−08 5.8081e+00 −7.6755e−08

−9.0397e−09 −7.6755e−08 5.3330e+00

3

5 ,

K =

2

4

5.0903e+00 −1.3823e−07 −3.9939e−08

−1.3823e−07 2.9065e+00 −5.9834e−09

−3.9939e−08 −5.9834e−09 1.1113e+00

3

5 ,

suggesting that the matrices are being diagonalized as t goes to infinity.

Example 2. To demonstrate that our gradient flow works reasonably well in general, in our
second experiment we generate three 8× 8 self-adjoint initial matrices randomly with no concern of
whether the resulting quadratic pencil is physically realizable or not. The initial matrices are given
as follows.
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M0 =

2

6

6

6

6

6

6

6

6

6

4

5.3235e+00 −7.7083e−01 −1.7021e+00 5.2962e−01 6.3322e−01 −9.2241e−01 −6.3554e−01 5.8556e−01

−7.7083e−01 9.2417e+00 −1.7353e+00 5.1740e+00 −3.7535e+00 2.6184e−02 −3.2625e+00 1.2013e+00

−1.7021e+00 −1.7353e+00 9.2284e+00 −6.4989e+00 −1.8649e+00 3.0272e+00 7.9076e+00 2.6297e−01

5.2962e−01 5.1740e+00 −6.4989e+00 9.4077e+00 2.1911e−01 −4.3342e+00 −7.3370e+00 3.840e+00

6.3322e−01 −3.7535e+00 −1.8649e+00 2.1911e−01 6.0898e+00 −9.8487e−01 2.0184e+00 −7.3590e−01

−9.2241e−01 2.6184e−02 3.0272e+00 −4.3342e+00 −9.8487e−01 9.1233e+00 6.2714e+00 −2.9034e+00

−6.3554e−01 −3.2625e+00 7.9076e+00 −7.3370e+00 2.0184e+00 6.2714e+00 1.4541e+01 −1.7151e+00

5.8556e−01 1.2013e+00 2.6297e−01 3.840e+00 −7.3590e−01 −2.9034e+00 −1.7151e+00 4.5468e+00

3

7

7

7

7

7

7

7

7

7

5

,

C0 =

2

6

6

6

6

6

6

6

6

6

4

1.0777e+01 5.0180e−01 2.6108e−01 4.6112e+00 −2.8607e+00 −3.6377e+00 −2.3615e+00 2.9215e+00

5.0180e−01 3.8908e+00 2.8436e−01 1.8618e−01 8.6016e−01 3.0443e−01 −9.6059e−01 4.4675e−01

2.6108e−01 2.8436e−01 1.1905e+01 2.2132e−01 −4.3222e+00 −2.9963e+00 4.2085e+00 5.4883e+00

4.6112e+00 1.8618e−01 2.2132e−01 4.7964e+00 5.1232e−01 −1.108e+00 −8.7565e−01 1.6242e+00

−2.8607e+00 8.6016e−01 −4.3222e+00 5.1232e−01 9.4669e+00 4.3679e+00 8.9368e−01 −1.5694e+00

−3.6377e+00 3.0443e−01 −2.9963e+00 −1.108e+00 4.3679e+00 6.6132e+00 −6.5587e−01 1.1057e+00

−2.3615e+00 −9.6059e−01 4.2085e+00 −8.7565e−01 8.9368e−01 −6.5587e−01 5.4341e+00 4.2017e+00

2.9215e+00 4.4675e−01 5.4883e+00 1.6242e+00 −1.5694e+00 1.1057e+00 4.2017e+00 1.1347e+01

3

7

7

7

7

7

7

7

7

7

5

,

K0 =

2

6

6

6

6

6

6

6

6

6

4

5.095e+00 −3.1576e+00 −1.2604e+00 −3.4265e+00 8.6552e−01 2.7751e+00 1.1638e+00 −5.3069e+00

−3.1576e+00 9.6212e+00 −1.4043e+00 8.5129e−01 3.9745e−01 −1.0149e+00 3.1666e+00 6.4578e+00

−1.2604e+00 −1.4043e+00 4.2248e+00 −1.4245e+00 −1.9488e+00 1.5413e+00 −2.5609e+00 −6.7258e−01

−3.4265e+00 8.5129e−01 −1.4245e+00 7.0133e+00 2.3293e+00 −5.8867e+00 6.2474e−01 4.2150e+00

8.6552e−01 3.9745e−01 −1.9488e+00 2.3293e+00 7.1340e+00 −4.0990e+00 3.7037e+00 1.8451e+00

2.7751e+00 −1.0149e+00 1.5413e+00 −5.8867e+00 −4.0990e+00 7.9290e+00 −9.4201e−01 −5.7685e+00

1.1638e+00 3.1666e+00 −2.5609e+00 6.2474e−01 3.7037e+00 −9.4201e−01 7.2946e+00 1.3111e+00

−5.3069e+00 6.4578e+00 −6.7258e−01 4.2150e+00 1.8451e+00 −5.7685e+00 1.3111e+00 9.0110e+00

3

7

7

7

7

7

7

7

7

7

5

.

Again, we use the gradient flow (4.7) to seek the diagonalization of the above three matrices.
As the integration marches on, we find that at t = 18 the triplet (M(t), C(t), K(t)) has evolved into
the following matrices:

M =

2

6

6

6

6

6

6

6

6

6

4

9.8696e+00 1.8872e−06 −2.9059e−06 −1.7974e−05 2.1019e−07 −1.2046e−05 −1.3155e−06 −3.6771e−07

1.8872e−06 3.9277e+01 −3.3041e−07 2.3073e−06 −4.2645e−07 2.9113e−06 4.6964e−07 −3.3942e−07

−2.9059e−06 −3.3041e−07 5.0117e+01 −9.2381e−07 2.3446e−07 −1.0293e−07 1.0538e−06 6.2995e−07

−1.7974e−05 2.3073e−06 −9.2381e−07 1.1038e+01 7.5763e−07 −6.3820e−05 6.170e−07 1.0678e−06

2.1019e−07 −4.2645e−07 2.3446e−07 7.5763e−07 1.5349e+01 3.4752e−07 −7.0162e−09 1.8576e−07

−1.2046e−05 2.9113e−06 −1.0293e−07 −6.3820e−05 3.4752e−07 8.2547e+00 1.1788e−06 1.9319e−07

−1.3155e−06 4.6964e−07 1.0538e−06 6.170e−07 −7.0162e−09 1.1788e−06 3.8841e+01 2.4136e−07

−3.6771e−07 −3.3942e−07 6.2995e−07 1.0678e−06 1.8576e−07 1.9319e−07 2.4136e−07 9.3683e−02

3

7

7

7

7

7

7

7

7

7

5

,

C =

2

6

6

6

6

6

6

6

6

6

4

3.1910e+01 −4.3944e−07 5.2498e−06 4.3910e−06 2.9588e−07 9.6416e−07 2.0965e−07 1.0194e−06

−4.3944e−07 9.1654e+00 2.8050e−07 −1.2528e−06 1.0689e−07 −1.0687e−06 −6.8847e−07 −5.1075e−08

5.2498e−06 2.8050e−07 4.9507e+01 2.8435e−07 −4.2462e−07 −5.540e−07 −2.8281e−07 −9.6140e−07

4.3910e−06 −1.2528e−06 2.8435e−07 1.1911e+01 −8.5491e−08 1.3644e−05 −6.8026e−07 3.8892e−08

2.9588e−07 1.0689e−07 −4.2462e−07 −8.5491e−08 6.0835e+01 5.380e−07 −1.3286e−07 −2.7331e−07

9.6416e−07 −1.0687e−06 −5.540e−07 1.3644e−05 5.380e−07 1.8138e+01 9.3527e−07 5.4394e−07

2.0965e−07 −6.8847e−07 −2.8281e−07 −6.8026e−07 −1.3286e−07 9.3527e−07 3.2757e+01 1.3056e−07

1.0194e−06 −5.1075e−08 −9.6140e−07 3.8892e−08 −2.7331e−07 5.4394e−07 1.3056e−07 5.9449e+01

3

7

7

7

7

7

7

7

7

7

5

,

K =

2

6

6

6

6

6

6

6

6

6

4

1.6621e+00 −9.6927e−07 −1.3292e−05 1.1156e−06 −9.4317e−06 6.8078e−07 1.4116e−06 −1.5211e−06

−9.6927e−07 2.1574e+01 −6.0898e−08 −2.9165e−07 1.3859e−07 −6.8694e−07 1.7096e−08 8.0610e−07

−1.3292e−05 −6.0898e−08 1.5674e+01 −2.2511e−07 −9.8188e−07 4.0419e−07 −3.7487e−07 1.6344e−06

1.1156e−06 −2.9165e−07 −2.2511e−07 3.4844e+01 −2.6431e−07 1.2303e−05 −1.0540e−07 −1.7776e−07

−9.4317e−06 1.3859e−07 −9.8188e−07 −2.6431e−07 2.6028e−01 −7.705e−07 5.3461e−07 −2.8792e−07

6.8078e−07 −6.8694e−07 4.0419e−07 1.2303e−05 −7.705e−07 2.3699e+01 −1.5434e−06 −1.0864e−06

1.4116e−06 1.7096e−08 −3.7487e−07 −1.0540e−07 5.3461e−07 −1.5434e−06 4.9072e+01 −3.5570e−07

−1.5211e−06 8.0610e−07 1.6344e−06 −1.7776e−07 −2.8792e−07 −1.0864e−06 −3.5570e−07 1.0512e+01

3

7

7

7

7

7

7

7

7

7

5

.

It might be more illustrative to represent the data in the initial triplet (M0, C0, K0) and the
triplet (M(t), C(t), K(t)) graphically in Figure 6.2 where entries of each matrix are plotted as z-
values over a rectangle grid.

The dynamical behavior of the corresponding flow is depicted in Figure 6.3 where we plot
the sums of norms of the three diagonal matrices (dashed line), the three off-diagonal matrices
(dotted line), and the absolute value of the objective function (solid line), respectively, versus the
independent variable t. The dip in the solid line for the objective function is a resolution artifact
due to |f(K, C, M)| ≈ 0 or ln(|f(K, C, M)|) ≈ −∞ at that particular point. The near parallelism
of the solid line and the dashed line when t > 8 shows that the objective value the the norm of
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Fig. 6.2. Graphical representation of (M0, C0, K0) and the triplet (M(18), C(18), K(18)) in Example 2.

the diagonal entries differ nearly by a scalar multiplication, i.e., δ = 10−1, and that the off-diagonal
entries converge to zero.

Example 3. In our third experiment, we first use the same objective function as that in
Example 2 with the following randomly generated initial matrices of size 7× 7. That is, we penalize
only the growth of diagonal entries and take no action to prevent the degenerateness of the these
entries. The initial matrices are given by

M0 =

2

6

6

6

6

6

6

6

4

6.4206e+00 2.7013e+00 −4.0538e+00 −3.9093e+00 3.5144e+00 −1.6145e−01 −1.1971e+00

2.7013e+00 1.0326e+01 −5.4895e+00 −4.2758e+00 −4.5101e+00 6.2040e+00 −2.1748e−01

−4.0538e+00 −5.4895e+00 8.7637e+00 1.0725e+00 1.5145e+00 −4.6242e−01 1.0867e+00

−3.9093e+00 −4.2758e+00 1.0725e+00 4.8558e+00 −2.1136e+00 −2.6535e+00 −1.8584e−01

3.5144e+00 −4.5101e+00 1.5145e+00 −2.1136e+00 1.8306e+01 2.9484e+00 1.6960e+00

−1.6145e−01 6.2040e+00 −4.6242e−01 −2.6535e+00 2.9484e+00 1.0953e+01 −7.6732e−01

−1.1971e+00 −2.1748e−01 1.0867e+00 −1.8584e−01 1.6960e+00 −7.6732e−01 6.4739e+00

3

7

7

7

7

7

7

7

5

,

C0 =

2

6

6

6

6

6

6

6

4

2.8355e+00 −3.5329e+00 −9.0051e−01 2.2403e+00 2.3916e−01 −1.8860e+00 1.1730e+00

−3.5329e+00 9.1601e+00 3.1358e−01 1.6880e+00 7.7742e−01 −3.3175e−02 −2.0576e+00

−9.0051e−01 3.1358e−01 5.8714e+00 −2.2298e+00 −2.1827e−01 −1.2010e+00 6.5279e−01

2.2403e+00 1.6880e+00 −2.2298e+00 8.3197e+00 1.7075e−01 −2.8330e+00 −1.2423e+00

2.3916e−01 7.7742e−01 −2.1827e−01 1.7075e−01 3.0995e+00 1.2724e+00 1.8257e+00

−1.8860e+00 −3.3175e−02 −1.2010e+00 −2.8330e+00 1.2724e+00 8.7520e+00 −8.4060e−02

1.1730e+00 −2.0576e+00 6.5279e−01 −1.2423e+00 1.8257e+00 −8.4060e−02 2.3845e+00

3

7

7

7

7

7

7

7

5

,

K0 =

2

6

6

6

6

6

6

6

4

5.7454e+00 −5.5223e−01 −1.3115e+00 2.1641e+00 2.3034e−01 −9.2219e−01 8.3982e−02

−5.5223e−01 2.3549e+00 −2.7189e−01 1.9810e+00 1.9808e−01 −6.1442e−01 7.5386e−01

−1.3115e+00 −2.7189e−01 9.5935e+00 −1.0742e−01 −5.5547e+00 −5.4112e+00 4.4360e−01

2.1641e+00 1.9810e+00 −1.0742e−01 8.0620e+00 −6.8328e−02 3.2041e−01 −1.1730e+00

2.3034e−01 1.9808e−01 −5.5547e+00 −6.8328e−02 5.2168e+00 2.5000e+00 −1.4050e+00

−9.2219e−01 −6.1442e−01 −5.4112e+00 3.2041e−01 2.5000e+00 7.2703e+00 7.9278e−01

8.3982e−02 7.5386e−01 4.4360e−01 −1.1730e+00 −1.4050e+00 7.9278e−01 7.2693e+00

3

7

7

7

7

7

7

7

5

.

What we have observed is that at approximately t = 16, the triplet (M(t), C(t), K(t)) has evolved
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Fig. 6.3. Behavior of the objective function

into the following matrices:

M =

2

6

6

6

6

6

6

6

4

2.2153e−13 2.1177e−06 −6.8153e−07 −1.8384e−07 1.1511e−06 −7.0594e−07 −4.8310e−07

2.1177e−06 2.7777e+01 −8.5516e−07 −2.4470e−06 −9.9352e−07 1.7505e−06 3.8014e−07

−6.8153e−07 −8.5516e−07 3.1307e+01 3.1516e−07 3.2599e−07 2.9865e−07 −1.7375e−07

−1.8384e−07 −2.4470e−06 3.1516e−07 2.8390e+00 −4.9293e−07 −1.3284e−07 1.4923e−07

1.1511e−06 −9.9352e−07 3.2599e−07 −4.9293e−07 8.8150e+01 5.4243e−07 3.7747e−07

−7.0594e−07 1.7505e−06 2.9865e−07 −1.3284e−07 5.4243e−07 4.8753e+01 −3.1072e−07

−4.8310e−07 3.8014e−07 −1.7375e−07 1.4923e−07 3.7747e−07 −3.1072e−07 3.1905e+01

3

7

7

7

7

7

7

7

5

,

C =

2

6

6

6

6

6

6

6

4

−3.1703e−13 −1.2169e−06 −4.0357e−07 −1.6317e−06 −6.7147e−08 −4.3025e−07 −1.6132e−08

−1.2169e−06 4.2699e+01 1.9723e−07 1.3068e−06 1.1515e−07 −3.7094e−07 −3.0443e−07

−4.0357e−07 1.9723e−07 2.2568e+01 −3.4856e−07 5.2178e−08 −2.2798e−07 6.8085e−09

−1.6317e−06 1.3068e−06 −3.4856e−07 3.3206e+01 2.1429e−07 −5.4923e−07 −2.2280e−07

−6.7147e−08 1.1515e−07 5.2178e−08 2.1429e−07 1.2109e+01 2.9003e−08 2.0453e−07

−4.3025e−07 −3.7094e−07 −2.2798e−07 −5.4923e−07 2.9003e−08 4.5150e+01 2.8697e−08

−1.6132e−08 −3.0443e−07 6.8085e−09 −2.2280e−07 2.0453e−07 2.8697e−08 5.6642e+00

3

7

7

7

7

7

7

7

5

,

K =

2

6

6

6

6

6

6

6

4

2.1121e−13 −2.5786e−07 −2.1259e−08 2.6425e−06 2.2480e−07 −3.9657e−07 −1.3054e−07

−2.5786e−07 4.5693e+00 1.6895e−07 −3.3515e−07 5.4747e−07 −1.0080e−07 3.1232e−07

−2.1259e−08 1.6895e−07 4.3968e+01 −3.6565e−07 −1.0213e−06 −1.1184e−06 1.5553e−07

2.6425e−06 −3.3515e−07 −3.6565e−07 4.1656e+01 −2.3364e−07 4.4752e−07 −2.2251e−07

2.2480e−07 5.4747e−07 −1.0213e−06 −2.3364e−07 6.1404e+00 8.2303e−07 −2.8470e−07

−3.9657e−07 −1.0080e−07 −1.1184e−06 4.4752e−07 8.2303e−07 1.5933e+01 1.5514e−07

−1.3054e−07 3.1232e−07 1.5553e−07 −2.2251e−07 −2.8470e−07 1.5514e−07 3.3756e+01

3

7

7

7

7

7

7

7

5

.

This example demonstrates that the triplet (M(t), C(t), K(t)) may converge to a singular pencil,
which is not desirable.

A remedy might come if we penalize the decaying of diagonal entries to zero by adding in the
penalty function g1 defined in (3.11). However, the penalty factor δ has to be chosen carefully. If δ
is too large, the flow tends to put more emphasis on discouraging the decay of the diagonal entries
at the price of slowing down the convergence of the off-diagonal entries. If δ is too small, the flow
converges to a near-singular pencil. For our experiment, we adaptively use δ = 10−8 to discourage
the diagonal entries from going to zero and δ = 0 to encourage the off-diagonal entries to converge
to zero. At the moment, the adaptive scheme is inserted into the integration process manually and

13



subjectively. We are able to improve the convergence to the following matrices.

M =

2

6

6

6

6

6

6

6

4

1.4618e−01 8.4229e−21 −7.1889e−20 −2.2598e−20 −3.1102e−20 2.2559e−19 −1.6235e−20

−1.4672e−15 5.2520e+00 4.4173e−20 8.5578e−20 8.7294e−21 2.7976e−05 −1.8820e−07

5.0709e−15 4.5057e−16 3.9248e+00 −4.7978e−20 −1.2110e−20 1.2027e−19 3.3292e−21

1.9132e−15 1.1803e−14 −8.9042e−15 1.7497e−01 1.0212e−19 3.5002e−20 2.0289e−20

1.4079e−15 2.8080e−15 −6.7490e−15 2.6045e−16 9.6442e−01 −3.2220e−19 −6.3030e−21

−1.2395e−18 2.7976e−05 −2.3740e−19 5.4627e−19 −2.0220e−19 5.9730e−08 −2.5479e−05

4.3913e−15 −1.8820e−07 1.3186e−15 −2.8604e−15 −1.5211e−14 −2.5479e−05 9.1884e+00

3

7

7

7

7

7

7

7

5

,

C =

2

6

6

6

6

6

6

6

4

4.9848e+00 8.3472e−23 4.2650e−21 3.3450e−20 3.1178e−20 −5.3475e−19 2.2401e−20

−3.8580e−14 6.9063e+00 1.4369e−20 4.7488e−20 6.4548e−20 −3.4666e−05 −4.3162e−07

−5.9428e−15 −6.6258e−15 7.5498e−01 −3.7208e−20 1.7218e−21 −2.3996e−20 6.0364e−21

1.4816e−14 3.6117e−15 3.5201e−16 1.0704e+01 1.6483e−20 −1.9994e−19 −4.5170e−20

−2.3898e−14 6.6073e−15 3.4875e−14 2.9369e−14 4.5047e+00 1.0176e−19 −3.0356e−20

−4.9065e−19 −3.4666e−05 −2.6450e−18 −1.3797e−19 2.4698e−18 6.1934e−08 −4.4886e−05

−6.2580e−15 −4.3162e−07 1.9122e−15 −3.4434e−14 −2.4793e−14 −4.4886e−05 6.1427e+00

3

7

7

7

7

7

7

7

5

,

K =

2

6

6

6

6

6

6

6

4

8.9073e−04 −6.7678e−20 −6.0650e−20 −7.9906e−20 −3.3974e−21 3.9575e−19 7.8452e−21

−9.1039e−16 4.9464e+00 −3.5549e−20 3.5156e−20 6.6650e−20 1.9716e−05 6.0100e−07

1.0159e−14 8.8236e−15 4.6964e+00 −6.7415e−20 2.3783e−22 −1.2507e−19 −3.4392e−20

−8.1779e−16 3.8584e−16 −2.4487e−15 4.2010e+00 6.4197e−21 2.1525e−19 6.5043e−20

4.7487e−15 −9.4770e−15 −3.7846e−15 1.6717e−14 1.6497e+01 −4.4318e−20 1.0721e−19

−1.3417e−19 1.9716e−05 −6.3702e−19 1.2723e−19 −7.8421e−19 8.5473e−09 8.9375e−05

−2.4348e−15 6.0100e−07 1.0354e−15 −2.5474e−15 −1.0384e−14 8.9375e−05 5.6434e+00

3

7

7

7

7

7

7

7

5

.

7. Conclusion. In an earlier study, we have shown in theory that all most all quadratic pencils
λ2M + λC + K can be transformed isospectrally into pencils with diagonal matrix coefficients.
This result has two significant implications: First, it shows that the conventional persuasion that
no three general matrices can be simultaneously diagonalized is perhaps because the question of
diagonalization of a quadratic pencil has not been posed in an appropriate context. Perhaps a
right way to ask the question is how to block diagonalizing the Lancaster structure. Secondly, it
asserts that the dynamical behavior of almost all n-degree-of-freedom second order systems can be
identified from that of n independent single-degree-of-freedom second-order subsystems. Despite the
importance, the transformations involved in the reduction are rather complicated and difficult to
realize numerically. The theoretical proof requires the knowledge of the entire spectral information.
Without using the spectral information, there does not seem to have any numerical algorithm in the
literature for this purpose.

In this paper, we exploit the free matrix parameters in the structure preserving isospectral
flows. In particular, we propose a simple closed-loop control that amends the structure preserving
isospectral flow into a gradient flow. The gradient flow intends to reduce the magnitude of off-
diagonal elements. Since the gradient flow can be tracked by available ODE integrator, it is feasible
for numerical computation. Computer simulations seem to suggest the working of this approach.

Lot of room remains for further study. The most imperative topic is to develop special geometric
integrator for the isospectral flow described in this paper. Since the structure preserving equivalence
transformations do not form a group, we do not think that current Lie group methods are applicable.
Also, it remains to be studied on whether the system (1.9) and (1.10) could be tackled by some
structure preserving iterative schemes.
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