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Abstract. Quadratic pencils λ2M + λC + K, where M , C, and K are n × n real matrices, arise in many
important applications. Its spectral properties effect the vibration behavior of the underlying system. Depending on
the inter-connectivity of the elements within the system, the coefficient matrices might inherit additional properties
such as symmetry, block form, zero row sum, or positive definiteness. For both theoretical considerations and practical
applications, it is often desired to decompose a complicated system into dissociated subsystems without tampering with
the innate vibration properties. Total decoupling refers to the extreme case where an n-degree-of-freedom system is
reduced to n totally independent single-degree-of-freedom subsystems, while partial decoupling into units of independent
modules is sometimes more feasible in practice. Most mass-spring-damper systems are self-adjoint and the mass matrix
M is diagonal, which can be symmetrized to M = I. This paper aims at constructing the transformation that can
either totally or partially decouple a given quadratic system. At the crux of construction is the flow that preserves
the so called Lancaster structure which, in turn, preserves the spectrum while the flow follows a projected gradient to
diminish the unwanted (coupled) portion of the system. The construction is flexible in that it can be custom-made to
handle any kinds of decoupled structure. Error analysis is derived, whose bounds can be used for assessing the quality
of the transformation.
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1. Introduction. Coupled systems are ubiquitous. They arise in nature and in almost all areas
of disciplines, including economical development, agricultural production, industrial manufacture, en-
vironmental evolution, or mechanics applications. The entanglement manifested in the system proves
difficult but critical, and is the most basic episode when characterizing a complicate phenomenon that
involves many inter-related factors. In general, the dynamics and the associated effects of a coupled
system are difficult to analyze or to control. It has been long desired to find simple but equivalent
system to represent the very same dynamics. This is the basic concept of decoupling. As simple as
a linear transformation, for example, the so called spectral decomposition of representing the original
system by a diagonal matrix in terms of the basis of eigenvectors is a classical decoupling process.
Depending on the applications, scientists and practitioners have developed different techniques for the
task of decoupling of a given system. This paper is concerned about the decoupling of a second-order
linear dynamical system of the form

M0ẍ(t) + C0ẋ(t) +K0x(t) = f(t), (1.1)

where M0, C0 and K0 are given matrix coefficients. Such a system arises frequently in dynamic
analysis of applied mechanics, acoustic systems, electrical circuit simulation, fluid mechanics and even
microelectronic design [35].

For general discussion on the vibration theory associated with (1.1), see, for example, the books
[5], [29], and [30]. Consider the damped mass-spring system depicted in Figure 1.1 as an example.
Assuming the Hooke’s law for small deformation, the vibration of this particular layout with four
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Fig. 1.1. A four-DoF mass-spring-damper system.

degrees of freedom (DoF) is governed by the equation of motion
m1 0 0 0
0 m2 0 0
0 0 m3 0
0 0 0 m4

ẍ+


c1+c2 0 −c2 0

0 0 0 0
−c2 0 c2+c3 −c3
0 0 −c3 c3

ẋ+


k1+k2+k5 −k2 −k5 0
−k2 k2+k3 −k3 0
−k5 −k3 k3+k4+k5 −k4
0 0 −k4 k4

x = f(t). (1.2)

Clearly, the prescribed inter-connectivity results in a special structure of the matrix coefficients. In
the context of applied mechanics, the coefficients M0, C0 and K0 in (1.1) represent the mass matrix,
the damping or gyroscopic matrix and the stiffness or dissipation matrix, respectively, whereas x(t)
denotes the displacement of the masses from the equilibria and f(t) is the external excitation in time
t. Different configuration specifics lead to different structures and, hence, different dynamic behaviors.
The system is coupled because the movement of each mass is affected by other masses through the
linkages.

A dynamical system arising in applications usually consists of multiple subsystems. Coupling
is a result of interaction among the subsystems. Mathematically speaking, a second-order linear
dynamical system is coupled if the triplets (M,C,K) are not all diagonal at the same time. Coupling
is an inherent nature, but does not give any advantage to vibration analysis. Indeed, engineers
often desires to control the vibration of a given system, but the presence of coupling makes the task
difficult. It has been long sought in the field for techniques that can break up some or all inner links
of subsystems so as to produce a simplified system with the same dynamical behavior.

Decoupling is a classical subject across multiple disciplines. Remarkably many research efforts
have been taken to meet the demands from different applications. Articles and books about decoupling
are too numerous to list here. We briefly review some basic notions.

Classical modal analysis. An undamped system, where C = 0, can be regarded as an generalized
eigenvalue problem (GEP), whence can be decoupled by congruence transformation using associated
eigenvectors. This technique has been generalized to the so called classical damping system [6] where
the matrices M , C and K are required to be symmetric, M positive definite, C and K nonnegative
definite, and satisfy the relationship

CM−1K = KM−1C. (1.3)

Specifically, the technique known as the classical modal analysis employs a transformation matrix con-
sisting of eigenvectors of the GEP associated with the pencil (M,K) only to diagonalize the damping
matrix C. For systems with general damping, the so called non-proportional damping systems, the
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task of decoupling is much more involved. A variety of techniques can be found in [2], [4], [22], [24],
[25], [36], and the many references contained therein. We mention that most of the existing tech-
niques require the complete spectral information, which falls in line with the conventional thinking of
using eigenvectors as the basis for transformation. In contrast, as will be explained in the sequel, our
approach does the decoupling without employing any spectral information.

Spectral decomposition. Specifically, any solution (λ,u) ∈ C×Cn to the quadratic eigenvalue
problem (QEP) [18, 23, 35]

Q(λ)u = 0, (1.4)

where

Q(λ) := Q(λ;M0, C0,K0) = λ2M0 + λC0 +K0 (1.5)

constitutes a fundamental solution

x(t) = ueλt (1.6)

to the differential system (1.1). The eigeninformation of the quadratic pencil (1.5) entails the dynam-
ical behavior of (1.1). There are effective numerical methods for tackling QEPs. See, for example,
quadeig in [20] and polyeig in Matlab. The calculation of the entire spectrum and the associated
eigenvectors therefore constitutes, in a sense, a process of total decoupling. What is missing and is of
significant importance in applications, however, is the single transformation that does the decoupling.

Phase synchronization. To find such a transformation, an interesting technique known as
phase synchronization has been purposed in [27, 28]. The idea is motivated by the fact that complex
conjugate eigenvalues of a classically damping mode must correspond to one real eigenvector [7]. In
general, the eigenvalues and corresponding eigenvectors of real-valued QEPs must occur in complex
conjugate pairs. Suppose that (vj ,vj) is such a pair of eigenvectors. Write

vj =
[
rj1e

−iφj1 rj2e
−iφj2 ... rjne

−iφjn
]>
, (1.7)

where rjk, φjk ∈ R and φjk is called phase angles. The method of phase synchronization manipulates
the algebra to synchronize φjk by phase shift and thus convert the non-classically damped mode
to classically damped mode. In this way, the needed transformation can be founded by applying
the conventional mode analysis to the resulting classically damped mode. The drawback of such an
approach, again, is that it requires the complete eigeninformation. We are interested in decoupling a
QEP system, either totally or partially, without invoking the eigeninformation.

Simultaneous diagonalization. The question of total decoupling seems to be mathematically
related to the problem of simultaneous diagonalization. It is well known that simultaneous diagonal-
ization for even two matrices is not always possible. Necessary or sufficient conditions for simultaneous
diagonalization of two matrices can be found in the classic books [14] and [21]. For a QEP system,
total decoupling means the simultaneous diagonalization of three coefficient matrices. This is much
harder and the theory of existence is hardly available. It was only recently that necessary and suffi-
cient conditions for simultaneous diagonalization of three general symmetric matrices are completely
characterized in [31]. It is worth noting that the equation (1.3) for the classical damping systems is
only part of the condition for the general systems. These conditions are fairly stringent, so in gen-
eral no equivalence or congruence coordinate transformations can diagonalize three arbitrary matrices
simultaneously.

Structure preserving isospectral flow. The truth is that there is a subtle difference between
total decoupling and simultaneous diagonalization. Simultaneous diagonalization of (M,C,K) "di-
rectly" is actually a wrong question to ask. What is essential in decoupling is the preservation of
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eigeninformation. So long as we can preserve the eigeninformation, we might decouple a system in-
directly, which lead to diagonalization in a different context. More specifically, we first linearize the
QEP (1.5) the GEP in the Lancaster form

L(λ) := L(λ;M0, C0,K0) =

[
C0 M0

M0 0

]
λ+

[
K0 0
0 −M0

]
. (1.8)

It has been shown that there exist two real-valued 2n× 2n matrices Π` and Πr such that [15, 16]

Π>` L(λ)Πr = L(λ;MD, CD,KD) =

[
CD MD

MD 0

]
λ+

[
KD 0
0 −MD

]
, (1.9)

where MD, CD,KD are all real-valued n × n diagonal matrices. It is in this sense that the original
triplets (M0, C0,K0) are simultaneously diagonalized.

Thus motivated is a differential equation approach that traces three trajectories for matrices
M(t), C(t),K(t), respectively, until MD, CD,KD are found [10, 11]. The construction of the flows is
to maintain the Lancaster structure and, hence, keep the spectrum invariant, while gradually reducing
the off-diagonal entries ofM(t), C(t),K(t). An alternative approach is to replace the congruent trans-
formation (1.9) by a similarity transformation, which eliminates the need of the left transformation
Π` at the cost of decoupling only the productsM−1C andM−1K [37]. Both of these approaches work
directly with the coefficient matrices until the diagonalization is realized at the end. The computation
concern only about the evolution of the coefficient matrices. During and at the end of the integration,
no information of the transformations Π` and Πr is generated. In applications, the transformation
that results in the diagonalization carries critical information for reorganizing or analyzing the original
system [27, 28]. It is also needed for obtaining the responses and transforming external forces after
decoupling.

Smooth transformation. This paper makes contribution to the field on four points. First, we
derive a general framework for computing the transformation needed for the decoupling of a self-adjoint
quadratic system. In particular, we reduce the computational overhead by imposing the additional
constraint thatM(t) ≡ I for all t. Such a model is especially applicable to mass-spring-damper systems
where the matrix M0 represents the individual masses and is diagonal. With proper scaling, we may
assumeM0 = I. For a general self-adjoint pencil with positive definiteM0, we still can symmetrize the
system so thatM0 = I. Our construction maintains this property throughout the calculation. Second,
not only we can argue for convergence of this approach by using the Łojasiewicz gradient inequality,
but also we develop a bound on the errors due to the numerical integrator and floating-point arithmetic
calculation. Third, in contrast to the phase synchronization and many other available techniques that
rely on complete eigeninformation, our method does the decoupling without any a priori knowledge of
spectral decomposition. Four, our framework is flexible in that it can perform partial decoupling as
desired. It is important to point out some advantages of partial decoupling. For large-scale problems,
it might be expensive to perform the total decoupling directly. Instead of uncoupling a given system
as is, we can first break down the system into several independent subsystems, i.e., modules. Since
there are fewer entries to be annihilated, the computation is less stringent and the convergence might
be faster. Once these subsystems are attained, they are of smaller DoFs. If necessary, each subsystem
can be further decoupled by the same way which is cheaper and can be processed in parallel. This
gradual decomposition process might be termed graded decoupling.

We organize our presentation as follows. We begin in Section 2 with a review of conditions that
must be imposed on transformations in order to preserve the Lancaster structure for general quadratic
pencils. The structure preservation is essential for keeping the spectrum of the original system invariant
throughout the transformations. It turns out that there are three full matrix parameters free at our
disposal. We explore the symmetry in Section 3 and simplify the differential systems to only two
skew-symmetric matrix parameters. In Section 4, we incorporate the isospectral flow into a gradient
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flow to carry out the decoupling process through numerical integration. The framework can be applied
to any desirable decomposed form. Due to the floating-point arithmetic, inexactness is inevitable. It
is important to derive bounds on the errors Section 5. The global convergence is discussed in 6. Some
empirical results are presented in Section 7.

2. Isospectral flows. So that the presentation is self-contained, we briefly review the basic ideas
of structure preserving isospectral flows. Details can be found in [11, 17].

For convenience, denote the Lancaster pair in (1.8) by (A0,B0), that is,

A0 =

[
K0 0
0 −M0

]
, B0 =

[
C0 M0

M0 0

]
. (2.1)

We are interested in finding two one-parameter transformations TL(t), TR(t) ∈ R2n×2n, starting with
TL(0) = TR(0) = I2n, such that matrices A(t) and B(t) defined by

A(t) := T>L (t)A0TR(t), B(t) := T>L (t)B0TR(t), (2.2)

would maintain Lancaster structure for all t. Note that, regardless of how TL(t) and TR(t) are defined,
(A(t),B(t)) is isospectral to (A0,B0) for any t. So, the real focus should be on preserving the Lancaster
structure.

Upon differentiating (A(t),B(t)) and collecting the terms, we find the relationship

{
Ȧ = Ṫ>L A0TR + TLA0ṪR = L>A+AR,

Ḃ = Ṫ>L B0TR + TLB0ṪR = L>B + BR,
(2.3)

or equivalently, 
ṪL(t) = TL(t)L(t) = TL(t)

[
L11(t) L12(t)
L21(t) L22(t)

]
,

ṪR(t) = TR(t)R(t) = TR(t)

[
R11(t) R12(t)
R21(t) R22(t)

]
,

(2.4)

where matrices L(t) and R(t) are 2× 2 blocks of n× n matrices to be determined so as to maintain
the Lancaster structure for all t. Because (A(t),B(t)) must be of the form

A(t) =

[
K(t) 0

0 −M(t)

]
, B(t) =

[
C(t) M(t)
M(t) 0

]
, (2.5)

we see upon substitution that[
K̇ 0

0 −Ṁ

]
=

[
L>11K +KR11 −L>21M +KR12

L>12K −MR21 −L>22M −MR22

]
, (2.6)

[
Ċ Ṁ

Ṁ 0

]
=

[
L>11C + CR11 + L>21M +MR21 L>11M +MR22 + CR12

L>12C + L>22M +MR11 L>12M +MR12

]
. (2.7)

To ensure consistency among the block entries in (2.6) and (2.7), the matrices Lij and Rij , i, j = 1, 2,
must satisfy the following system of equations:

KR12 − L>21M = 0,
L>12K −MR21 = 0,
L>12M +MR12 = 0,

L>11M − L>22M + CR12 = 0,
MR11 −MR22 + L>12C = 0.

(2.8)
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The necessary conditions (2.8) constitute a homogeneous linear system of 5n2 for the 8n2 entries in
the unknown matrices Lij and Rij , i, j = 1, 2. Its solution space contains 3n2 free parameters which
we can identify as three n× n matrix parameters. The transformations TL(t) and TR(t) can now be
characterized, once these three free matrix parameters are specified.

To solve (2.8), we find first that the quantityR12(t)M−1(t) is concealed in every equation, provided
the matrixM(t) is invertible. Upon exploiting this hidden structure, we come up with the first matrix
parameter D(t) ∈ Rn×n satisfying the relationship

R12(t) = −D(t)M(t).

It follows after some algebraic manipulations that the solutions to the system (2.8) can now be
identified as follows: 

R12 := −DM,
R21 := DK,
L12 := D>M>,
L21 := −D>K>,

L11 − L22 = D>C>,
R11 −R22 = −DC.

(2.9)

It is worth noting in retrospect that the assumption that M(t) is nonsingular is not needed in the list
of definitions (2.9). Anything satisfying (2.9) will automatically satisfy the system (2.8). Note also
that implicit in the last two equations in (2.9) are the other two free matrix parameters for defining
the diagonal blocks of L(t) and R(t). There are infinitely many ways to distribute the diagonal blocks
of L(t) and R(t). The arrangement

L =

[
D> 0
0 D>

] [
C>

2 M>

−K> −C
>

2

]
+

[
N>L 0
0 N>L

]
,

R =

[
D 0
0 D

] [
−C2 −M
K C

2

]
+

[
NR 0
0 NR

]
,

(2.10)

where the matrices D(t), NL(t) and NR(t) are free matrix parameters in Rn×n, has been proposed
in [11, 17]. By substituting (2.10) into the differential system (2.4), the structure preserving flows T`
and Tr are defined. After a further substitution into (2.6) and (2.7), an isospectral flow for the triplets
(M(t), C(t),K(t)) is given by

K̇ = 1
2 (CDK −KDC) +NLK +KNR,

Ċ = (MDK −KDM) +NLC + CNR,

Ṁ = 1
2 (MDC − CDM) +NLM +MNR.

(2.11)

Note that the differential system (2.11) is autonomous in (M,C,K) and is linear in the parameters
(D,NL, NR).

3. Maintaining symmetry. Suppose that the initial triplets (M0, C0,K0) have some kinds of
inborn symmetries to begin with. We certainly want to keep the same nature throughout the flow
(M(t), C(t),K(t)) for all t. For simplicity, assume that the free parameter matrices NL and NR are
limited to the case N>L (t) = NR(t) = N(t) (and, hence, only 2n2 free parameters are left). Then the
choice of symmetry for the parameter matrix D alone can maintain both the Lancaster structure and
the various symmetries in the triplets (M(t), C(t),K(t)). Summarized in Table 3.1 are some possible
options.
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D(t) M(t) C(t) K(t)

skew-symmetric symmetric symmetric symmetric
symmetric symmetric skew-symmetric symmetric
symmetric skew-symmetric skew-symmetric skew-symmetric

skew-symmetric skew-symmetric symmetric skew-symmetric
Table 3.1

Preserving symmetries of (M(t), C(t),K(t)) by D(t), if NR(t) = N>L (t).

In this paper, we concern ourselves with self-adjoint quadratic pencils only. For mass-spring-
damper systems, symmetry is generally expected between any two connected elements because of
Newton’s third law. The following theorem has been proved by the author in [10, Theorem 7]. See
also a discussion in [15].

Theorem 3.1. Almost all self-adjoint pencil Q(λ,M0, C0,K0) with simple spectrum can be totally
decoupled by congruence transformations.

By taking Tr(t) = T`(t) := T (t), the equation (2.2) becomes

A(t) = T>(t)A0T (t), B(t) = T>(t)B0T (t), (3.1)

and L(t) = R(t) in (2.4). In this case, without repeating the details, the conditions for maintaining
the Lancaster structure for self-adjoint quadratic pencils are reduced to KR12 −R>21M = 0,

R>12M +MR12 = 0,
MR11 −MR22 +R>12C = 0.

(3.2)

The second equation in (3.2) is symmetric, so there are n(n+ 1)/2 + 2n2 linear equations for the 4n2

unknowns matrices Rij in the system (3.2). A total of n(n − 1)/2 + n2 parameters can be chosen
arbitrarily to preserve the Lancaster structure in the flow (3.1).

To also preserve the symmetry for the triplets (M(t), C(t),K(t)), we demand that the first matrix
parameter D(t) be skew-symmetric. Together with the second free parameter matrix N(t) which is
subject to no restriction, we find that an analogy to (2.10) is

R =

[
D 0
0 D

][ −C2 −M

K C
2

]
+

[
N 0
0 N

]
. (3.3)

The evolution of the congruence transformations T (t) is governed by the different equation

Ṫ =

[
− 1

2T11DC + T12DK + T11N −T11DM + 1
2T12DC + T12N

− 1
2T21DC + T22DK + T21N −T21DM + 1

2T22DC + T22N

]
, (3.4)

where D> = −D and NL = N>R are arbitrary. The corresponding differential system for the triplets
(M(t), C(t),K(t)) with symmetry is identical to (2.11).

We now impose one more constraint. If the equation (1.1) represents the motion of a mass-spring-
damper system, then the masses are placed along the diagonal of the matrix M0. This diagonal
structure is mainly a result of the Newton’s second law1. Even for a general self-adjoint pencil with
positive-definite M0, if M0 = L0L

>
0 is the Cholesky decomposition, then we may scale the problem

1In an RLC circuit, the circuit elements, R, L and C, are connected according to different layouts. The vibration
of the current follows Ohm’s law and Kirchhoff’s law. The resulting equation might not be symmetric. The leading
coefficient matrix M0 reflects the configuration of the inductors L, which might not be diagonal or even invertible.
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from the triplets (M0, C0,K0) to (I, L−10 C0L
−T
0 , L−10 K0L

−T
0 ) and still keep the symmetry. The scaling

is reversible. Therefore, it suffices to assume the case M0 = I. Many discussions in the literature for
applied mechanics begin with such a monic assumption [6].

In our decoupling process, we certainly want to maintain M(t) ≡ I during our transition. By
insisting that Ṁ(t) = 0, we find from (2.11) that the parameter matrix N should be of the form

N =
1

4
(CD −DC) + S (3.5)

for some skew-symmetric matrix S. That is, our parameter matrices are now reduced to two skew-
symmetric matrices D and S. The total dimension of unknown parameter matrices is n(n− 1) which
is a significant reduction from the original 3n2. The structure preserving isospectral transformation
T (t) for monic self-adjoint quadratic pencil is now governed by the much simpler system

Ṫ =

[
T11 T12
T21 T22

] [ 1
4CD −

3
4DC + S −D

DK 1
4 (CD +DC) + S

]
. (3.6)

In case that we want to see the ultimate reduced form of (C0,K0), say, the diagonal matrices
(CD,KD) in the total decoupling, all we need to do is to apply the transformation T (t) to the original
(A0,B0) at the end of integration. Alternatively, we could follow the trajectories of the autonomous
differential system{

K̇ = 1
4 (KCD −DCK) + 3

4 (CDK −KDC) + (KS − SK),

Ċ = 1
4 (CCD −DCC) + (DK −KD) + (CS − SC),

(3.7)

to the end without referring to the transformation T (t) at all.
It only remains to choose the control parameters D(t) and S(t) to steel the flow T (t) so that it

does decouple C(t) and K(t). Toward this end, we incorporate the structure preserving isospectral
T (t) into a gradient flow in the nest section.

4. Gradient flow. We begin our discussion with the motivation to totally decouple a given
n-DoF mass-spring-damper system into n independent 1-DoF single systems. In practice, sometimes
it is more sensible that the underlying system is made of separate modules each of which is itself a
vibrating system but with lower DoF. There are also situations when the original connectivity is to
be modified to a newly specified configuration without alternating the spectral information. That is,
instead of total decoupling, we might want to transform the triplets (M0, C0,K0) into block forms,
each block representing one module of a specified size, or into a particular structure resulting from a
specifically configured inter-connectivity (say, that depicted in Figure 1.1). We refer to such a goal
as partial decoupling. Total decoupling is a special case of partial decoupling. We now describe a
general framework to accomplish such a task.

By construction, we know{
C(t) = C(T (t)) = T>11(t)C0T11(t) + T>21(t)T11(t) + T>11(t)T21(t),

K(t) = K(T (t)) = T>11(t)K0T11(t)− T>21(t)T21(t).
(4.1)

At first glance, it appears that C(t) and K(t) depends on T11(t) and T21(t) only. By (3.6), however,
T11(t) and T21(t) do depend on T12(t) and T22(t), which will come into play in our gradient flow.
Suppose that certain desired patterns of C and K have been specified. In the total decoupling, for
instance, the desired pattern is that both C and K are diagonal. Let PC and PK denote the projector
so that PC(C) and PK(K) represent, respectively, the portions of C and K not agreeing with the
desired patterns. Introduce the objective function

f(T ) :=
1

2

{
α‖PC(C(T ))‖2F + β‖PK(K(T ))‖2F

}
, (4.2)
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where α and β are adjustable weights. Our goal is to choose the control parameters D(t) and S(t) so
that the resulting transformation flow T (t) minimizes the objective value f(T (t)).

To achieve our goal, we first learn from the open-loop optimal control problem:

min
x∈Rn

h(x),

subject to ẋ = g(x)u, x(0) = x0, (4.3)

where the objective function h : Rn → R is sufficient smooth, g : Rn → Rn×p is piecewise continuous
with rank(g(x)) = p, and u = u(t) ∈ Rp is the control. A natural choice for the control u is to make
the resulting vector ẋ be as close to −∇f(x) as possible. This amounts to the selection of the least
squares solution u to the problem

min
x∈Rn

‖g(x)u +∇h(x)‖2.

For convenience, we write explicitly

u := −g(x)†∇h(x), (4.4)

where g(x)† stands for the Moore-Penrose generalized inverse of g(x). In this way, the closed-loop
dynamical system,

ẋ = −g(x)g(x)†∇h(x), (4.5)

defines a descent flow x(t) for the objective function f(x).
The model (4.3) fits our application because the dynamical system (3.6) is linear in the control

parameters S and D. Furthermore, since S and D are skew-symmetric, it suffices to consider only
the strictly triangular parts of S and D. It need not be formulated explicitly in the code, but let
Z ∈ R2n2×n(n−1) denote the linear transformation that does[

vec(S)
vec(D)

]
= Z

[
s
d

]
, (4.6)

where d and s are vectors in R
n(n−1)

2 representing the strictly upper triangular parts of S and D,
respectively. Define

g(T ) :=


I ⊗ T11 1

4 (I ⊗ (T11C))− 3
4 (C ⊗ T11) +K ⊗ T12

I ⊗ T21 1
4 (I ⊗ (T21C))− 3

4 (C ⊗ T21) +K ⊗ T22
I ⊗ T12 1

4 (I ⊗ (T12C)) + 1
4 (C ⊗ T12)− I ⊗ T11

I ⊗ T22 1
4 (I ⊗ (T22C)) + 1

4 (C ⊗ T22)− I ⊗ T21

Z ∈ R4n2×n(n−1). (4.7)

Then the controls s and d can be obtained as the least squares solution to the equation

g(T )

[
s
d

]
= −∇f(T ), (4.8)

where, because the maps PC and PK are linear, we can easily calculate that −∇f(T ) is given by

−∇f(T )=


vec(−2α(C0T11 + T21)(PC(C))− 2βK0T11(PK(K)))

vec(−2αT11(PC(C)) + 2βT21(PK(K)))
0
0

 . (4.9)
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Once these controls are calculated, we may define the descent flow T(t) for the objective function
f(T ) by solving the initial value problem (IVP)

Ṫ = −g(T )g(T )†∇f(T ), T (0) =

[
I 0
0 I

]
. (4.10)

Alternatively, they can be fed to (3.7) to define the trajectories of (C(t),K(t)). Note that the vector
field in (4.10) is precisely the projection of −∇f(T ) onto the range space of g(T ), whereas in exact
arithmetic g(T ) is capable of preserving the Lancaster structure and, hence, the spectrum.

5. Error analysis. The Lancaster structure is preserved if and only if the four matrices defined
by 

F1(t) = T>22(t)T22(t)− T>12(t)K0T12(t)− I,
F2(t) = T>11(t)K0T12(t)− T>21(t)T22(t),
F3(t) = T>11(t)C0T12(t) + T>21(t)T12(t) + T>11(t)T22 − I,
F4(t) = T>12(t)C0T12(t) + T>22(t)T12 + T>12(t)T22(t),

(5.1)

are identically zero for all t. Because the differential system (4.10) is to be integrated numerically, the
computed solution, denoted by T̃ (t), is not exact. Inevitably the condition imposed by (5.1) will not
be satisfied. Once the Lancaster structure is lost, so is the spectrum. In this section, we analyze the
errors and show that there is an upper bound.

Suppose

T̃ (t) = T (t) + E(t), (5.2)

where E(t) represents the global error of T (t) due to the numerical integration. Using T̃ instead of T
in (3.1), we obtained the pencil (Ã(t), B̃(t)) with

Ã(t) := T̃>A0T̃ = A(t) + E(A(t)), B̃(t) := T̃>B0T̃ = B(t) + E(B(t)), (5.3)

where E(A(t)) and E(B(t)) represent the deviation from the true Lancaster structure. If can easily be
checked that

E(A(t)) = O(‖E(t)‖), E(B(t)) = O(‖E(t)‖).

We claim that the loss of isospectrality is of the same order O(‖E(t)‖) of the integration error.
Given a matrix pencil W = (A,B) ∈ Cm×m × Cm×m let (λi,ωi), i = 1, 2, . . . ,m, denote an

generalized eigenpair in the sense that

Aωi = λiBωi. (5.4)

It is well known in the literature that if X := [ω1, . . . ,ωm] denotes the matrix of eigenvectors, then
there exists a nonsingular matrix Y such that [18]

Y AX = diag(λi), Y BX = I. (5.5)

It is in this sense that this pencil W = (A,B) is said to be diagonalizable [13]. Suppose W̃ is a
perturbed matrix pencil of W with spectrum {λ̃i}. We measure the distance between two eigenvalues
by the so called chordal metric2 [13]

ρ(λi, λ̃i) :=
|λi − λ̃i|√

|λi|2 + 1

√
|λ̃i|2 + 1

. (5.6)

2This metric is meant to be more general than the one we used here. Basically, to take in account degenerate pencils,
(5.4) is expressed as aiAωi = biBωi and the pair (ai, bi) is called an eigenvalue. The chordal metric ensures that the
distance in the projective space (of (ai, bi)) is the same regardless of the representatives selected.
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Since complex numbers cannot be ordered, we measure the sensitivity of the eigenvalues of W subject
to perturbation by taking into account the worst change of eigenvalues. That is, we define the
generalized spectral variation of W̃ respect to W by [13]

SW (W̃ ) := max
i

min
j
ρ(λj , λ̃i). (5.7)

The following result is a generalization of the well known Bauer-Fike theorem to the generalized
eigenvalue problems [13, Theorem 2.1].

Lemma 5.1. Suppose that W = (A,B) is diagonalizable by the matrices X,Y in the sense of
(5.5). Let W̃ be a regular pencil. Then

SW (W̃ ) ≤ ‖X−1‖2‖X‖2‖PW − PW̃ ‖2, (5.8)

where PW = WW † and P
W̃

= W̃W̃ † are the orthogonal projectors of W and W̃ , respectively.
To put Lemma 5.1 in good use, we also need to measure the difference between the orthogonal

projectors, which can be estimated as follows [8, 33, 34].
Lemma 5.2. Let W and W̃ be two matrix pencils. Then

‖P
W̃
− PW ‖2 ≤ max{‖W †‖2, ‖W̃ †‖2}‖E(W )‖2, (5.9)

where E(W ) := W̃ −W .
Lemma 5.2 in still not fine enough because it involves the perturbation of the generalized inverse.

If the perturbation does not alter the rank, then we have the following classical result [19, Page 650].
Lemma 5.3. Suppose that W̃ = W + E(W ) and rank(W ) = rank(W̃ ). Then

‖W̃ †‖2 = ‖W †‖2 +O(‖E(W )‖2). (5.10)

For our application, the Lancaster structure (2.5) that is supposed to be inherited in the pencil
W (t) = (A(t), B(t)) is lost due to the global error accumulated in the numerical integration of (4.10).
Instead, what we have in hand is the perturbed pencil W̃ = (Ã(t), B̃(t)) which is estimated at (5.3).
The deviation from the desired isospectrality is summarized in the following theorem.

Theorem 5.4. Suppose T̃ (t) represents the transformation obtained by a numerical integrator
applied to the differential system (4.10). Assume that T̃ (t) = T (t) + E(t). Suppose also that the
Lancaster pair (A(t),B(t)) is diagonalizable with eigenvectors X(t) := [ω1(t), . . . ,ωn(t)]. Then the
generalized spectral variation is of the order

SW (t)(W̃ (t)) ≤ O(‖E(t)‖2). (5.11)

Proof. By substituting (5.10) and (5.9) into (5.8), we see that

SW (t)(W̃ (t)) ≤ ‖X(t)−1‖2‖X(t)‖2(‖W †‖2 +O(‖E(W )‖2))‖E(t)‖2 = O(‖E(t)‖2). (5.12)

But we know from (5.3), O(‖E(t)‖2) = O(‖E(t)‖2).
Theorem 5.4 is significant in that if there exists a perturbation in Lancaster structure, then so

is there a deviation from the original spectrum. But the deviation will not drift too far away. The
theorem asserts that the error of eigenvalue has an upper bound of the size indicated in (5.11). It
might be of interest to develop a way, similar to the penalty method or the regularization method
used in optimization, to reduce the drift of T (t), but that will be another research topic in the future.
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For our numerical experiments, we use the ODE solvers available in Matlab [32]. These methods
indirectly control the global error by attempting to bound the local error at each step. More specifi-
cally, the methods adjust step sizes by estimating the local error ei for each entry yi in the solution
vector and choosing step sizes to ascertain that the criterion

|ei| ≤ max{|yi|RelTol,AbsTol}, (5.13)

where RelTol and AbsTol are user-specified local error tolerance, is satisfied. This technique has proved
to be efficient in practice, but there is no rigorous theory characterizing the relationship between the
final accuracy and the prescribed tolerance. Applied to our decoupling problems, our experiences
suggest that the integration is fast and that the global error is approximately about 1 to 3 orders
higher than the prescribed RelTol and AbsTol. We shall demonstrate numerically that the magnitude
of the deviation of the spectrum is of the same order as the loss of Lancaster structure.

6. Global convergence. Consider the gradient flow

ẋ = −∇ξ(x(t)) (6.1)

for a general differentiable objective function ξ : Rn → R. It is clear that ξ(x(t)) is a decreasing
function in t. It is further known that if the semi-orbit x(t) is bounded for t ≥ 0, then the set of
accumulation points

ω(x(0)) := {x∗ ∈ Rn|x(tν)→ x∗ for some sequence tν →∞} (6.2)

is a nonempty, compact, and connected subset of stationary points

C := {x ∈ Rn|∇ξ(x) = 0}. (6.3)

So, if ξ(x) is bounded below, ξ(x(t) must converge to a local minimum. For general objective function
ξ(x), however, there is no guarantee about the limiting behavior of the flow x(t) itself. On the other
hand, if ξ(x) is analytic, then the Łojasiewicz gradient inequality [9, 26] can be used to argue that the
semi-orbit x(t) of an analytic gradient flow must be of finite length. It follows that the set ω(x(0)) of
any analytic gradient flow x(t) is necessarily a singleton [1, Theorem 2.2].

Theorem 6.1. Suppose that ξ : U → R is real analytic in an open set U ⊂ Rn. Then for any
bounded semi-orbit of (6.1), there exists a point x∗ ∈ S such that x(t)→ x∗ as t→∞.

For our application, the vector field in (4.10) is a polynomial system which certainly is analytic.
Thus we know by Theorem 6.1 that the flow T (t) must converge to a single point T ∗ which is necessarily
a local minimizer of f(T ). Being nonlinear in T , the objective function (4.2) might have many local
minima. If f(T ∗) is nearly zero up to the prescribed tolerance, then we may proclaim that the system
is decoupled. However, there are several possible scenarios causing f(T ∗) to be far away from zero.

1. The flow T (t) is trapped in the basin of attraction of a local minimum.
2. The flow T (t) converges to a point T̂ at which g†(T̂ )∇f(T̂ ) = 0, but ∇f(T̂ ) 6= 0. That is, T̂

is not a local minimum, but the flow stagnates because ∇f(T̂ ) is perpendicular to the range
space of g(T̂ ).

3. The flow T (t) as it is cannot connect the initial point T (0) to the transformation that decouples
the original pencil.

There are several possible tactics to remedy the non-desirable convergence.
• We might monitor the evolution by modifying the weights α and β adaptively with the hope

of navigating the (α, β)-dependent flow T (t) into a more desired region.
• We need not follow the rule (4.8) for all t. We might modify the controls s and d intermittently

to force changes of directions for the flow T (t). See Example 3 in the next section for a mimic
of the simulated annealing scheme.
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• We might modify (C0,K0) to an different but equivalent pair.
So as to focus on the main ideas of this discussion, we have not implemented all the above-

mentioned tactics in our computer codes. Our primitive testing in the next section seems to support
that our approach is very promising.

Finally, we mention that our discussion thus far is only about the forward problem, namely, de-
coupling a given quadratic system into subsystems. It is sensible to ask the inverse problem, that
is, building a fully structured system from prescribed subsystems. The so called quadratic inverse
eigenvalue problem of constructing a quadratic model with a prescribed spectrum and a desired con-
nectivity structure is one such an application [12]. Our framework can be exploited to answer this
question. See Example 4 in Section 7.

7. Numerical experiments. In this section we report four empirical results with the trans-
formation flow T (t) by numerically integrating the IVP (4.10). Each experiment demonstrates one
particular setting. Our primary concern at the moment is not so much on the efficiency of this method.
Rather, our goal is to demonstrate that the flow approach can indeed be employed to find structure
preserving isospectral transformation for the purpose of decoupling. Understandably, to make this
method computationally more effective requires additional ruminations, such as employing specially
designed geometric integrators or streamlining memory management, which are not investigated in
this paper. Also, to make this method universally robust in dealing with undesirable limit points,
tactics such as those mentioned in the preceding section should be implemented. At present, we carry
out the integration by standard ODE solvers available in Matlab. In Example 3 we take advantage
of the event capability in the ODE suite to detect the existence of undesirable limit point. In all our
experiments, we set the local tolerances AbsTol and RelTol at 10−10. For the ease of displaying the
data in the running text, we report numerical results on small-scale problems and show 4 significant
digits only.

Example 1. Consider the total decoupling of a 4-DoF system depicted in Figure 1.1 withM0 = I
and

C0 =

 0.4108 0.0000 −0.3529 0.0000
0.0000 0.0000 0.0000 0.0000

−0.3529 0.0000 2.1661 −1.8132
0.0000 0.0000 −1.8132 1.8132

 , K0 =

 22.3480 −9.3547 −8.9365 0.0000
−9.3547 18.5240 −9.1690 0.0000
−8.9365 −9.1690 22.2080 −4.1027
0.0000 0.0000 −4.1027 4.1027

 .
Upon integrating (4.10) to t ≈ 400, we obtain a near-convergence transformation

T =



0.7059 −0.4465 −0.4965 −1.1729 0.0168 0.0426 0.7025 −0.5292
−0.7082 −0.3461 −0.4115 −0.2544 0.0139 0.0092 −0.7111 −0.3641
0.1405 0.8502 0.5264 −0.6789 −0.0178 0.0246 0.1442 0.8023

−0.0417 −0.1065 0.2927 1.8316 −0.0099 −0.0665 −0.0396 0.0228
0.3599 0.4143 −0.0606 −0.0111 0.0099 0.0132 0.3380 0.4138
0.4131 0.4772 −0.0918 −0.0127 0.0151 0.0151 0.3799 0.4766
0.2150 0.4975 0.4935 −0.0116 −0.0810 0.0137 0.3934 0.4970

−0.9177 0.6033 0.1258 0.0303 −0.0207 −0.0359 −0.8722 0.6046

 .

which transforms the damping matrix and stiffness matrix into

C =

 0.2073 0.0000 0.0000 0.0000
0.0000 2.2029 0.0000 0.0000
0.0000 0.0000 1.9436 0.0000
0.0000 0.0000 0.0000 0.0363

 , K =

 29.5482 0.0000 0.0000 0.0000
0.0000 6.0921 0.0000 0.0000
0.0000 0.0000 27.5510 0.0000
0.0000 0.0000 0.0000 0.8435

 ,
representing four 1-DoF subsystems.

To demonstrate the effect of the flow approach, we plot in Figure 7.1 the evolution history of
the off-diagonal parts of C and K which are successfully annihilated. Also plotted on the left side
in Figure 7.2 is the history of deviation from the Lancaster structure because T (t) is obtained by
numerical integration. Recall that our local tolerance is set at 10−10, the global error at around 10−8
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Fig. 7.1. The evolution of off-diagonal portions of matrices C and K for Example 1.

should be deemed acceptable. We also calculate the spectra of the triplets (I, C(t),K(t)) and compare
them with the true spectrum of (I, C0,K0). The loss of isospectrality is plotted in the graph on the
right side of Figure 7.2. Our theory asserts that the loss of isospectrality should be of the same order
as the deviation from the Lancaster structure. The two graphs in Figure 7.2 side by side confirm the
theory.
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Fig. 7.2. The deviations of spectrum and Lancaster structure for Example 1.

Example 2. For a serially linked mass-spring-damper system, the coefficient matrices are neces-
sarily tridiagonal. We artificially generate a 4-DoF test data

C0 =

 0.1000 −0.1000 0.0000 0.0000
−0.1000 0.2000 −0.1000 0.0000
0.0000 −0.1000 0.2000 −0.1000
0.0000 0.0000 −0.1000 1.3500

 , K0 =

 1.0000 −1.0000 0.0000 0.0000
−1.0000 2.0000 −1.0000 0.0000
0.0000 −1.0000 2.0000 −1.0000
0.0000 0.0000 −1.0000 1.1000

 .
Note the first three elements have identical physical parameters. It will be interesting to see if similar
elements linked together can be separated. We find a decoupled system

C =

 0.4123 0.0000 0.0000 0.0000
0.0000 0.3865 0.0000 0.0000
0.0000 0.0000 0.3966 0.0000
0.0000 0.0000 0.0000 0.6547

 ,K =

 0.0374 0.0000 0.0000 0.0000
0.0000 3.3190 0.0000 0.0000
0.0000 0.0000 1.7488 0.0000
0.0000 0.0000 0.0000 0.4613
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via the transformation

T =



0.6974 −0.5321 −0.0198 −0.1232 0.5297 0.0704 0.4790 −0.5600
0.6787 0.4475 −0.0114 −0.1250 0.3050 0.0714 0.5529 0.4191
0.6384 0.6551 0.0062 0.2629 −0.1671 −0.1503 0.7073 0.7147
0.5706 −0.3685 0.0349 0.4640 −0.9339 −0.2653 0.9556 −0.2633

−0.2971 −0.3824 −0.0677 −0.2267 0.0204 0.4914 −0.3050 −0.7041
0.6980 −0.0477 0.1027 −0.3258 −0.0310 0.7063 0.7100 −0.5101

−0.6419 0.5215 0.0597 −0.4174 −0.0180 0.9048 −0.6350 −0.0709
0.1571 1.1050 −0.2983 −0.3251 0.0899 0.7049 0.1224 0.6436

 .

Example 3. In this example, we experiment with partial decoupling. We also demonstrate
how the event of undesirable limit point can be handled. Suppose that we wish to transform the
following randomly generated system in R5, which does not even represent a mechanical system, into
4 subsystems in R2 × R× R× R.

C0=


2.4692 −1.2722 −0.5179 −0.6703 2.4752

−1.2722 3.7048 0.3883 1.7535 −2.0158
−0.5179 0.3883 2.3288 −0.2062 −0.1141
−0.6703 1.7535 −0.2062 8.7696 0.2896
2.4752 −2.0158 −0.1141 0.2896 2.9922

 ,K0=


5.9325 −3.4215 1.9520 −0.6521 0.4059

−3.4215 6.3475 1.1815 4.2934 −2.0081
1.9520 1.1815 5.0092 2.3673 1.4432

−0.6521 4.2934 2.3673 5.7336 −0.7962
0.4059 −2.0081 1.4432 −0.7962 4.4014

 .
Our framework works by defining the projectors PC and PK accordingly in (4.2) and finds the

partially decoupled isospectral subsystems

C =


4.5820 −2.5243 0.0000 0.0000 0.0000

−2.5243 4.3581 0.0000 0.0000 0.0000
0.0000 0.0000 2.3999 0.0000 0.0000
0.0000 0.0000 0.0000 8.7908 0.0000
0.0000 0.0000 0.0000 0.0000 0.1340

 , K =


3.3456 −4.1547 0.0000 0.0000 0.0000

−4.1547 6.3737 0.0000 0.0000 0.0000
0.0000 0.0000 6.7071 0.0000 0.0000
0.0000 0.0000 0.0000 2.3894 0.0000
0.0000 0.0000 0.0000 0.0000 5.0578

 .
via the transformation

T =



0.1977 0.1447 −0.6904 −0.2161 0.1960 −0.1737 −0.0475 −0.0402 −0.4077 −0.1208
0.0866 0.2271 0.1652 0.0617 0.3941 −0.2952 −0.0125 −0.0127 0.6491 0.3148

−0.3908 0.8533 −0.0981 0.0921 −0.1433 0.0146 −0.0192 −0.0417 0.1308 −0.0596
0.3803 0.1230 −0.1036 −0.9533 0.0417 0.2955 0.0521 0.0069 −0.3373 1.0046
0.2275 0.4381 0.7174 0.0890 0.1376 −0.0446 0.0576 −0.0555 −0.5754 −0.0554

−0.0653 −1.0116 0.0862 0.3186 0.2035 0.0313 −0.1020 0.5899 0.2587 −0.6850
0.9094 −1.4765 0.1655 0.0841 0.0643 0.0063 −0.2051 0.7188 0.2572 0.1669
0.0466 0.5918 −0.0040 0.1291 0.2109 −0.0107 0.0746 −0.4298 0.8995 −0.0926
0.0707 0.8149 −0.2051 −0.3497 −0.0347 0.0910 −0.0217 −0.1810 −0.0022 −0.1045

−0.5957 −0.6809 0.0285 −0.3865 0.2806 −0.0077 −0.0716 0.3167 0.2998 0.7248


.

If further decoupling is desired, we only need to work on the upper left 2× 2 blocks of C and K,
i.e.,

Ĉ0 =
[

4.5820 −2.5243
−2.5243 4.3581

]
, K̂0 =

[
3.3456 −4.1547

−4.1547 6.3737

]
,

which at present stands as a coupled subsystem. Surprisingly, our gradient flow approach by using
the control strategy (4.8) alone fails to break down such a simple subsystem. What has happened is
that at a certain point of the integration the product g>(T (t))∇f(T (t)) becomes nearly zero, which
causes the controls s and d defined via (4.8) also becomes nearly zero. Consequently, the vector field
Ṫ defined by (4.10) is nearly zero and the flow T (t) stagnates.

To fix such an undesirable phenomenon, we build in our code a mechanism to automatically detect
the ”event” when ‖∇f(T (t))‖ is greater than a specified lower bound and ‖g>(T (t))∇f(T (t))‖ is less
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Fig. 7.3. The objective function fu(T ) .

than a specified upper bound. When such an event occurs, we momentarily modify the vector field
by providing an excitement. The idea is to mimic the simulated annealing where the descent flow is
excited to become an ascent flow briefly and, hence, jumps out of the basin of the local minimum.
The resulting dynamics of such a control strategy is demonstrated in the left graph of Figure 7.3. At
approximately t = 40.39 the event occurs. We zoom in the behavior near this point in the right graph
of Figure 7.3. We exert the excitement for a brief moment, say, until t = 40.81. During that interval,
the objective value is increased. We then return to the ordinary descent flow (4.10). We are able to
decouple the subsystem into

Cu =
[

3.3593 0.0000
0.0000 5.5808

]
, Ku =

[
3.3591 0.0000
0.0000 1.2095

]
,

with the corresponding transformation

Tu =

 −0.8724 2.1208 −0.6314 1.2485
0.5095 0.1933 −0.0576 0.7028

−1.4553 0.1225 −0.1012 −0.8903
−1.0175 0.3947 −0.3263 0.8037

 .
Example 4. In this example, we experiment with the ability of our flow approach for the inverse

eigenvalue problem. We first generate a random self-adjoint quadratic system

C0 =

 3.8604 −1.0560 −0.1034 1.1005
−1.0560 2.4316 0.1350 1.4677
−0.1034 0.1350 0.9208 −0.9336
1.1005 1.4677 −0.9336 3.0482

 , K0 =

 3.3899 2.2202 5.7810 1.0527
1.0527 2.8559 4.1710 −0.7054
5.7810 5.7810 12.8220 3.4286
3.4286 0.34286 3.4286 3.4286

 ,
to obtain their spectrum

{−0.0274,−0.1492,−0.1812± 1.8714i,−0.6176± 4.0761i,−0.61761 + 4.0761i,−4.1340,−4.3528} .

We specify the desired structure such as that in (1.2). Upon defining the projectors PC and PK
properly and following the gradient flow (4.10), we find

C =

 4.6134 0.0000 0.0948 0.0000
0.0000 0.0000 0.0000 0.0000
0.0948 0.0000 1.8592 −1.2274
0.0000 0.0000 −1.2274 3.7885

 ,K =

 1.7895 2.2868 2.0202 0.0000
2.2868 4.6182 4.3250 0.0000
2.0202 4.3250 1.4366 4.3274
0.0000 0.0000 4.3274 1.9609

 .
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with the corresponding transformation

T =



1.1571 0.1970 0.1171 −0.4775 0.0450 0.0656 0.9433 0.0905
0.0730 −0.0433 −0.3096 −0.8089 0.0995 0.0357 −0.3895 −0.1241

−0.3293 1.0243 0.1064 0.4262 −0.0444 −0.0103 −0.1232 0.9978
−0.2562 −0.0111 0.1033 −0.0424 −0.0856 0.0109 0.1375 −0.0213
0.4031 0.0846 0.2801 −0.3150 −0.1443 0.0160 0.4031 0.1046
0.7965 0.4612 −0.5020 −0.1466 0.0260 −0.0040 0.7965 0.5202
0.0197 −0.0825 0.1584 0.1248 −0.0026 −0.0407 0.0197 0.0591

−0.5085 0.8471 0.0924 −0.0499 0.0122 0.0015 −0.5085 0.8546

 .

It is worth noting that while we do find a quadratic system which carries the prescribed spectrum
and satisfies the desired structure in mathematics, the constructed system (C,K) does not necessarily
meet the physical feasibility, e.g., the hereditary property of zero row sums for internally linked masses.
Solving a mathematical problem is the first step. To meet physical feasibilities requires additional
improvement of our framework.

8. Conclusion. In this paper we propose a framework for computing structure preserving isospec-
tral transformations for the decoupling of a monic self-adjoint quadratic pencil. The approach is an
echo to the general but interesting question raised by V.I. Arnol’d in the seminal book [3]:

What is the simplest form to which a family of matrices depending smoothly on
the parameters can be reduced by a change of coordinates depending smoothly on
the parameters?

We explain conditions for preserving the Lancaster structure throughout the smooth change of coordi-
nates, which thus preserves the spectrum, and incorporate such a flow into a gradient flow to decouple
the quadratic pencils. The framework is capable of handling both total and partial decoupling. A
theory on the bounds of error is established. Fine tuning of the framework as well as the codes is
yet to be further studied. However, preliminary experiments seem to evidence the working of the
framework.
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