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Abstract

In this era of hyper-technological innovation, massive
amounts of data are being generated at almost every level
of applications in almost every area of disciplines. Extract-
ing interesting knowledge from raw data, or data mining in
a broader sense, has become an indispensable task. Never-
theless, data collected from complex phenomena represent
often the integrated result of several interrelated variables,
whereas these variables are less precisely defined. The ba-
sic principle of data mining is to distinguish which variable
is related to which and how the variables are related. In
many situations, the digitized information is gathered and
stored as a data matrix. It is often the case, or so as-
sumed, that the exogenous variables depend on the endoge-
nous variables in a linear relationship. Retrieving “useful”
information therefore can often be characterized as finding
“suitable” matrix factorization. This paper offers a syn-
opsis from this prospect on how linear algebra techniques
can help to carry out the task of data mining. Examples
from factor analysis, cluster analysis, latent semantic index-
ing and link analysis are used to demonstrate how matrix
factorization helps to uncover hidden connection and do
things fast. Low rank matrix approximation plays a funda-
mental role in cleaning the data and compressing the data.
Other types of constraints, such as nonnegativity, will also
be briefly discussed.

1 Introduction

Data analysis is pervasive throughout science, engineer-
ing and business applications. An essential task in almost
every discipline is to analyze a certain data to search for
relationships between a set of exogenous and endogenous
variables. There are two special concerns in data analysis.
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First, most of the information gathering devices or meth-
ods at present have only finite bandwidth. One thus cannot
avoid the fact that the data collected often are not exact.
For example, signals received by antenna arrays are often
contaminated by instrumental noises; astronomical images
acquired by telescopes are often blurred by atmospheric tur-
bulence; database prepared by document indexing are often
biased by subjective judgment; and even empirical data ob-
tained in laboratories often do not satisfy intrinsic physical
constraints. Before any deductive sciences can further be
applied, it is important to first reconstruct or represent the
data so that the inexactness is reduced while certain feasi-
bility conditions are satisfied.

Secondly, complex systems always entail multiple vari-
ables. Data observed for these systems are the convoluted
action of these variables. When these variables are less pre-
cisely defined, the actual information contained in the orig-
inal data might be overlapping and ambiguous. A reduced
system model could provide a fidelity near the level of the
original system, while facilitating the extraction of previ-
ously hidden knowledge for important decision making.

Among a wide variety of data mining techniques, clas-
sification, regression, factor analysis and principal compo-
nent analysis are some of the most commonly employed
methods for accomplishing the goal of reducing the number
of variables and detecting structures among the variables.
One common ground in the various approaches for noise
removal, model reduction, feasibility reconstruction, and so
on, is to replace the original data by a lower dimensional
representation obtained via subspace approximation. The
notion of low rank approximations therefore arises. This
paper casts these data mining techniques as a problem of
matrix factorization and suggests fundamentals of models
and methods from linear algebra prospective.

2 Linear Model

Let Y = [yij ] ∈ Rn×` denote the matrix of the “ob-
served” data, which is to be analyzed. Each entry yij rep-
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resents, in a broad sense, the score obtained by entity j on
variable i. One way to characterize the interrelationships
among multiple variables that contribute to the observed
data Y is to assume that yij is a linearly weighted score
by entity j over several “factors”. We shall temporarily as-
sume that there are m factors, but often it is precisely the
point that the factors are to be retrieved in the mining pro-
cess. A linear model, therefore, assumes the relationship

Y = AF, (1)

where A = [aik] ∈ Rn×m is the loading matrix with
aik denoting the influence of factor k on variable i, and
F = [fkj ] ∈ Rm×` is the scoring matrix with fkj denot-
ing the response of entity j to factor k. Depending on the
applications, there are many ways to interpret the meaning
of the linear model.

A brief description of some applications below should
demonstrate the points. Pay attention to the fact that the
data are subject some additional constraints.

2.1 Air Quality Management

The receptor model is an observational technique com-
monly employed by the air pollution research community
which makes use of the ambient data and source profile data
to apportion sources or source categories [6]. Assume that
there are m sources which contribute n chemical species to
` samples. The mass balance equation within this system
can be expressed via the relationship,

yij =
m∑

k=1

aikfkj , (2)

where yij is the elemental concentration of the ith chemical
measured in the jth sample, aik is the gravimetric concen-
tration of the ith chemical in the kth source, and fkj is the
airborne mass concentration that the kth source has con-
tributed to the jth sample. In a typical scenario, only values
of yij are observable whereas neither the sources are known
nor the compositions of the local particulate emissions are
measured. Thus, a critical question is to estimate the num-
ber m, the compositions aik, and the contributions fkj of
the sources.

Note that in this receptor model, there is a physical con-
straint imposed upon the data. That is, the source composi-
tions aik and the source contributions fkj must all be non-
negative. The identification and apportionment, therefore,
becomes a nonnegative matrix factorization problem of Y .

2.2 Image Articulation Library

In biometric identification applications, it is sometimes
desirable to process data sets of images represented by col-
umn vectors as composite objects in many articulations,

poses, or separated parts. The factorization in the linear
model would enable the identification and classification of
intrinsic “parts” that make up the object being imaged by
multiple observations [5, 11]. More specifically, each col-
umn yj of a nonnegative matrix Y now represents n pixel
values of one image. The columns ak of A are basis ele-
ments in Rn. The columns of F , belonging to Rm, can be
thought of as coefficient sequences representing the ` im-
ages in the m basis elements. In other words, the relation-
ship

yj =
m∑

k=1

akfkj (3)

can be thought of as that there are m standard parts ak in
a variety of positions and that each image represented as
a vector yj is made by superposing these parts together in
specific ways by a mixing matrix represented by F . Those
parts, being images themselves, are necessarily nonnega-
tive. The superposition coefficients, each part being present
or absent, are also necessarily nonnegative.

2.3 Latent Semantic Indexing

Assume that textual documents are collected in an in-
dexing matrix H = [hik] in Rn×m. Each document is rep-
resented by one row in H . The entry hik represents the
weight of one particular term k in document i whereas each
term could be defined by just one single word or a string
of phrases. One commonly used term-weighting scheme to
enhance discrimination between various documents and to
enhance retrieval effectiveness is to define hik = tikgkni,
where tik captures the relative importance of term k in doc-
ument i, gk weights the overall importance of term k in
the entire set of documents, and ni := (

∑m
k=1 tikgk)−1/2

is the scaling factor for normalization, which is necessary
because, otherwise, one could artificially inflate the promi-
nence of document i by padding it with repeated pages or
volumes. Note that after the normalization, rows of H are
of unit length.

With the indexing matrix H in place, one can retrieve
information for a given query. Each query is represented
as a column vector qj = [q1j , . . . , qmj ]> in Rm where qkj

represents the weight of term k in the query j. To measure
how the query qj matches the documents, we calculate the
column vector

cj = Hqj (4)

and rank the relevance of documents to qj according to the
scores in cj .

The computation thus far seems to be merely the vector-
matrix multiplication. This is so only if H is a “reasonable”
representation of the relationship between documents and
terms. In practice, however, the matrix H is never exact.
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A major challenge in the field has been to represent the in-
dexing matrix and the queries in a more compact form so
as to facilitate the computation of the scores [4, 13]. In this
context, the standard parts ak indicated in (3) may be in-
terpreted as subcollections of some “general concepts” con-
tained in these documents.

Note the different emphasis in these examples. In some
cases the data matrix Y is given and the factors in A are
to be retrieved while in other cases the terms in the index-
ing matrix H are predetermined and the scores cj are to be
calculated.

3 Matrix Factorization

The relationship of Y = AF in the linear model (1) is
only the first level matrix factorization. To effectuate this
decomposition, our thought needs to go deeper.

3.1 Factor Retrieval

A common practice is to assume that the data in Y are
standard scores, i.e., each row of Y has been normalized to
have mean 0 and standard deviation 1. The matrix

R :=
1
`
Y Y >, (5)

therefore represents the correlation matrix of all n variables.
Assume further that all sets of factors being considered are
uncorrelated with each other and, similar to Y , that the
scores in F for each factor are also normalized. Then it
is true that FF> = `Im, where Im stands for the identity
matrix in Rm×m. It follows that the correlation matrix R
can be expressed directly in terms of the loading matrix A,
i.e.,

R = AA>. (6)

Factor extraction now becomes a problem of decomposing
the correlation matrix R into the product AA>.

As a whole, the ith row of A may be interpreted as how
the data variable i is weighted across the list of current fac-
tors. If the norm of this row, called the communality of
variable i, is small, it suggests that this specific variable is
of little consequence to the current list of factors. On the
other hand, the kth column of A may be interpreted as cor-
relations of the data variables with that particular kth factor.
Those data variables with high factor loadings are consid-
ered to be more like the factor in some sense and those with
zero or near-zero loadings are treated as being unlike the
factor. The quality of this likelihood, called the significance
of the corresponding factor, is measured by the norm of the
kth column of A. One basic idea in factor analysis is to
rewrite the loadings of variables over some newly selected
factors so as to manifest more clearly the correlation be-
tween variables and factors.

Suppose the newly selected factors are expressed in
terms of columns of the orthogonal matrix

V := [v1, . . . ,vm] ∈ Rm×m. (7)

Then the rewriting of factor loadings with respect to V is
mathematically equivalent to a change of basis, i.e., A is
now written as B := AV . Selecting V so that the signifi-
cance levels among the factors are more manifestly differ-
entiated is the critical step in the practice of factor analysis.
Ideally, we want to concentrate the loadings on as few fac-
tors as possible. In this way, we discover influential factors
and reduce the dimension of the model.

Note that because V V > = Im, the very same observed
data now is decomposed as Y = AF = (AV )(V >F ) =
BG with B = AV and G = V >F representing, respec-
tively, the factor loadings and uncorrelated standard factor
scores corresponding to the factors in V . From this we also
see that the correlation matrix R = AA> = BB> ∈ Rn×n

is independent of factors selected. This identity is impor-
tant in that the new factors can be retrieved directly from
the correlation matrix R without reference to any previously
defined loading matrix A.

3.2 Centroid Decomposition

The centroid decomposition amounts to a procedure of
defining a new coordinate system representing what are
called the centroid factors via successive rank reduction.
The most important feature of this approach is that load-
ings with respect to the centroid factors can be calculated
without the knowledge of the data matrix Y . The computa-
tion only depends on the correlation matrix R. The centroid
decomposition, motivated by the simplicity of its geometry,
had been used as a convenient way to retrieve factors by
hand calculation before the most powerful singular value
decomposition was developed.

We demonstrate how the first centroid factor can be
calculated. Temporarily assuming that a loading matrix
A1 ∈ Rn×m is given, the coordinate axes in Rm represent
a set of m abstractly defined factors. Denoting each row of
A1 as a point in the factor space Rm, the arithmetic mean
of these points could be an indicator for the collective trend
of the variables and thus constitutes the essential idea of a
centroid factor. The centroid of these n variables is given
trivially by the column vector

c1 :=
A>

1 1n

n
=

[∑n
i=1 ai1

n
, . . . ,

∑n
i=1 aim

n

]>
, (8)

where 1n denote the column vector 1n := [1, . . . , 1]> ∈
Rn. The first centroid factor is defined to be the normalized
vector

v1 :=
c1

‖c1‖
. (9)
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The new loadings of variables with respect to this new factor
v1, i.e., the first column b1 of the new loading matrix B
(which is yet to be found), is given by b1 = A1v1 which
can be rewritten as

b1 = A1
A>

1 1n

‖A>
1 1n‖

=
R11n√
1>n R11n

. (10)

Note that the first loading vector b1 is extracted directly
from R1. No reference to A1 or v1 is needed.

Once the first centroid factor is found, the system can
easily be orthogonally reduced to remove any information
along v1 from A1 (or R1). The above procedure can then be
repeated to find the next generalized centroid. Each appli-
cation of this centroid factor retrieval will reduce the rank
of the loading matrix by one [2]. The procedure therefore
has to come to a stop in finitely many steps. In this way,
with the recurrence

Ai = Ai−1 −Ai−1vi−1v>i−1, i = 2, . . . , r, (11)

where vi is the generalized centroid factor of Ai, r is the
rank of A1, and with the loadings bi = Aivi, we may write

A = A1 = brv>r + . . . + b1v>1 , (12)

which is called a centroid decomposition of A. In prac-
tice, the iteration terminates whenever the significance level
‖bi‖ is downgraded to a preset threshold, resulting a low
rank approximation to A and, hence, to Y .

3.3 Singular Value Decomposition

It is worthwhile to point out first the statistical mean-
ing behind the singular value decomposition. Consider a
general random column vector X in Rn with a certain un-
specified (or unknown) distribution. Let E [X ] denote the
expected value of X and cov(X ) := E [(X − E [X ])(X −
E [X ])>] ∈ Rn×n the covariance matrix of X . The deter-
ministic matrix cov(X ) enjoys a spectral decomposition

cov(X ) =
n∑

j=1

λjpjp>j , (13)

where we also assume that eigenvalues are arranged in
the descending order λ1 ≥ λ2 ≥ . . . ≥ λn. Because
p1, . . . ,pn form an orthonormal basis for Rn, we can ex-
press the random column variable X as

X =
n∑

j=1

(p>j X )pj . (14)

Note that columns in the matrix P := [p1, . . . ,pn] are de-
terministic vectors themselves, the randomness of X there-
fore must come solely from the randomness of the combi-
nations coefficients in (14). Let α := P>X . Then α is a

random vector with moments,

E [α] = P>E [X ], (15)
var(α) = diag{λ1, . . . , λn}, (16)

showing that its components are mutually stochastically in-
dependent. Now that our random vector X is comprised
of random contributions from each of the n directions pj ,
j = 1, . . . , n, whereas the contribution from each direc-
tion is governed independently by the distribution of the
corresponding random variable αj , it is intuitively correct
from a statistical point of view that those coefficients αj

with larger variances should represent a more integral part
in the stochastic nature of X . It is in this context that we
may rank the importance of corresponding eigenvectors pj

as essential components of the variable X according to the
magnitude of λj .

If it becomes desirable to approximate the random vari-
able X by another unbiased yet simpler variable X̂ , we see
that X̂ had better capture those components corresponding
to larger λj in the expression (14). More specifically, by a
simpler variable X̃ we mean a random variable limited to
a lower dimensional subspace. Our goal then is to find a
proper subspace S of Rn and a particular random vector X̃
over S such that E [‖X − X̃‖2] is minimized.

To quantize X̃ , observe that given any m-dimensional
subspace S, there exists a matrix K ∈ Rn×m such that
columns of the matrix product PK, with P given by (13),
form a basis for S. Any unbiased random variable X̃ re-
stricted to S can then be expressed in the form

X̃ = PKβ

where β stands for a certain (column) random variable in
Rm. We may further assume that components in β are
mutually independent. It follows that E [‖X − X̃‖2] =
E [‖α − Kβ‖2]. The minimum-variance problem is now
reduced to the problem of finding K and β so that the vari-
ance E [‖α−Kβ‖2] is minimized.

The minimum-variance estimate is readily available. In-
deed, given β, the optimal matrix K is completely deter-
mined and is given by [12]

K = E [αβ>](E [ββ>])−1. (17)

In fact, each βi is the minimum-variance estimate of the
corresponding αi. We know further that

E [‖α−Kβ‖2] = E [α>α]− E [α>Kβ]. (18)

Thus to obtain the minimum-variance approximation of X ,
it only remains to choose β so that

E [α>Kβ] =
〈
E [αβ>](E [ββ>])−1, E [αβ>]

〉
(19)
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is maximized. This nonlinear optimization problem turns
out to have a simple solution [3]. Among all unbiased vari-
ables restricted to any m-dimensional subspaces in Rn, the
random variable

X̂ :=
m∑

j=1

(p>j X )pj (20)

is the best linear minimum-variance estimate of X in the
sense that E [‖X−X̂‖2] is minimized. Additionally, the ran-
dom variable X̂ defined in (20) also minimizes ‖cov(X̂ ) −
cov(X )‖.

Suppose now columns of X ∈ Rn×` represent ` ran-
dom samples of the variable X . By the law of large num-
bers, many of the stochastic properties of X can be re-
couped from X when ` is large enough. The question is
how to retrieve a sample data matrix from X to represent
the minimum-variance approximation X̂ of X .

The connection lies in the fact that X̃ is simply the pro-
jection of X onto the subspace spanned by {p1, . . . ,pm}.
Since the covariance matrix R = 1

` XX> of the samples
converges to cov(X ), if

R =
n∑

i=1

µiuiu>i (21)

denotes the spectral decomposition of R with eigenvalues
µ1 ≥ . . . ≥ µn and orthonormal eigenvectors u1, . . . ,un,
then the projection

X̂ :=
m∑

j=1

(u>j X)uj . (22)

should represent samples of the best low dimensional
minimum-variance estimate X̂ to X . The low dimension
estimate X̂ to the (continuous) random variable X is now
comfortably translated into a low rank approximation X̂ to
the (discrete) random sample matrix X .

Indeed, the singular value decomposition of X

X = UΣV > =
n∑

i=1

σiuiv
>
i (23)

shares the same eigenvectors of R as its left singular vectors
with singular values σi =

√
nµi, i = 1, . . . n. The popular

notion of the truncated singular value decomposition of X ,∑m
i=1 σiuiv

>
i , is precisely X̂ defined in (22). The truncated

singular value decomposition represents random samples of
the best minimum-variance linear estimate X̂ to X among
all possible m-dimensional subspaces.

4 Link Analysis

When mining data through very large scale of objects,
matrix factorization becomes increasingly difficult. Adding

or deleting information requires updating or downdating the
current factorization, which can be slow; and determining
optimal rank m is not obvious, which can lead to inaccu-
racy. Regardless, this process is an inevitable task. For ef-
fective search, most search engines continually index doc-
uments, mine and retrieve information, and store the data
in an organized way for quick reference when needed. But
then another issue arises. Taking today’s World Wide Web
for example, a query usually can bring up deluging infor-
mation which must be sorted again to reveal the most rele-
vant pages. Link analysis turns out to be another area where
linear algebra can help to tackle this ranking problem. We
outline two ideas in the context of Web search engines.

4.1 HITS Algorithm

Given a query, assume that n Web pages have been
matched through some search mechanism. Without some
ordering of the pages, the user may still be lost at sea since
n could be a huge number. The HITS algorithm is meant to
attach an importance rating to these pages so that the most
important pages are sorted to the top of the list [7].

Let Ii and Oi denote the set of pages linking into and
out of the page Pi, respectively. One way to measure the
importance of page Pi is to assign an authority score ai and
a hub score hi, recording the degrees of linkages into or out
of Pi, respectively. Starting with uniform scores, h

(0)
i = 1

n ,
the pages compete for their authorities and hub reputations.
It makes sense to trade the scores according to the rules,

a
(k)
i =

∑
j:Pj∈Ii

h
(k−1)
j , h

(k)
i =

∑
j:Pj∈Oi

a
(k)
j . (24)

Let L denote the adjacency matrix where Lij = 1 if Pj ∈
Oi; and 0, otherwise. We can represent the evolution of
scores via the matrix form,

a(k) = L>h(k−1), h(k) = La(k), (25)

where a(k) = [a(k)
1 , . . . , a

(k)
n ]> and so on. It follows that

a(k) = (L>L)a(k−1), h(k) = (LL>)h(k−1). (26)

With appropriate normalization (which interprets the scores
as percentages), this algorithm amounts to the power
method that computes the dominant eigenvectors of L>L
and LL>, respectively. The limit points of these iterations,
if exist, provide a ranking of importance for each page.

4.2 PageRank Algorithm

PageRank, employed by Google, is another link analysis
technique that provides accuracy for Web surfing. Let |Oi|
denote the number of out links from page Pi. The PageRank
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algorithm differs from the HITS algorithm mainly in that it
distributes importance equally to all linked pages and thus
conveniently introduces the notion of probability. The Page-
Rank ri for page Pi is defined to be

r
(k)
i :=

∑
j:Pj∈Ii

r
(k−1)
j

|Oj |
. (27)

Let H denote the modified adjacency matrix where Hij =
1
|Oi| if Pj ∈ Oi; and 0, otherwise. The evolution of the row

vector r(k) = [r(k)
1 , . . . r

(k)
n ] can be expressed as

r(k) = r(k−1)H. (28)

Note that H is a row stochastic matrix and each r(k) is a
probability distribution vector. Surfing on Web is thus in-
terpreted as a random walk on the graph defined by the hy-
perlinks [10].

To avoid the possibility thatOi is an empty set, and more
so to ensure convergence, the hyperlink matrix H is further
modified to become

G = α

(
H +

a1>

n

)
+ (1− α)

11>

n
, (29)

where a,1 ∈ Rn are column vectors with ai = 1 if Oi = ∅;
and 0, otherwise; 1 has 1 in all entries, and α ∈ [0, 1] is a
parameter. In this way, G remains row stochastic, but is also
irreducible and aperiodic. The stationary distribution vector

r = rG (30)

exists, is unique, and provides a ranking of importance for
each page [1].

Finding the stationary distribution vector r is certainly
not a easy job, because the Google matrix G has indexed
billions of pages and the size is constantly growing. For
that reason, iterative method is perhaps the only choice of
method and convergence rate becomes a concern. The res-
cue lies with the parameter α. As a stochastic matrix, the
power method applied to G converges at the rate of its sec-
ond largest eigenvalue |λ2|, which has been proved to be
|λ2| = α precisely [9]. It has been said that Google uses
α = .85 and the PageRank can be found to be within 10−4

accuracy by 50 iterations regardless the size of the matrix.
The mathematical theory above does not address all is-

sues arising in real-life applications. Link structure over the
web is extremely dynamical. The PageRank needs update
periodically. The mechanism of updating an old PageRank
is still an open question.

5 Structural Constraints

In sciences and engineering, data values out of mathe-
matical models are often constrained for the sake of feasi-
bility and interpretability. The fact of the matter has been

demonstrated in our applications in Section 2, where con-
straints such as nonnegativity or constant row sums must be
imposed. There are also situations in settings such as DNA
microarray analysis or drug discovery where the data must
be refrained to either 0 or 1, resulting a binary decomposi-
tion [8].

Very few of currently available mining techniques are
readily generalizable to take structured data into account.
Nonnegative matrix factorization, for example, plays a ma-
jor role in a wide range of important applications, yet there
is still little theory on how the factorization can be robustly
and efficiently accomplished. At present, most algorithms
are data specific and the rate of convergence is slow. Struc-
tured low rank approximation should be an important area
for future research.
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