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ON THE GLOBAL CONVERGENCE OF THE TODA LATTICE
FOR REAL NORMAL MATRICES AND ITS APPLICATIONS

TO THE EIGENVALUE PROBLEM*

MOODY T. CHUt

Abstract. The asymptotic behavior of the Toda lattice, when acting on real normal matrices, is studied. It
is shown that the solution flow eventually converges to a diagonal block form where for a real eigenvalue the
associated block is of size with that eigenvalue as its element and for complex-conjugate pairs of
eigenvalues the associated block is of size 2 2 with the real part as its diagonal elements and the (negative)
imaginary part as its off-diagonal elements. This result generalizes the well-known asymptotic behavior of
Jacobi matrices and is consistent with that from the QR-algorithm.

1. Introduction. Recently the dynamic flow of a special system of differential
equations, known as the Toda lattice, has been found to be closely related to the
important QR-algorithm [1], [2], [4], [7]. Roughly speaking, the QR-algorithm can be
shown to be the time-1 mapping of the solution to the Toda lattice. Specifically, if we
consider the following dynamic system for matrices in

(1.1) ’= X, IIoX X. IIoX- HoX.X
where IIoX=X--X-r and X- is the strictly lower triangular part of X, then the
following properties concerning the solution flow X(t) with initial data X0 at t-O can
be derived from the general results presented in the previous paper [1].

LEMMA 1.1. The solution X( ) is given by

(1.2) X( ) Q*( )XoO( ),
where Q( ) solves the initial value problem

(1.3) .-Q.IIoX, Q(O)-I.

Indeed Q(t) is exactly the unitary matrix involved in the QR-decomposition [3], [6] of
the matrix etX, namely

(1.4) etXo-O(t)R(t)
where R(t) is an upper triangular matrix with real nonnegative diagonal elements.

LEMMA 1.2. For k-O, +-- 1, +--2,..., suppose the matrix e x(k has the QR-decomposi-
tion

(1.5) eX(k)-- Q(k)R(k).

Then

(1.6) ex+)-Rk)Q’.
Observe that, by (1.2), the trajectory X(t) is bounded in R’, so its to-limit set is

nonempty, compact and connected. We are interested in finding this set. A special case,
when X0 is a Jacobi matrix (and hence when X0 is a real symmetric matrix by a
standard tridiagonalization algorithm), has been studied extensively by a number of
authors [2], [4], [7]. In fact, based on the continuous dependence of the initial data for
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the system (1.1) and a well-known theorem [5], [6] in the numerical analysis concerning
the convergence of the QR-algorithm, we have the following generalization [1 ].

THEOREM 1. If the matrix Xo ER
"X" has real distinct eigenvalues (’l >X2>’’" >

)}, then the Toda flow X(t) converges to an upper triangular matrix with the eigenvalues
appearing on the diagonal ,’. the descending order.

In this paper we want to study the behavior of this flow when complex-conjugate
pairs of eigenvalues occur. As is shown in [1], for an arbitrary (nonnormal) 2X2
matrix, the appearance of such a pair of eigenvalues will result in a periodic (in fact, a
circular) portrait in the phase plane and thus X(t) has no convergence at all. It is
natural, therefore, to restrict ourselves in the study of the normal matrices first.

We begin in the next section with some preliminary facts. Especially, we point out
the differential system which governs the dynamics of the corresponding eigenvectors
of the flow X(t). It turns out this system is much easier to handle than the system (1.1)
itself. In {}3 we discuss how eigenvalues affect eigenvectors and, hence, the entire flow
X(t) by the inverse algorithm. Although we only analyze two situations there, they
seem to be generic enough to get general conclusions.

2. Preliminary facts. It is obvious, from Lemma 1.1, that normality is preserved
along the flow provided that X0 is a normal matrix. It is also known that there exists a
unitary matrix U0 such that

(2.1) Xo- UTUo
where T is a diagonal matrix with eigenvalues as its elements. Without loss of generality
we shall assume these elements are arranged in such a way that

Re,hi _> Re)k2 _>.-. >’REX.,
and that whenever there are complex-conjugate pairs, they are adjacent to each other.
By (1.2), it follows that

(2.3) X(t)- U*(t)TU(t)
where

(2.4) U( ) UoO( ).
Notice that, by (1.3), U(t) satisfies the differential system

(2.5) /)= U. HoX.
We shall assume X0 is an upper Hessenberg matrix. Then the following lemma [1]

guarantees the preservation of this structure along the entire flow. Recall that this
useful property is also enjoyed by the classical QR-algorithm.

LEMMA 2.1. IfX is an upper Hessenberg matrix, so is =[X, H0X].
Let us denote the matrix U(t) in (2.4) by U(t)=[u(t),...,u,(t)] where ui(t ) is the

th column of U(t). Then by (2.3) we have

(2.6) [u,-..,u,]

Xll X12 Xln

X21 X22

X32

0 Xn,n_ Xnn
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So the following equality holds for each k- 1,...,n.

k+l

(2.7) X xi,ui Tu,,
i--1

where it is understood that u+ =0. Since all the vectors u are mutually orthogonal,
we know that for all _< i_< n and _<j_< n

(2.8) xij: < ui, Zuj >
where ., ) is the inner product in C n.

From (2.5), (2.6) and (2.8), it is not hard to see now that
LEMMA 2.2. For i= 1,. .,n, the vector ui(t ) satisfies the differential system

(2.9) fti- Tui- X < uj, rui > uj- < ui, TUi- > Ui-
j=l

In particular, the first column Ul(t) of U( t) satisfies the equation

(2.10) /’1 TUl < Ul’ TUl > UI"

Direct substitution also shows that
LEMMA 2.3. The solution to (2.9) is given explicitly by

(2.11) u,(t)-- eTtul(O)
IleTtul(o)ll2

We note that the ith component Uil(t ) of u is given by

(2.12) uit(t ) eAitUio

(X__,leXtuo]2) 1/2

where ui0 is the complex conjugate of the first component of the ith eigenvector of X0.
The following useful inverse algorithm [5] turns out to be very important.

THEOREM 2.1. Suppose B is an unreduced upper Hessenberg matrix with positive
subdiagonal elements and Q is a unitary matrix, then Q and B are uniquely determined by
the first column of Q, providedA is given and B Q*AQ.

For our application, observe that the subdiagonal elements of X(t) can never
change signs along the positive orbit. If we assume, without loss, that X0 not only is an
upper Hessenberg matrix but also is unreduced to begin with, then from (2.6), (2.10)
and the above theorem, we know that X(t) and U(t) are completely determined. The
detailed analysis is presented in the next section.

3. Convergence of X(t). First of all we should explain the meaning of convergence
used in our context. Strictly speaking, convergence would be taken to mean the
convergence of the flow X(t) to some limit matrix. In our context, however, we mean
convergence under deflations, i.e. we are concerned about the convergence of a subma-
trix obtained by deflation, as soon as the subdiagonal element is negligible, to another
submatrix. The precise meaning will become clear later and indeed, as will be seen also,
these two notions of convergence are essentially the same when the Toda lattice is
acting on normal matrices.
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For the simplicity of discussion, we shall make one more genetic assumption,
namely Ul04:0 whenever we need it and that X0 is nonsingular. We shall also use the
notation" to mean "converges to."

LEMMA 3.1. If the eigenvalues in (2.2) are such that

(3.1) Reh =h >Re,h2>_... _>Re,
then

(3.2) x,,(t)X,, x2,(t)0 and Xik(t)O

for every 2<_k<_n as .
Proof. It is clear from (2.12) that as o,

u. and Uil(t)O(3.3) u,,- lu,0
for all i_>2. Let us adopt the following notation in its intuitive sense:

(3.4) lim ui(t) i.

Then we have, from (2.8),

(3..5) x,,( ) ( u,, Tu, ) ( a,, Tft, ) -X,
and, from (2.7),

(3.6) Ixz,(t)l-IlZu,-x,lU,llz-,llZa,-X,a,llz-O.
Observe that, by (2.8) and (3.6),

x2,(/) < u2 Tu, ) ff,zh,a, 0(3.7)
implies

(3.8)
where

(3.9)

Ul2(t)0
means the complex conjugate. Therefore,

x,2(t )- (u,,Tu2)- (T*u,,u),,,,u,O.
Indeed, for every k> 2, it is always true that

(3.10)

implies

Therefore,

(3.12) x,k(t)- (u,,Tuk)- (T*u,,uk)-h,,,u,kO.
In other words, if condition (3.1) is satisfied, then as o

h 0 0 0 0

0 x x x x
X(t) 0 x x x x

0 0 x x x
0 0 0 x x

(3.11) u,k(t)O.
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where "x" represents either a nonzero element or an uncertain position.
Apparently when this convergence phenomenon happens, one is tempted to per-

form the deflation and to proceed the computation on the submatrix. We would like to
point out, however, that those uncertain positions are really not entirely uncertain (they
are uncertain simply because we don’t care to include the analysis in Lemma 3.1). As a
matter of fact, from (2.9), we know that for each k_>2, the eigenvector u is governed
by

k

(3.13) ug-Tug- (ui,TUk)Ui--(Uk,TUk_)Ug_,
i--l

whereas, from (3.8), (3.9), (3.11) and (3.12), we see that the vector tCn-, governed
by

k

i=2

where is obtained from T by deleting the first row and column, would describe the
behavior of u as well when is large enough. Therefore, those uncertain positions are
actually converging according to either Lemma 3.1, with h being replaced by h 2, or the
next lemma, with and 2 being replaced by X2 and X3. It is in this sense that we
mean convergence.
LE 3.2. If the eigenvalues in (2.2) are such that

(3.14) Re-Re2>Re3-.. Re
and if X-a+ ib with b O, then as t , we have

x,(t)a, x22(t)a, x3(t)0,
(3.15)

x(t)(sgnxE(O))lbl, XE(t) (sgnxE(0))lbl,

andfor all k 3

(3.16) Xk(t)O, X(t)O.

Proof. It is clear again from (2.12) that as ,
eibtUlo e-ibtu20(3.17) u(t) u(t)

( + ) ( + )
and for all 3,

(3.18) Uil(t)O.
Notice that Ull(t ) and u22(t ) do not converge at all. But we still use the notation (3.17)
to indicate how they behave when becomes large. Since X0 is a real matrix, it must be
that u0- fi20- Therefore

(3.19) Xl,(t ) u,Tu) X,lul(a+ib)la,l+(a-ib)la-a.
i=1

Thus

(3.20) Ix2, (t)l Tu,- x,, u, I1=-11Z,-a b
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implies that

(3.21) XEl(t)+-b
where the sign of this limit is the same as that of x2(0) since x21(t) can never change
signs. Since b 0, it follows, assuming x21(t) b, from the fact

Tu --XllU(3.22) u2
X21

that

(3.23) Ul2(t)--,iul(t ), UE2(t)iuE(t ), ui2(t)O
for all i_> 3’.. So by (2.8), we know

(3.24) XEE(t ) ( u2 Tu2 a

and

(3.25) Xl2(t)=(u,Tu2) -b.

By (2.7), simple calculation also shows

(3.26) Ix =(t)l=llTu=--x zu,--x==u=ll=- llTa=/ba,--aa=li=O.
We now claim for all k_> 3, as o

(3.27) uk( ) O, u_( ) O.

Indeed this fact follows from solving the following system of equations

u, ru, ) =O, ( u, ru ) =O,(3.28)
or equivalently

(3.29) ,(a+ib)a, +2g(a-ib)a21-O,
tlk(a + ib)iftl-2g(a-ib)ift2 =0.

Therefore, for all k-> 3,

(3.30) Xlk(t)-- Ul,ZUk-- (Z*Ul,Uk-Z*ll,ak--O,
(3.31) x2(/)- (u2,TUk)-- (T*u,uk)-(T*u2,u)-O.

In summary, this lemma states that if condition (3.14) holds, then

a -b 0 0 0
b a 0 0 0

X(t) 0 0 x x x
0 0 x x x
0 0 0 x x

where again "x" represents uncertain positions.
Finally we note that for the case b-0 (multiple eigenvalues), similar results (a

2 2 diagonal block) still can be obtained. Even for the nongeneric case when Re,-
Re2-Re,3- ReX4, an argument analogous to Lemma 3.2 can still show the conver-
gence. It is interesting to see the asymptotic behavior of the general flow [1]

(3.32) ’= X, IIo(G(x))]
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where G(z) is an analytic function defined on an open set containing the spectrum on
X0. The analysis, nevertheless, is much harder than (1.1) since we don’t have a system
as nice as (2.9) and we are still working on it.
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