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THE PROJECTED GRADIENT METHOD FOR LEAST SQUARES MATRIX
APPROXIMATIONS WITH SPECTRAL CONSTRAINTS*

MOODY T. CHU? AND KENNETH R. DRIESSEL:

Abstract. The problems of computing least squares approximations for various types of real and
symmetric matrices subject to spectral constraints share a common structure. This paper describes a general
procedure in using the projected gradient method. It is shown that the projected gradient of the objective
function on the manifold of constraints usually can be formulated explicitly. This gives rise to the construction
of a descent flow that can be followed numerically. The explicit form also facilitates the computation of
the second-order optimality conditions. Examples of applications are discussed. With slight modifications,
the procedure can be extended to solve least squares problems for general matrices subject to singular-value
constraints.
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1. Introduction. Let S(n) denote the subspace of all symmetric matrices in R "x".
Given a matrix A S(n), we define an isospectral surface M(A) of A by

(1) M(A) := {X R"" [X Q’AQ, Q O(n)}

where O(n) is the collection of all orthogonal matrices in R "". Let represent either
a single matrix or a subspace in S(n). For every X S(n), the projection of X into

is denoted as P(X). If is a single matrix, then P(X) -= ; otherwise, the projection
is taken with respect to the Frobenius inner product. We consider the following matrix
least squares problem with spectral constraints.

PROaLEM 1. Find X M(A) that minimizes the function

(2) F(X) := kllx- P(x) 2

where II’ll means the Frobenius matrix norm,

To be more concrete, we mention below a partial list of problems that can be
formulated in the above setting.

PROBLEM A. Given a real symmetric matrix A, find a least squares approximation
of A that is still symmetric but has a prescribed set of eigenvalues {A1,"" ", A,}. In
this case, we choose -= A and A=diag {A1,’’’,

PROULEM B. Construct a symmetric Toeplitz matrix having a set of real numbers
{a 1, , a,} as its eigenvalues. In this case, is the subspace of all symmetric Toeplitz
matrices and A diag {al, ", a,}.

PROBLEM C. Given Xo, find its eigenvalues. In this case, we may choose to be
the subspace of all diagonal matrices and A Xo.

Although some of the above problems may be resolved by some other means (see,
for example, [6]-[8], 12], 13]), the general setting as in Problem 1 carries intrinsically
some interesting geometric properties. By exploring this geometry, we show in this
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paper that the projected gradient of the objective function F(X) onto the manifold
M(A) can be calculated explicitly. As a consequence, a vector field on the manifold
M(A) that flows in a descent direction of F(X) can be constructed. As another
consequence, the explicit form of the projected gradient facilitates the computation
of the second-order optimality conditions. We will see that this information, in turn,
offers some new insights into the classification of the stationary points.

Computational efficiency has not been a major concern in the present paper,
although our approach does offer a globally convergent numerical method. The vector
field defined by the projected gradient can readily be integrated by any available
software for initial value problems. But this may well be as slow as the usual steepest
descent methods. Since we also know the projected Hessian, convergence certainly
can be improved by many other standard techniques [7]. We stress here, however, that
our approach is quite flexible in that we may use the subspace to specify any desired
(linear) structure on the optimal solution. The Toeplitz structure required in Problem
B is such an example. If the subspace does intersect the surface M, then of course
the structure is attainable. Otherwise, our approach still finds a point on M that is a
least squares approximation to @. As another example, we may wish to have an optimal
solution that carries a certain specific zero pattern. To our knowledge, very few discrete
numerical methods are available for solving this kind of problem. In [2] Chu and
Norris have shown (from the matrix decomposition point of view) that a symmetric
matrix with any kind of prescribed off-diagonal zero pattern is always reachable by
following a specifically formulated isospectral flow.

Suppose now that Z is a general matrix in R and is either a single matrix
or a subspace of R"". Then analogous to the above notions we may consider the
surface W(E) defined by

(3) w(E):={XR"X"lx= u,v, uO(m), VO(n)},

and the following optimization problem.
PROBLEM 2. Find X W(E) that minimizes the function

(4) F(X) := 1/2[IX P(X)

where P(X) means the natural projection of X into .
The following problems of practical interest are special cases of Problem 2.
PROBLEM D. Given a matrix A R (say, rn -> n), find a least squares approxi-

mation of that has a prescribed set of singular values {trl, ", tr,}. In this case, we
choose -= A and E diag {o-1,..., o-,}, where diag is understood to be an rn x n
matrix with extra rows filled by zeros.

PgOBLEM E. Given a matrix/] R (say, rn-> n), find the singular values of.. In this case, we may choose to be the subspace of all diagonal matrices in R
and E A.

Again, Problem 2 can be understood from its intrinsic geometric properties. We
will see that with slight modifications, the procedures developed for Problem 1 can
easily be extended to Problem 2.

This paper is organized as follows. In the next section we begin with a brief review
of the optimization theory. We point out in particular how, without forming the
Lagrangian function, the derivative of any generalization of the projected gradient
gives rise to the quadratic form of the projected Hessian. The central framework for
calculating the projected gradient and forming isospectral flow for Problem 1 is
discussed in 3. Its application to Problems A, B, and C are further detailed in 4.
We show how the framework can be extended to answer Problems D and E in 5.
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2. Preliminaries. For completeness, we first review some important facts from the
optimization theory. Consider the following basic equality constrained optimization
problem:

Minimize F(x)
(5)

subject to C (x) 0

where xR", F:R"-R, and C:R"-+Rk with k<n being sufficiently smooth
functions. Let

(6) M:=(xRn[C(x)=O).

We will assume that M is a regular surface, that is, for all x e M, the set {VCi(x)
i=1,...,k} of vectors is linearly independent. Therefore, M is a smooth
(n- k)-dimensional manifold [9]. Furthermore, for any x e M, the space tangent to
M at an x is given by

(7) TxM {y Rn C’(x)y 0I.

It is a fundamental fact [7] that for to be optimal, it is necessary that the gradient
vector V F(:) is perpendicular to the manifold M. Let Z(x) R"(n-k denote a matrix
whose columns form an orthonormal basis for TxM. Then the projection g(x) of VF(x)
onto the tangent space TxM is given by g(x):= Z(x)Z(x)TVF(x). Note that -g(x)
also represents the "steepest descent" direction of F on the manifold M. Obviously,
a necessary condition for to be optimal is that

(8) Z(;)VZ(x) =0.

For each x M, we may rewrite

k

(9) g(x) VF(x)- Z A,(x)VC,(x)
i-----1

for some appropriate scalar functions Ai(x), since the second term on the right-hand
side of (9) represents the component of VF(x) normal to T,M. We now suggest a
rather simple way of deriving the quadratic form of the projected Hessian. This shortcut
may not work for general nonlinear optimization problems, but it proves convenient
and valid for our consideration. Suppose the function g can be smoothly extended to
the entire space R"; that is, suppose the function

k

(10) G(x) := V F(x) , Ai(x)V C,(x)
i=1

is defined for every x R" and is smooth. Then for every x, v e R", we have

(11) vrG’(x)v v r V2F(x) E A,(x)VZCi(x) v-vr E VC,(x)(VA,(x)) r v.
i=1 i=1

In particular, if x M and v TxM, then (11) is reduced to

( )(12) vTO’(x)v= Vr V2F(x) E A,(x)VZC,(x) v
i=1

since v_l_V Ci(x). We note from (12) that the condition v rG’(x)v >- 0 for every v TxM is
precisely the well-known second-order necessary optimality condition for problem (5).
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3. Central framework. We now show how to calculate the projected gradient and
to construct a continuous steepest descent flow on the manifold M(A) for Problem 1.
Note that Problem 1 is equivalent to the following.

PROBLEM 3.

Minimize F(Q):=1/2(QAQ-P(QT"AQ), QrAQ-P(QTAQ))
(13)

subject to QQ I

since x QAQ. In (13), (A, B) denotes the Frobenius inner product of two matrices
A, B R and is defined by

(14) (A, B) := trace (ABr) aijbij.
i,j

Also, without causing ambiguity, we have used the same notation F for the objective
function.

It is well known (and easy to prove) that under the Frobenius inner product the
orthogonal complement of S(n) is given by

(15) S(n)- {all skew-symmetric matrices}.

Regarding the feasible set O(n) in Problem 3 as the zero set of the function C(X):=
1/2(X T-X-I), we obtain from (7) that the tangent space of O(n) at any orthogonal
matrix Q is given by

ToO(n) {HIH7-Q+ QT-H O}
(16) {HI Q7-H is skew-symmetric}

QS(n)- (since QT= Q-l).
It follows that the orthogonal complement of ToO(n) in Rnn is given by

(17) NoO(n)= QS(n).

This is the space normal to O(n) at Q.
Note that the objective function F in (13) is well defined for every general matrix

AR"’. Let a(A) := 1/2(A, A) and (A):=ATAA-P(A7-AA). By the chain rule and
the product rule, it is not difficult to show that for every A, B R, the Fr6chet
derivative of F at A acting on B is given by

F’(A)B a’(fl(A))(’(A)B)
(fl(A), fl’(A)B)
(fl(A), A 7-AB P’(A 7-AA)A7-AB + BT-AA- P’(A 7-AA)BT-AA)
2(fl (A), ArAB P’(A 7-AA)A 7-AB)

(18)

2(fl(A), AT-AB)

2(AAfl(A), B).

(since/3(A) is symmetric)

(since either P’-= 0, or P’= P; and/3(A)+/-)

Equation (18) suggests that with respect to the Frobenius inner product, the gradient
of F at a general matrix A can be interpreted as the matrix

(19) VF(A)=2AA(A).
With (19) on hand, we can identify a stationary point.
LEMMA 3.1. A necessary condition for Q O(n) to be a stationarypointfor Problem

3 is that the matrix X := QT-AQ commutes with its own projection P(X).
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Proof. From (8) we know that Q is a stationary point for F only if VF(Q) is
perpendicular to ToO(n). By (17) and (19), this condition is equivalent to AQfl(Q)
NoO(n)= QS(n). Since Q-l= Q, it follows that Xfl(Q)= X(X-P(X)) S(n). Thus
it must be that XP(X)= P(X)X.

We now calculate the projected gradient of F(Q) on the manifold O(n). We have
seen that

(20) g"n= TQO(n)NQO(n)=QS(n)+/-QS(n).
Therefore any matrix X R has a unique orthogonal splitting

(21) X=Q{1/2(QrX-XrQ)}+Q{1/2(QrX+XrQ)}
as the sum of elements from ToO(n) and NoO(n). Accordingly, the projection g(Q)
of VF(Q) into the tangent space ToO(n) can be calculated explicitly as follows"

g(Q) 1/2Q{( Q2AQ/(Q) 2/(Q)QrAQ)}

(22)
Q{xfl( Q) (Q)X}

=Q[X,(Q)]

=Q[P(X),X].

In the above we have adopted the notation X := QTAQ and the Lie bracket [A, B]:-
AB- BA.

From (22) it is clear that the vector field defined by the system

(23) dQ(t)_ Q(t)[Q(t)TAQ(t), p(Q(t)rAQ(t))]
dt

defines a (steepest) descent flow on the manifold O(n) for the objective function F(Q).
Let X(t):= Q(t)TAQ(t). Then X(t) is governed by the ordinary differential equation

dX(t) dQ(t) r dQ(t)------AQ(t)+Q(t)TA
dt dt dt

(24)
-[X(t), P(X(t))]X(t) + X(t)[X(t), P(X(t))]

[[P(X(t)), X(t)], X(t)].

Note that by definition the flow X(t) defined by (24) stays on the isospectral surface
M(A) for any initial value X(0) Xo M(A). Furthermore, the value of the objective
function F(X) in (2) is guaranteed to be nonincreasing along the forward flow X(t).
(Indeed, it decreases in the steepest direction for most ofthe time.) Problem 1, therefore,
may be solved simply by integrating the initial value problem

(25) dX/dt [[P(X), X], X], X(0) Xo e M(A).

The explicit formula ofthe projected gradient g(Q) in (22) may be used to calculate
the second-order derivative condition for the objective function in the same way as
we mentioned in the preceding section. We first extend the function g to the function
G" R R by defining

(26) G(Z) := Z[P(ZrAZ), ZTAZ].
By the product rule, it is easy to see that for any Z, H R,

G’(Z)H H[p(ZrAZ), ZTAZ]+ Z[P(ZTAZ), ZTAH + HTAZ]
(27)

+ Z[P’(ZrAZ)(ZrAH + HTAZ), ZTAZ].
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Consider the case when Z Q O(n) and H T90(n). Then H QK for some
K S(n) +/-. Let X := QTAQ. Upon substitution, we have

(G’(Q)QK, QK)=(QK[P(X), X]+ Q[P(X), [x, K]]

+ q[P’(x)[x, K], X], QK)
(28)

(KIP(X), X], K)+{[P(X), IX, K]], K)

+([P’(X)[X,K],X],K).

At a stationary point, [P(X), X]=0. So (28) becomes

(29) (G’(Q)(QK), QK)=([P(X), K]-P’(X)[X, K], [X, K]).

Note that P’ is either P itself or identically zero. So (29) can be further simplified and
thus provides additional information for the stationary points. We will demonstrate
how these formulas can be used in the next section.

4. Applications. In this section we provide more computational details by applying
the framework established earlier to Problems A, B, and C, respectively.

PROBLEM A. The projection mapping is the constant P(X)=-. Let A=
diag {,.-., ,,}. According to (22), the projected gradient is given by

(30) g(Q) O[, OTAQ].

The solution X(t) to the initial value problem

(31) dX/dt=[[a,x],x], X(0) =A

determines an isospectral flow that converges to a stationary solution of the least
squares problem.

Let us now consider the second-order condition. For simplicity, we assume that

(32)

and that the eigenvalues of A] are ordered as

(33)

Let Q be a stationary point of F on O(n). We define X := QTAQ and

(34) E := QJQ.
By Lemma 3.1 we should have [., X] 0. It follows that E must be a diagonal matrix
since E commutes with the diagonal matrix A [11]. (Assumption (32) is used here.)
Since E and A are similar, the diagonal elements {el,..., e,} of E must be a
permutation of {tz,"" ",/z,}. We now use the second-order sufficient condition to
check the type of the stationary point. Equation (29) at the stationary point Q becomes

(G’(Q)(QK), QK)= ([A], K], [X, K])

(35) =(QTEQK-KQTEQ, QTAQK-KQTAQ)

=(EK-KE, AK-KA)

where the matrix/ QKQT is still skew symmetric. Let/0 denote the (i, j)-component
of the matrix K. It is easy to see that (35) can be expressed as

(36) (G’(Q)(QK), OK)=2 E (hi-hj)(e,-ej)c.
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From (36) and assumption (32) we see that the second-order optimality condition has
the following equivalent statements:

(G’(Q)QK, QK)>O forevery K S(n)1,

r)(hi-hj)(ei-ej)>=O forall i<j
(37)

:> e > e2 > > en
<=> ei 12.i for every i.

Putting together (34) and (37), we have proved the following theorem.
THEOREM 4.1. Under assumptions (32) and (33), a stationary point Q is a local

minimizer of F on O( n) if and only if the columns ql, qn of the matrix Qr are the
normalized eigenvectors of, corresponding, respectively, to txl, ", txn. The solution to
Problem A is unique (hence, is the global minimizer) and is given by

(38) X hlqlq +" + hnqnq T

Remark The above theorem can be generalized with slight modifications for the
multiple eigenvalue case. The only^difference is that the least squares solution X is
not necessarily unique ifthe matrix A has multiple eigenvalues. The details are discussed
in [3].

Remark Theorem 4.1 may be regarded as a reproof of the well-known Wielandt-
Hottman theorem [10], [15]. That is, let A, A+E and E e S(n) have eigenvalues
/x > >/xn, 11 > > A. and rl > > ’, respectively. Then

(39)
i=1 i=1

Obviously, the equality in (39) holds when the matrix X A+ E is given by (38),
where the Frobenius norm of the perturbation matrix E is minimized. We think the
proof, being different from both the original proof of [10] and the one given in [15],
is of interest in its own right.

PROBLEM B. For this problem is the n-dimensional subspace of all symmetric
Toeplitz matrices and A := diag {A1,’’ ", An}. Note that has a natural orthonormal
basis {El," ", En} where Ek := (e)) and

1/v/2(n-k+l) ifl<k-<nandli-jl=k-1,
(k) := 1/X/- if k 1 and i=j,(40) ei

0 otherwise.

Thus the projection P is easy to compute and is given by

(41) P(X) (X, Ek)Ek.
k=l

Note that any diagonal matrix is necessarily a stationary point. So the initial value
X(0) of the differential equation (25) cannot be chosen to be just A. This restriction
is not serious.

To our knowledge, the existence question of a solution to the inverse Toeplitz
eigenvalue problem has not yet been settled 12]. Our descent flow approach, neverthe-
less, offers a globally convergent method of computation. By using the subroutine
ODE in [14] as the integrator, for example, we have never failed to get convergence
in our numerical experimentation. Occasionally we did experience cases of convergence
to a stable stationary point that is not Toeplitz (the limit point, nevertheless, is always
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persymmetric). By picking up a different initial value, we can easily change the course
and converge to another stationary point. Our numerical experience seems to suggest
that the inverse Toeplitz eigenvalue problem might have multiple solutions in general.

The second-order condition (see (29))

(42) (G’(Q)QK, QK)=([P(X),K]-P[X,K],[X,K])

for Problem B becomes more involved now. For the time being we have not tried to
use (42) to classify the stationary points. It seems plausible that by classifying all
stationary points we could answer the theoretical existence question for the inverse
Toeplitz eigenvalue problem. This direction certainly deserves further exploration.

PROBLEM C. Numerous algorithms have already been developed for solving the
matrix eigenvalue problem. It is not, of course, our intention to claim that we have a
new and effective method. Just as the Toda flow is a continuous realization of the QR
algorithm [2], we want to show here that the Jacobi method also has a continuous
analogue. Recall that the main idea behind the Jacobi method is to systematically
reduce the norm of the off-diagonal elements. Let A Xo be the matrix whose eigen-
values are to be found. We choose (I) to be the subspace of all diagonal matrices. Since
the projection P(X) diag (X) is just the diagonal matrix of X, we see that the objective
of Problem 1 is now the same as that of the Jacobi method. The gradient flow (see
(24)) defined by the initial value problem

(43) dX/at [[diag X, X], X], X(0) Xo,

therefore, may be regarded as a continuous analogue of the iterates generated by the
Jacobi method.

The necessary condition for X to be a stationary point, by Lemma 3.1 is

(44) [diag X, X] 0.

The second-order sufficient condition for optimality at a stationary point, according
to (29), is

(45) (G’(Q)(QK), QK) ([diag X, K]-diag IX, K],[X, K])>0

for every skew symmetric matrix K. By using (44) and (45) we are able to classify all
stationary points as follows.

THEOREM 4.2. Let X be a stationary pointfor Problem 1 where A and ap are defined
as for Problem C.

(1) IfX is a diagonal matrix, then X is an isolated global minimizer
(2) IfX is not a diagonal matrix but diag X is a scalar matrix (that is, diag X cI

for some scalar c), then X is a global maximizer.
(3) If X is not a diagonal matrix and diag X is not a scalar matrix, then X is a

saddle point.
Proof. Readers are referred to [4, pp. 33-36], for detailed proofs.
We finally remark that the gradient flow (43) is moving by its own nature in a

descent direction of the function F(X). So the existence of the latter two cases in
Theorem. 4.2 should not cause any annoyance in the computation.

5. Extensions. The framework discussed in 3 can be easily extended to Problem
2. The key to our approach is to define an inner product on the product space
R’mx R through the induced Frobenius inner product:

(46) ((A1, A2), (B1, B2)):= (A1, B1)+ (A, B).
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Regarding the feasible set O(m)x O(n) as the zero set of the function C(A1, A2):=
(1/2(ArlAI- I), 1/2(AfA2- I)), we can show that the tangent space and the normal space
of O(m)x O(n) at a point (Q1, Q2) are given, respectively, by

(47)

and

(48)

T(o,.Q2)O(rn x O(n) QS(m) +/- Q2S(n) +/-

N(Q,.Q2)O(m) X O(n)= Q,S(m) x Q2S(n).

Without repeating too much, we now demonstrate how Problems D and E can be solved.
PROBLEM D. It is easy to see that Problem D is equivalent to the following

formulation:

Minimize F(Q1, Q2) := [[ QITQ2[[ 2

(49)
subject to Q Q1 I, Q[Q2 1.

Analogous to (18), we find that the Fr6chet derivative of F at a general point (A1, A2)
acting on (B, B2) is given by

F’(A, A2)(BI, B2) (E- a’,a2, -B(3A2-
(50) -(E- a(3A2, -Br/]a2) + (E a aa2, -AB2)

T T(-(E-a aaz)a[3, B()+(-TA(E-A aa2), B2).

Therefore, with respect to the inner product (46), we may interpret that the gradient
of F at (A, A2) is given by the pair

T(51) 7F(A, a2)= (-aaz(E-al aa2) 7, -rA(E-a(a2)).
A necessary condition for (Q1, Q2)E O(m) O(n) to be a stationary point of F

is 7F(Q,Qz)_t_T(Q,,Q2O(m)xO(n). This is equivalent to
QS(m) and/]TQ(E- Q(Q2) QzS(n). Let

T(52) X := Q, AQ2.

It is not difficult to see that the above necessary condition is equivalent to

(53) XEr=EXT and XTE=ETx.
For simplicity, let us assume that

(54) O’1 > 0"2 >" > 0"n > 0

and that the singular values of A are ordered (in the generic case) as

(55) 1 > l-Z2 >" > ]-Zn > 0.

Then the two equations in (53) imply that the m x n matrix X must be a diagonal
matrix where the extra rows are filled with zeros. We know, therefore, that the iagonal
elements, say, el," ", e, of X, must be a permutation of singular values of A.

The projection of VF(Q1, Q) into the tangent space To,,o2O(m) x O(n) can be
calculated according to the same principle as in (22). We claim that the projection of
VF(Q1, Q2) is given by

g(Q1, Q:)= (1/2{ QI,Q,rQI Q2.,r}, 1/2{ Q2,TQQ2-TQI,})
(56)

(1/2QI(,XT x,T), 1/2Q2(ETX xrz)).
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Readers are invited to furnish the proof by themselves. As is suggested in 1, we may
define a flow X(t) by

,ix/dt 1/2(XXX Xx+xXX xx),
(57)

X(O) A,
which will move in a descent direction of F. Furthermore, we may extend the function
g to

(58) G(Z,, /2) :’-- (1/2{Zl’ZT2 2Tz1--3Z2-T}, 1/2{Z2’Tzz2-ITzI--})
for general matrices (Z1, Z2) R’X" x R"" and take its derivative. In particular, we
claim that at a stationary point (Q1, Q2) the projected Hessian of F acting on a tangent
vector (QK, QzK2), where K S(m)- and K2 S(n)- is given by

(59) ((Q1K, QzKz), G’(QI, Qz)(QK, QzKz))=(KE-EK2, KX-XK2).

Again, readers are invited to fill in the details. We note here the similarity between
(59) and (36). Let ko, and kij,2 denote the (i,j)-components of the skew matrices K
and K2, respectively. Then (59) can be expressed as

((QK, Q2Ka), G’(Q, Qz)(QIK1, QzK2))

(60) eiO’ikpi,1
i=1 p=n+l

+ 2 { eicr + er)k2.1 + (er + er)k.2- 2(er + er)ki.l k.2}

since k,.j=0 and k.j=-k.j for all 1_-< i, k_-< n and j 1 or 2. The second-order
optimality condition has the following equivalent statements"

((Q,K,, QzK2), G’(Q,, Qz)(Q,K,, QzK2))> 0

for every K1 e S(m)-, K2 e S(n)-

kik,2- 2( eiO’k + ekO’i)kik, lkik,2 > 0

(61 for every kk, 1, kik,2 R

<=>The discriminant (e+ek)(O’+Crk)(e-ek)(O-Ok)>O for every and k

<=> e > e2 > > e.
<=> e for every i.

In summary, we have proved the following theorem.
THEOREM 5.1. Under the assumptions (54) and (55), a pair of matrices (Q, Q2)

is a local minimizer ofF on O(m x O( n ifand only if the columns ofQ1 and the columns
of Q are, respectively, the left and right singular vectors of. In this case the unique
least squares approximation to A subject to the singular values constraints is given by

(62) X=QI,Q.
Remark. Using the above theorem, we can easily prove an analogue of the

Wielandt-Hoffman theorem for singular values [8]. That is, let A and A+ E have
singular values /-1 > /2 /aLn 0 and O" 0"2 O" 0, respectively. Then

(63) (O’i--]di)2 IIEII 2.
i=l

Remark. We note here that the initial value problem (57) defines a descent flow
X(t) regardless of (54) and (55). Indeed, it is always the case in our approach that
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we can define a descent flow without any knowledge of the second-order derivative.
Of course, the descent path terminates when it hits a stationary point. So our approach
finds a local minimum only if it starts at a suitable point.

PROBLEM E. This problem can be handled in a similar way as Problem C. We
choose to be the subspace of all diagonal matrices and consider a Jacobi-type flow
from the following optimization problem:

Minimize F(Q1, Q2):=1/21]Q,Q2-diag (QQ2)[I2

(64)
subject to Q(Q1- I, QQ2 I.

We can formulate the projected gradient of F explicitly. In particular, we claim that
the initial value problem

dX/dt=1/2{((diag x)xT--X(diag x)T)x-X((diag X)rX--XT(diag X))},
(65)

X(0) =A

defines a descent flow on the manifold W() for the function F. As before, we can
further classify the equilibrium points of (65) by means of the projected Hessian form.
The details can be found in [5] and we will mention only the major result without proof.

THEOREM 5.2. Let , R have distinct, nonzero singular values, and let X be
an equilibrium point of the differential equation (65). Then X is stable if and only ifX
is a diagonal matrix.

Acknowledgment. A referee has suggested that the work of Arnold [1, p. 240 ft.]
may be related to the results of 3.
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