CONTRACTIVE AND TRANSITIONAL DISCRETIZATION OF GRADIENTF  LOWS
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Abstract. Gradient adaption is ubiquitous in nature. The notion has Been employed over a wide range of applications. It
is often the case that each application has been given vatith separately for its best efficiency. Understandirggrhathematical
foundations of effective algorithms for general gradiepnamics should be of practical importance across divergisfi€ontractivity
and transitionality are two such characteristics inves#id in this paper. While standard, general-purpose nuoaidritegrators are
readily applicable, they are sophisticatedly designedHerpurpose of closely tracking exact integral curves, Wigcslow, expensive,
and unnecessary for gradient flows. In contrast, this waskudises some nontraditional ways of discretization thalb&xhe gradient
structure, namely, they allow the possibility to relax thegision, hence the speedup; the ability to guide the paticdithe robustness;
and the contractibility to correct the error, hence the igien. These high-order iterative methods, capable ofaaming themselves
into fast converging Newton-like methods when closing iresied equilibrium point, can be combined with suitabletistg procedure
in the initial phase to further improve both speed and piecis
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1. Introduction. Given a differentiable scalar functigh: R — R, the basic fact that its gradient
vectorV f(x) points in the steepest ascent direction with the maximum etthangg|V f (x)||2 for the
function value at the point is well known. Generalizing to a differentiable functiorfabver a Hilbert space,
the gradient should be interpreted as the Riesz repregantdtthe Fréchet derivative of the functiong|
whose true denotation depends on, of course, the undeilyireg product. It is quite natural to expect that a
system adapts itself continuously in the gradient direct®mply put, a dynamical system in the form

Z—}; =-Vf(x), =x(0)=xo, (1.2)
wheref is a second-order differentiable functional over an appabgly defined Hilbert spacH,, is referred
to as a (negative) gradient flow. The gradient dynamics wesgrdized and viewed challenging by Courant
and others in earlier days [8, Section 1.1]. Since then,stlbag attracted research attention across both
fields of pure and applied mathematics. Far from being coraplee mention a few representative works on
the general theory [43, 47, 61, 75, 87, 92, 94, 99].

Gradient adaption plays a significant role in nature and liegtions. Thermal conduction along the
negative temperature gradient of the isothermal surfacg®amosis down the concentration gradient across
the cell membrane typify the gradient adaption. Mathenahtiwodels for the phase separation of materials in
iron alloys [18, 77], the segmentation or edge detectiomiage processing or computer vision [67, 90], the
surface evolution in differential geometry [12, 28, 86} flow of an ideal gas in porous medium [98], and the
ground state in quantum systems [5] all employ this notiograflient dynamics. Numerous other systems
that evolve in time can also be interpreted in this way. SmegXample, applications in the game theory [31,
78], probability [33], Markov chain [64], economics [32,]36nancial markets [32], quantum field theory
[25], network communication [81], circuit theory [88], mteanism design [84], low rank approximation
[59, 62], and the general surveys discussed in [42, 45, 4&]ghé four specific examples below to motivate
the importance of gradient dynamics, followed by an outbhpossible approaches to a gradient dynamical
system.
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1.1. Examples of gradient flows.To solve each of the following four problems in the most effioas
way probably requires specific and individually tailoredthesl. However, together they demonstrate the
wide scope of applications of gradient dynamics. Along th#iime, we also raise a few curious questions.

Example 1.Consider a heat equation of the form

ou 9
Frie Vu + p(u), 1.2)
for u = u(v,t) € L?(U) with the boundary conditions|s; = 0. Then it is not difficult to see that the
right-hand side is precisely the negative gradient of tmefional

= [ (GI9ul? = P) av

whereP is such that”’ = p and guarantees the existence of a minimizerffor

Indeed, itis known that "a surprisingly large number of vikelbwn diffusive partial differential equations
have the structure of a gradient flow" [76] with respect to s@ppropriately chosen energies and dissipative
mechanisms [68]. The dissipative mechanism can be quitergeeven if an inner product is not explicitly
known. Under the Wasserstein metric, for example, the FeRkenck equation is a Wasserstein gradient flow
of a specific functional [58, 76]. Mean curvature flow, as &eoexample, is the gradient flow for the area of
hypersurfaces [22]. We understand that a PDE-based gtatyieamics can be approximated numerically by
an ODE system of the form (1.1) through proper discretizatidhe space variable. The techniques proposed
in this paper therefore should be applicable to PDE-basadigmt dynamics as well.

Example 2. A major theme advocated and extensively demonstrated itwthdooks [94, 95] is that
"gradient dynamical systems cover many iterative formofasumerical analysis". We mention from our
own experiences [19, 20] the Toda lattice

X (x) (13)
for symmetric tridiagonal matriceX (t) € R™*", wherellp(X) := X~ — X—" with X~ denoting the
strictly lower triangular portion o and|[-, -] stands for the Lie bracket. On one hand, it is known &iat)
is a Hamiltonian flow maintaining the spectrumXf0) for all ¢. On the other hand, it is also known that the
dynamical system (1.3) is precisely the (projected) gradlew for the objective functional [11]

£(Q) = 51Q7X0Q - NI (1)

subject to the constrai)) € O(n), whereO(n) is the orthogonal group amdl = diag{n,n—1,...,2,1}.
That is, X (¢) is a gradient flow moving to reduce the off-diagonal entries(@t) = Q(t) " XoQ(t) while
aligning its diagonal entries in the same ordering as tho2eé.i

Most interestingly, the sequenée& (k)} obtained by sampling the solution floi/ (¢) at integer times
corresponds to exactly the sequence generated bg thalgorithm for eigenvalue computation [23, 93],
attesting that the ever-importa@tR algorithm is a gradient adaption. Though the popular sthif§é? algo-
rithm is already fast, is it possible to develop a new itegsicheme that moves along the "gradient trajectory”
of (1.3) to find its equilibrium point with significantly laeg step siz€'sand, hence, the speed?

Example 3. In the same vein, many important numerical algorithms cao bé interpreted via systems
and control theory as descent flows [6, 29, 37, 45, 49, 85,0@hsider the basic model

dx(t)

Tar = QS(X, I‘), (1.5)

1The Toda lattice (1.3) is an ODE system constrained to thepistiral manifold. Any reasonable discretization of thieitim
X (t) should respect this manifold constraint which is eigerwadteserving. Geometric integration techniques are pdaitiy suitable
for isospectral flows characterized by a Lie struture. S6e%2, 53, 54, 55, 72], and the book [39]. However, so far as nekthese
Lie-structure preserving methods have not exploited thadignt structure yet [57].
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where the state variabte(t) is controlled by some properly selected functipix, r) which depends on a
certain output feedbaak Different choices of» can be used to manipulate the fla{t) and, hence, lead to
various algorithms. It is convenient that the choice of thetml strategy) depends on optimizing a certain
cost functionV/ (x(¢)) which, in turn, plays the role as a Lyapunov function for tiyeamical system. In this
casegp(x,r) is not necessarily the gradientB(x), but still points to a descent direction [91].

Take the classical problem of finding the root(s) of a givdfedentiable functiorg : R™ — R™ as an
example. A reasonable choice of the feedback for monitdhegrogress made by any preferred algorithm
is the residue function

r(t) == —g(x(t)). (1.6)
Following [9] and [20], we summarize in Table 1.1 a few poksithoices for the contral(x, r).

o(x,r) e i

g'(x)r —llg'(x) "3 —g'(x) " g(x)

g'(x)"'r —Ixll3 —g'(x)"'g(x)
g'(x) " 'sgn(r) = |lrllx —g'(x)” 1sgn(g(X))
sgn(g’(x) ') —[1g'(%) "x[lx —sgn(g'(x) "g(r))
g'(x)'sgn(r) | —[lg'(x) "sgn(r)[3 | —g'(x) sgn(g(x))

TABLE 1.1

Control strategies and the associated dynamical systems

It is not difficult to verify thatV/ (x) = 1||g(x)[|3 andV (x) = ||g(x)||» can be used, respectively, as the
cost functions in the first four cases and in the last casefifidtiease corresponds exactly to the gradient flow
(1.1) with respect td/(x). The second case is the well-known continuous Newton md#®d9] which is
not the gradient flow with respect to the Euclidean norm. Haxebecauség’ (x) 'r,g’'(x) 'r) = (r,r) >
0, the Newton direction forms an acute angle with the steepestant direction. So the continuous Newton
flow is still a descent flow. Assuming thgt(x) remains nonsingular, then the flow stops only whet) = 0.
Similar decent properties hold for other cases, as is setireisecond column abodjti above. A descent
flow such as (1.5) for a suitable cost functibifx) therefor generalizes the notion of the gradient flésnit
possible to integrate (1.5) more effectively than just thieventional continuation metho#3, 80]?

Example 4. In the setting of a Krm space [13, 27, 35], we can even consider a flow of this form

dx = —VXU(X, Y)v
{ % Vyu(x,y), (7

whereu : R™ x R™ — R is sufficiently smooth an®, represents the partial gradient with respect to the
variablex only, as a gradient flow [3, 10, 30]. What happens is that theriproduct is now interpreted under
different “metric". While the flow (1.1) can be used to findtdtaequilibria of a system, the flow (1.7) can be
used to detect rare but perceptible transition events legtteag lived metastable states in a complex reaction
system. The presence of transition events, namely, sadiitspand the knowledge of their location in the
configuration space provide critical information for imtaont systems such as phase transitions in nucleation,
conformational changes in macromolecules, and transtates in chemical reactions [44]. The saddle-point
flow (1.7) also arises naturally when solving a complex-gdldifferential system [7, 51]

o —g/(Z), (1.8)

whereg : C* — C is analytic. If we identifyz = x + 1y with x,y € R™ andg(z) = u(x,y) + w(x,y),
theng’(z) must satisfy the Cauchy-Riemann equations which transleetly into (1.7).
3



In many ways, the saddle-point flows share properties sirttl¢éhe gradient flows that we are about to
study [21]. In particular, the techniques developed thiotigs study might be useful for complex-valued
differential systems.

1.2. Goalsin gradientintegrators. It should be self-evident from the above-mentioned exaspler
widespread applications and references that having actiefegradient integrator in hand is of tremendous
value and practical importance. There are already many ipgrhadvocates of this subject [8, 47, 92, 94].
As is typical the case, while the common element of the langenber of applications is gradient dynamics,
each application probably deserves and has been giverdeosason separately for the best efficiency and
effectiveness. Among the various algorithms, it is critteasearch for the common ground and ask what the
essential ingredients must be in order to make an algoriffenteve. At this point, there are two major views
about a desirable gradient integrator. The differenceéxplbiting two related but different properties of the
gradient flow, which leads to two related but different treaits.

Maintaining monotonicity. One universal property of a gradient flow is that the poténfia(t))
decreases monotonically along the solution trajecdry, i.e.,

fx(@) < f(x(s)) fort>s,

with strict inequality except at stationary points faf Correspondingly, we would like a numerical method
to preserve the monotonicity at least locally, i.e., if thethod starts fronx,, = x(¢,,) exactly with no past
errors, then the approximate solutigp; att, ;1 = t, + h produced by the numerical method for a step
sizeh would ensure that

f(xn+1) < f(xn)

Gradient integrators for this purpose include algebrgicsthble Runge-Kutta methods [41, 50], discrete-
gradient methods [65, 73, 74], and average vector field catlon methods [38, 65]. More specifically,
within the class of algebraically stable Runge-Kutta md#ahe Radau IIA methods under a mild step size
restriction enjoy good energy reduction and strong dampingerty for stiff gradient systems, but the Gauss
methods do not have the damping property at all. On the othed hthe discrete-gradient methods and
the average vector field methods can diminish the energywitany step size restriction, but also have no
damping property for stiff gradient systems. Details cafidomd in a recent survey article [62].

Utilizing contractivity. The emphasis in this paper is on exploiting the second ptpéra gradient
flow — the contractivity. The rationale why this study is inmfant is because it might help achieve the
ultimate goal of a gradient flow (1.1) (or a general descemt {tb.5)), namely, finding its limit poink* =
lim;_, o x(t), more effectively. At first glance, it seems that we could dintackle the first-order optimality
conditionV f(x) = 0 (or the nonlinear systeg(x) = 0) directly by using some general-purpose Newton-
like iterative methods. Such a view, however, fails to retng why the gradient flow comes to play in the
first place. We mention two reasons for following a gradiesjeictory:

1. First, the critical points of (x) might not be isolated or unique [1]. Merely satisfying theimality
condition may give rise to a point far away from a desired Sofux*. For instance, the matrix
equation[X, I1o(X)] = 0 for the Toda lattice has infinitely many solutions, but wekidor the
diagonal matrix that is orthogonally similar to the initrahtrix X, for its eigenvalues. The integral
curveX (t) guides the way there and we have to follow the curve.

2. Second, most iteration methods suffer from the inheremtdtion of local convergence. The gradi-
ent flow guarantees convergencefok(t)).

On the other hand, it also seems that employing existing nicaiéntegrators to carefully trace the trajectory
x(t) could serve as a means for findimg. As reliable as this approach might be, nonetheless, itliysua
spends expensive computation at the transient state, wiocltd be a waste if only the limit point* is
needed. An ideal gradient integrator should follow the timagectory approximately without striving for
precision and should be able to eventually rise to fast ag@ree to the limit point with high precision
[4, 75]. We think that the property of contractivity proviles with several possible avenues for this pursuit.
More rigorous technical details will be presented in a sgbeat discussion.
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For the ease of discussion, we limit our consideration toQIE setting of gradient dynamics. For
PDEs of gradient nature, a suitable discretization of trecepvariable such as by the method of lines can
often reduce the problem to an ODE system in the form (1. 1igkhill not be elaborated in this paper. Thus,
this paper is organized as follows. In Section 2 we bringiftiie essential notion of contractivity which has
been studied extensively in the literature. The gradientdyics is contractive. Instead of employingra
stable linear multi-step method or an algebraically st&age-Kutta method which is known for producing
contractive numerical solutions, we argue that dgystable method is sufficient for maintaining contractivity
for gradient dynamics. We exploit this property by propgsgome new iterative schemes in Section 3.
Being of higher orders, these methods have the dual cagedilif initially tracking the true trajectory more
precisely by using larger step sizes and ultimately tramsifog themselves into fast converging algorithms.
We offer a mathematical justification on why these charésttes are inherited. Some experimental results
are reported in Section 4, which eventually suggests thastage hybrid method in a spirit similar to those
proposed in [14, 15] might be the most effective approachdckling gradient dynamics.

2. Contractivity. For gradient flows, the monotonic decreasing of thealues along one single solu-
tion trajectoryx(t) is obvious, but it does not tell how(¢) is influenced at the presence of perturbations.
Relative to neighboring trajectories, perhaps the mossgicnous property of the gradient dynamics is the
contractivity which we describe below.

2.1. Contractive vector fields. A vector field

y' =f(t.y) (2.1)

with f : D C [a,b] x R® — R™ is said to satisfy a one-sided Lipschitz condifiohthere exists a scalar
functionv(t) such that the inequality

(f(t,y1) — £(t,y2),y1 —y2) <v()|ly1 — y2|3 (2.2)

holds for ally;,y- in the set{y € R"|(¢,y) € D}. The one-sided Lipschitz functian(t) in (2.2) can be
negative. Suppose thgtt) andz(t) are two solutions of (2.1). Then it can be argued that [60fiSed.3]
(see also [41, Lemma 12.1])

Iy (t2) — 2(t2)[l2 < el Y O% ||y (1)) —z(t1) |2, a <ty <to <D. (2.3)

t
A contraction happens (segmentally) over the intefwal] whenelii V©% ~ 1 for g <t <ty <b. This
is the essence of the so called nonlinear stability theddy apter 7]. For our application, we shall limit
ourselves throughout this paper to the autonomous casewher

ft,y) =f(y) == =V f(y). (2.4)

The following result showing local contraction follows fnathe general notion of asymptotic stability.

LEMMA 2.1.Suppose that* is an isolated stationary point gf and thatV? f (x*) is positive definit
Thenthere is a closed bdfl centered ak* and a positive numbe¥; such that the gradient flow is contractive
in the sense that

Iy (ta) — z(ta)ll2 < e= 28|y (ty) — z(t1)]|2, (2.5)

for any two gradient flowg (t) andz(t) starting from withinB andt; < t».

2To avoid confusion we shall reserve the boldfasefbr the state variable in a gradient flow arg for the related iterates, while
we shall usey as the dependent variable of a general ODE systenyarfdr the discrete approximation g{(ty, ).

3A conventional Lipschitz condition necessarily impliesreeesided Lipschitz condition, but not the converse.

4In the case thaW2f(x*) is only positive semi-definite, the eigenvectors corresiyan to the zero eigenvalue form a center
manifold. A similar argument can be made by using the centerifold theory [17, 100]. So as to focus on the main ideas, sseme
the generic case of positive definiteness in this paper.



Basins of Attraction and Contraction

— f(x)
—f(x)
[ f!(x)

FIGURE 2.1.Global convergence and local contraction in Example 5.

The real question is to ask how large the basin of contractorbe for a gradient dynamics and what to
do if outside the basin of contraction. Since the followin® £xample can be worked out explicitly, we use
it to demonstrate our point [91].

Example 5. The differential equation

d
d_gtc =z
is a gradient system with the potential functiftw) = %. There are three equilibrig—1,0, 1} at

which f”(0) = —1andf”(+1) = 2 > 0. So,z = +1 are asymptotically stable. Indeed, the exact solution
is given by
Va2 —a2e2t 42t

So, z(t) converges tat-1 from everywhere except the unstable equilibrium paint 0. The basin of
attraction for the stationary point = 1, for example, ig0, c0). On the other hand, the contraction (2.5)
does not hold everywhere. The ball referred to in Lemma Dliradz: = 1 can be the intervdll — 6,1 + ¢

withd < 1 — % A simple analysis shows that the contraction for flows cogivgy toz = 1 does occur

whenever flows enter the domeﬂ@l—g, o0). Itis thus illustrated that contraction may not happen euity
as convergence. At the initial stage, it is important to i@hythe convergence property to steer a gradient
flow into the basin of contraction. Once there, we can relyhendontraction property to find an equilibrium
without the need of following any particular trajectory gisely.

For a general gradient system, the bélreferred to in Lemma 2.1 can be as large as any compact
convex subset containing as an interior point, whereas HessiAf (x) maintains positive definiteness in
B. Denote the positive minimal value

x(t)

A = min AU (V2 £ (y), (2.6)

ye

where\!)(11) denotes the smallest eigenvalue of a symmetric matfixThen, using the convexity, it can
be argued that

(=Vf(y1) +Vf(y2),y1 —y2) < 2B (y1 — ¥2,¥1 — ¥2) (2.7
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for anyyi,y2 € B. The actual basin of contraction (nearky) might be larger thai8, but is difficult to
specify in general. Note, however, thatdf C B., then\z, > Ag,, implying that the contraction gets
exponentially stronger whex(t) gets closer tox*. It is worth noting that the above argument is applicable,
not just to the stationary poist*, but to any poink at whichV? f(x) is positive definite. After all, the notion
of contractivity, as is pointed out in (2.3), is a local praye

The fact that ultimately the vector field of gradients is cantive is of practical importance because, if
one solution inadvertently jumps on to a neighboring tr@jggs the contraction will bring the paths back to
the same equilibrium point. This property gives us the lgetodollow the gradient trajectory loosely while
keeping the equilibrium in sight.

2.2. Contractive and transitional methods. When discretizing a contractive vector field for numerical
calculation, we certainly wish that the property of conti@t is preserved by the underlying numerical
method. Considerable efforts have been taken toward that gBee the book [41, Sections 1V.12, V.6,
and V.9] and references contained therein for an in-depbodirse on this subject and a chronicle on the
development of its theory. A introductory overview of somaimresults can also be found in the books
[24, 60]. Without repeating the details, we simply mentibattaG-stable linear multi-step methods [41,
Definition 9.1] and an algebraically stable Runge-Kuttahods [41, Definition 12.5] generate contractive
numerical solutions.

We quickly point out that these elegant results are develégregeneral contractive differential systems.
For gradient systems, one property standing out is that tssidn of any sufficiently smooth objective
function f(x) is always symmetric and, hence, has only real eigenvalugse $io complex eigenvalues
comes into play, we do not need the full potency of stabiliyditions of those general methods. Any
numerical ODE method whose region of absolute stabilitytaios the negative-axis while maintaining
contractivity is sufficient for following a gradient flow.

In this work, nevertheless, we do not settle for a contrad@DE integrator as is given! We do not adjust
the step sizes in accordance with the conventional way wtherenain concern is to maintain the precision
and the stability while tracking the entire trajectory! teesd, we interpret a numerical ODE scheme both as
an integrator and as an iterative process. We adjust thesstep so that the very same scheme transitions
itself from a classical integrator to a fast convergingdtem. It is this kind non-traditional combination that
give us the edge of effectiveness. We demonstrate our pyittitebfollowing example.

Example 6. Given the current approximage, to y(¢,) and a step sizé,, suppose thay1 is to be
approximated by the implicit Euler method. Instead of itieiato convergence as we usually do to obtain
yr+1, We perform only one Newton iteration, immediately accaptautcome, and continue to the next step.
We thus yield the iterative scheme

Xpr1 = O(Xk; €x), (2.8)

where¢ : R™ — R"™ is defined by

1
o) i=x— (1 + 9710))  V(x @9

ande is regarded as a parameter. In the meantime, we vary theisteg, snot based on an error estimator,
but according to the so-called "switched evolution relesra{SER)" strategy [97]

| Vf(xi)llz = c (2.10)

for a specified constamt Clearly, such a strategy (2.10) has the characteristiteiofy relatively small in

the initial phase and becoming large whelf(x;+1) converges to zero in the terminal phase of the process.
In fact, it can be argued that; > 2¢; whenk is large enough [56, Lemma 2.1]. Thus, the scheme (2.9)
initially acts like an ordinary ODE integrator with smalkesgt sizese,, but asymptotically transitions itself
into a fast converging Newton-like iteration when — oo. Such a process, known as the pseudo-transient
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iteration, is a special implicit upwind method used in theEPE&mmunity [70] for computing steady-state
solutions. We mention in passing that the SER strategy J2sli@ an interesting contrast to the "artificial
time step" strategies discussed in [4] for explicit Eulepst

We highlight two intrinsic features that will be common tdet methods proposed later in this paper.
First, we can rewrite (2.8) in such a way that

V2 f (1) Axg, + YV f (i) |2 < |V F (x)||2, (2.11)
with
AXyp 1= Xpy1 — Xp (2.12)
and
M= || (I + 692 (k) ™ [l (2.13)
In this case, it is further known that
k1 = X [l2 = O |3k — x"[|2 + [[xr — x*[13). (2.14)

Thereforex;, converges at least superlinearly. Note that whegoes to infinity,), goes to zero and (2.14)
behaves like quadratic convergence [26].

Second, we claim that the iterative scheme (2.8) is comeoearby the stationary poist*. This is
important because the scheme (2.8) is not used as an ODEatdem this area. It can be deduced that the
Jacobian ofp) atx™* satisfies

1

do(x*; €)
T\ = <
dx 5 1+epll

1, (2.15)

whereu!! denotes the smallest eigenvaliéf (x*) which, by assumption, is positive. {f7; } and{z} are
two sequences generated by (2.8) using the same seq{ierjcef step sizes and ifr;, z. are sufficiently
close tox*, then by (2.15) we see that

lyrt1 — zesille = |6(yr; ex) — @(zrsen)ll2 < villyr — zall2 (2.16)

for somey;, < 1. Infact, e, is expected to be large at the final phase, so the contracimb@come stronger
whenv,, becomes smaller . Whether there is contraction at othetitotsaalong the iteration is harder to tell.
The Fréchet derivative af on a general vectat € R™ at a given poink is characterized by

WW@d=<h—<Qﬁkﬁi+L01>d

e ((In +eV2fx) T (VA x).d) (I + ev2f(x))*1) V1(x), (2.17)

whereV3 f(x) : R® — R™*" is the Fréchet derivative 67> f(x) and is a tensor-to-vector multiplication.
At a given pointx whereV?f(x) is positive definite, it can be argued that there exists atigesiumber

T (x) such that ife;, € [0, T(x)], then the operator norg¥ (x; ¢;) is bounded by 1 and, hence, a contraction
happens. In the pseudo-transient iteration, however, weotlavish to see a bound af. Such a dilemma

is somewhat of less concern in practice because before wh tea basin of contraction &f* we normally
follow the gradient trajectory carefully anyway.

Different from the energy-diminishing approach in [62]etldea of the pseudo-transient method is to
start the scheme with a small to let the iteration process mimic an explicit, time-act¢eiiategration. This
allows staying reasonably close to the gradient trajeatdrigh leads to the basin of attraction. The step size
selection mechanism controls the transition. Diminishiapes ofV f(x;) indicate large:;, can be used,
which transforms the method to the Newton iteration andcheattains fast convergence. Our interest in this
paper is to search for some other gradient integrators afssimature and test their workability.
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3. High-order BDF-based methods.Thus far, we have been speculating the basic idea of an ideal
method that can play dual roles in effectively tackling adigat dynamics. The pseudo-transient method
outlined in Example 6 is based on the implicit Euler schemé&lkyused as a numerical ODE integrator in
the crucial initial phase, is of order 1 only. Itis generaipected that high-order methods can integrate faster
with larger step sizes while maintaining the desirable igien. This should help move along the trajectory
more effectively into the final phase for finding the stableiliorium. The main objective of this paper
is to propose some high-order methods. To convey the ideaomeentrate on the backward differential
formulas (BDF) in this section. Our contribution is at edigthing a mathematical foundation showing that,
when properly augmented, these schemes enjoy similaramiivie and transitional properties as the first-
order pseudo-transient method. Similar arguments can hergkzed to other types of schemes such as the
numerical differential formulas (NDF), which we will outle without giving as much detail in the appendix.

One important feature of the classigastep backward differentiation formula= 1, ..., 6,
p—1
Yer1 = 3 ojyr—j + hBE(yri1), (3.1)
Jj=0

is that its region of absolute stability contains the whdleegative real axis. This is desirable for using
large step sizes at the final phase of a gradient dynamicserteless, we do not employ existing, highly
sophisticated BDF-based stiff solvers for gradient flowsstéad, in the same spirit as the pseudo-transient
iteration, we start fronx;, with step size:;, and advance ta;_; by taking only one Newton iteration, which
can be expressed as

-1 p—1
X1l = Xg + (%In + VQf(xk)> # JZ:%ozjxk,j —x% | = Vf(xx) |- (3.2)

Two remarks are worth noting. First, in contrast to (2.9 tlght-hand side of (3.2) involves multiple
steps. Such an iteration, however, is no more expensivethiziin (2.8), except for a few extra memories
of past values and vector arithmetic operations. Second seethe same coefficients), ..., a, and
from a constant step size BDF scheme for all iterates, evargththe past values,, . . ., x;_,+1 may have
obtained from variable step sizes. From the numerical ODRt @b view, such a mechanical plug-in makes
no sense and is wrong. Nonetheless, we shall argue for itgsméren (3.2) is regarded as a stand-alone
iterative scheme. It may seem more reasonable to first cof8:&) to a one-step scheme via the Nordsieck
transform and then to form the iteration scheme from theréaking one Newton step in the same spirit
as we do here. We shall prove in the later part of this sectiahthe Nordsieck scheme has poor, if any,
transitional property. This irony of doing what is right @s ODE method) and yet getting worse behavior
(in convergence) is an interesting contrast to our approach

Through the vectorization

X, = [ka,...,xZ_p+1]T € RP™, (3.3)
we may regard the iteration (3.2) as a fixed-point iteration
X1 = Y(Xi; er), (3.4)

with

N ) B (& (Z0m ol —x1) — V5 (x0))
[0

Y(Xse) (3.5)

x[p._Q]
9



T )
whereX is partitioned in blocks a& =[x, ... xP=1"|  with xil € R". The following result shows
that, similar to the pseudo-transient method, the moreistipited scheme has the desirable property of
contractivity.

THEOREM3.1. Suppose that* is an isolated stationary point gfand thatV? f (x*) is positive definite.
Then there exists a neighborhoBdf x* such that

1Yit1 — Zisillz = |0 (Yas ex) — 0(Zis ex)ll2 < vil| Vi — Zill2 (3.6)

with somey;, < 1, provided components &f, and Z;, are from withinB.
Proof. The fixed-point of (3.4) ist* = [x*",...,x*"|T at which the Jacobian af is given by

Q0% Q0% . Q% ]

ef B

I, 0 0 ... 0

dp(X™) 0 I, 0 0
ot ) , (37)

i 0 0 o ... I, 0 i
where for convenience we introduce the abbreviation
1 —1

Qe) == (51,1 + V2f(x*)) : (3.8)

The Jacobian (3.7) appears as the structure of a block caorpaatrix. So eigenvalues of (3.7) are precisely
those of the matrix polynomial

p(N) = AP — Q(e)i‘—;v—l - Q(e)?—ﬁl)\p_Q - Q(e)o‘:—;. (3.9)

Let the eigenvalues 672 f(x*) be denoted byl < ul?l < ... < pl»=11 < pl7l It suffices to consider the
roots of the polynomials

Qo

A; ::/\P—i./\Pfl—...—Ll., i=1,...,n. 3.10
1) (1+ eBul) (T+epuy ! (310
If the step size is large enough such that

p—1

> lajl < 1+ eppll, (3.11)

J=0

then, using the Rouché theorem, we see that all roots aredledumithin the unit diskld

The above proof does not make use of the values of the coeticie andj of the BDF scheme. These
coefficients really come to play in the following lemma asisgrthe transitional property that the multi-step
scheme (3.2) can also be regarded as an inexact Newton methedce the fast convergence.

THEOREM 3.2. Define(, = 1 and

j—1
Gi=1-Y ai, j=1,..p—1. (3.12)
1=0

10



Then the BDF-based iteration (3.2) is equivalent to

1 (=g
VQf(Xk)AXk + Vf(xk) = _5_ Z %Axk,j , (313)
k -
7=0
whereas the summation on the right side of (3.13) is an awesfthe time seriedxy, ..., Ax;_pi1.

Proof. It is a known fact that for each fixeal the coefficients of a BDF in the form (3.1) necessarily
satisfy the unique algebraic relationships [41, 60]

p—1
> a;=1, (3.14)
=0
p—1 J
> G+ 1oy =B (3.15)
j=0

Using (3.14), we can rewrite the summation on the right sid8.@) recursively as

p—1 p—1 p—1 j—1
X — E QX = E o (X — Xp—j) = E (1 — ai> AXp_j.
j=0 j=0 =0

J=1

An rearrangement of terms in (3.2) leads to (3.13). To seavbeaging effect, the identity

p—1
dG=5 (3.16)
=0

is simply a rearrangement of the summation in (3.05).
It should be noted that some of the Weigl%sin (3.13) might be negative, but they sum to be 1. The
average nature

p—1
AR =) %AXH (3.17)
serves as a good estimate of the convergence in the follaseinge which generalizes that in (2.13)fas 1.
COROLLARY 3.3. Suppose that the SER strategy (2.10) is used. Then the sef{u¥R®, } determines
the rate of convergence. In particular, lifing_, ., AX, = 0, thenx; converges to a stationary poist*
superlinearly.
Proof. By Lemma 3.2, the residual of the (Newton) iteration is giby ry, := —%Aik. By the theory
of the inexact Newton method, the rate of convergence depamthe forcing sequence [26, Corollary 3.5]

Jj=0

el 1o
TGl e (3:18)
wherec := ||V f(x0)]|2 is a constant determined by the first step size

By now, most of properties known for the pseudo-transierthoethave been generalized to the class of
BDFs. Of particular usefulness is that a higher order BDFthasidvantages of allowing larger steps in the
initial stage when tracing a gradient trajectory and, wkeris close enough te*, it transitions itself to a
faster Newton method.

In the remaining of this section, we clarify the question dfather the multi-step scheme (3.2) should
be first rewritten in the one-step Nordsieck form [41, 60]dvefemploying the SER strategy to change the
step sizes. It is known that by defining thex (p + 1) matrix

2 P
Zy = yk,hy,(cl),%y,(f),...,%yép) , (3.19)
11



Wherey,(j) is an approximation tg /) (x;,), the p-step BDF method is equivalent to [40, Section I11.6]

Zis1 = ZiP" + (M(yihe1) — Zi[0,1,2,...,p] ") €T, (3.20)
whereP e R+1)x(+1) js Pascal matrix
1 1 1 1 1
01 2 3 D
p_|00 13 7
0 0 O o1

0= [B,1,4,....0,]T € R@+Dx1 s a specific vector whose other entries are known [40, Sedtid,
Table 6.2]. The first column in the equation (3.20) is a nadinsystem

P g
Yit1 = y/rFZ 'yk <hf (Yi+1) Z 'yk ) (3.21)

i=1

in the unknowry1. Onceyy.; is obtained, the other columns are explicitly determined(3.20).
We work out the Nordsieck-based iteration for the gase2 as an example.
Example 7. The constant step size 2-step BDF method is

4 1 2h
Vel = 5¥k — 5¥i—1 + 5 (Vi) (3.22)
3 3 3
The corresponding nonlinear system in the Nordsieck forgivsn by
h h? 2h
Vi1 =Yk + 3V = ¥k + 5 EWr). (3.23)

The difference between (3.22) and (3.23) is that the formguires the past valyg, _; with a fixed step size
h, while the latter depends solely on the current valyend its derivatives and, hendecan be arbitrary.

Applying (3.23) to the gradient flow by taking one Newton eation with step size;, yields an explicit
iterative scheme

3 R 1€
_ . 2 - ’ SLx ). 3.24
X =3t (ol + 92000 ) (o (k- 3 ) ) (3:24)
If the step size is changed &g, 1, then we are ready for the next iteratirp, » by taking
6k+1X§g+1 = —€r1 VI (Xpt1), (3.25)
1 /€ 2 €2
% X1 = -3 ( Zl) (%X;c - Ekxg +€ka(Xk+1)) - (3.26)

To analyze the limiting behavior of (3.24) ne=t, it is necessary to consider the local behavior of

Xk, X}, x| simultaneously. Define the column vecidy, := [x,x} ', x/ |7 € R3". We can rewrite (3.24)
and the associated derivative information as a fixed-ptaration

Wit1 = 9(Wh; ex), (3.27)
whered : R3" — R3" is defined by

wltl - (I, + 2292 (wi0)) " (ewlt] - Swil)
HWse) = -Vf (W[O] + (In + 2V2f (W[O]))71 (EWm - %Wm)) )
2 (=97 (WO (L + 2V f (W) 7 (ewlll = Swll)) - witl 4 Swi2)

12
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andW is partitioned in blocks a8’ = |wl% " wlll" wi2 " | with wl) € R™. Itis easy to check that the
fixed point of (3.27) must be of the for(x*, 0, 0). Through some tedious but straightforward manipulations,
it can be shown that the spectrum of the Jacobian matrikatfthe equilibrium poinfx*, 0, 0) consists of
eigenvalues of each of tlex 3 matrices

2

1 € €

1+ Zepld _6(1+%€H[i])
. [i] 2, 1i]
— L e et )
H T+ 2epld 6(1+ Zenl) , 1=1,...n, (3.28)

_2 i 2 (el 2 (e e
3 M 3e <(1+%€H[i]) +1 3¢ \ 6(1+2enld) +3

24 /1 —2epldl )
cEVITA

3+ 2epll

respectively. For each= 1,...n, all eigenvalues are in the unit disk for any step sizasnd converge to
zero wherr goes to infinity. Hence, the local convergence by the itera{8.24) is guaranteed.

Without repeating the details, the above argument can lendgd to the general=1,...,6. We even
can still write the scheme derived from the Nordsieck-basethods as an inexact Newton iteration, but it
is at this point that the difference between a Nordsiecletd@eration and a BDF-based iteration becomes
more obvious as we now explain.

LEMMA 3.4. For a fixedp = 1,...,6, letx;; denote the result of one Newton step of the nonlinear
equation (3.21) applied to the gradient flow with step sizand starting valuex;,. Then

which are

P

n, (3.29)

3

V2 () Ax + V(1) = VI (Figr) + éml Y (3.30)

wherey. 1, depending on fixes; ande, is the exact solution to (3.21).
Proof. One Newton step applied to (3.21) leads to

P P i _
(In + Bex V2 f(xk)) Ax = %xEj’ -8y G f 1)|x§;) — BerVf(xp).
=1 =1 '

A rearrangement shows that
Bew (V2 f (%) A%y, + V f(x1)) = (Fhe1 — Xk + BerV f (Frt1)) — Ax,

whereas the right hand side follows from (3.21).

Note that the residual, :== V f(Vx11) + ﬁ(?kﬂ — Xk 1) is only implicitly defined becausg, ;1 is
yet to be calculated. If the SER strategy is used in this a@p{¥ordsieck setting, then the forcing sequence
becomes

% = %uﬁekwml) + Gt = xu1)ll2 (3.31)

which, according the theory of inexact Newton methods [@6fermines the rate of convergence. An intuitive
way to see whyj, would be small is that if x; } ever converges, then the sequefigg} should behave like

Vi1 X = BV f(Trr1) = Xpr1 — Bep VI (Fra1)- (3.32)

As such, there should be a cancelation in (3.31) to mglsamall. In our numerical experiment, however, we
find thatn,, diminishes slowly in general for a reason not fully undeostat present. For now, we conclude
that, under the SER strategy, the transitional ability ef Hordsieck-based iterative scheme is poor and do
not recommend this conversion.
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4. Numerical experiment. Thus far, we have proposed some high-order BDF-basedivtersthemes
that are contractive and transitional. In this section weyoaut a few numerical experiments to demonstrate
these concepts. For quick implementation, critical isswesh as effective step size selection or other cost
reduction tactics are not considered in these experiméfgemploy the same SER strategy across the board
for all orders, which itself may not be the best policy. We aincomparing step sizes variation and checking
whether the methods themselves will transform at the ergsta

We choose a few interesting application problems with kneaurces to benchmark the performance.
These are the Miller-Brown potential energy surface (MBHEY, the Powell badly scaled function (PBSF)
[69], the chemical equilibrium system (CES) [66], the ststate reaction rate equation (SSRRE) [82], and
the circuit design problem (CDP) [79], all of which are knoterbe challenging [2]. These problems are set
up as gradient dynamical systems in the form (1.1). Althothgise are optimization problems whose equi-
libria can be found directly by existing optimization pagka, we stress that there are numerous applications
where the process of evolution from the starting point todtagionary point is important to practitioners.
Tracking the gradient dynamics is more than just findingtasi@nary points.

4.1. Test on low-precision low-order ODE integrators. To set a point of reference, we employ stan-
dard ODE solvers in MTLAB as the base for evaluating the performance. These soheth@ode23s
which is order 2 and the BDF inde15s with MaxOrder = 2. Built in these ODE solvers is the step size
selection strategy which estimates the local erroin the entryy; at each step and chooses step sizes to
ascertain that the criterion

le;| < |y;|RelTol + AbsTol (4.1)

is satisfied. This more sophisticated strategy differs ftbemSER strategy in that the latter takes no local
errors into account. We are interested in low precision whth hope that the contractivity of the gradient
dynamics will keep the convergence in bay, so we set the totatanceAbsTol = RelTol = 1072,

We do not preset the interval length of integration, buthetprocess terminate automatically when one
of the following events occurs:

IV f(x)|| < TerTol or IV 7Gxl < TerTol or |xg— xg_3|| < TerTol, (4.2)

IV £ (o)l

where the termination toleranderTol is set atl0—°. On the other hand, high precision integration, such
as settingAbsTol = RelTol = 107! to follow the flow closely, provides information about howtpthe
analytic gradient trajectory takes to reach its equilibripoint [75].

Involved in the overhead of these methods are time stegedfateps, function evaluations, Jacobian
evaluations, LU decompositions, linear solvers, and so Boughly speaking, these parameters depend
linearly on the number of steps, so we report only the timpssta Table 4.1. Detailed statistics on this
experiment and all other tests reported herein can be furdigpon request.

ode23 BDF (order odel5s (full) integration
(10—2) 2) (10~2) (10~12) length
MBPES 21 51 1441 0.06
PBSF 249 142 1651 4.94e+04
CES 253 526 5133 1.01e+05
SSRRE 66 159 3378 5.39e+05
CDP 86 139 3358 6.01e+02
TABLE 4.1

Time steps and length of integration needed by standard @Edgrators.

It should be clear from this experiment that low-precisiod éow-order ODE integrators are sufficient
for gradient dynamical systems. There is really no needatcktthe trajectories in high precision. This, of
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course, is mainly due to the inherent contractivity of thedignt dynamics. It is also worth noting that, even
though the integration lengths might be long, the time steqaired are only in hundreds by these integrator,
suggesting that the step size selection strategy (4.1s@s@pable of adopting very large step sizes while
satisfying the specified local tolerance condition.

4.2. Test on high order BDF-based pseudo-transient methoddJsing the same stopping criteria in
the preceding experiment, we now test the BDF-based pseadsient methods (3.2) on the same five prob-
lems. We choose initial step sizg = 10~2. After generating enough starting values via the expliciteE
formula, we vary;, by the SER strategy. Summarized in Table 4.2 is a comparisdheonumbers of steps
taken by the best multi-step BDF iterative schemes (3.2hagthose byde23s with local error tolerance
10~2. It should quite obvious that the BDF-based pseudo-trahsiethods generally require much fewer
iterations for convergence.

ode23 BDF-based (order)
(1072) Transient
MBPES 21 9 @)
PBSF 249 25 (4)
CES 253 30 (1)
SSRRE 66 27 2
CDP 86 36 (2)
TABLE 4.2

Comparison of time steps betweste23s as an ODE integraor versus the best (order) transitional BfzReme (3.2).

What is not clear in Table 4.2 is why the best BDF-based meithodt necessarily of the highest order.
This might have something to do with our using the SER styafegall methods. This strategy is proven
successful only for the order-1 pseudo-transient methéd [#mma 2.1], but might not be as effective
for higher-order methods. This area is widely open for ferttesearch! See [4, 34, 46, 63, 75, 96]. To
demonstrate our point, we repeatedly test the CES probledifteyent starting values. From Table 4.3, we
see that the cost @ide23s is fairly stable, but the numbers of steps for the BDF-basethods fluctuate.

[ode23s]] BOFL BDF2 BDF3 BDF4 _ BDF5]

253 39 20 31 29 22

231 32 29 26 36 77

224 36 17 45 44 40

229 24 214 24 39 43

227 38 43 33 32 36
TABLE 4.3

Repeated tests ofle23s vs. BDF-based iterative schemes (3.2) on CSE with diffestamting values.

On the other hand, Figure 4.1 typifies the history of gradieduction and the variation of step sizes
based on the SER strategy. The drawings clearly manifesfjubdratic convergence of the gradient and
the exponential growth of;, at the final stage of iteration, even though the SER strateggéd as a rough
estimator.

5. Conclusion. Gradient dynamics appears in a wide range of discipliness Work explores some
general mathematical characteristics that an effectiadignt dynamics algorithm should bear. In particular,
we propose some ODE-based iterative methods, but do notftitle usual numerical ODE protocols. Innate
to these methods are their transition capability and cotittity property. Preliminary experiments, even by
a rudimentary step size selection strategy, evidence ttempal of these methods.

Many guestions remain open, including proper step sizerobsttategies and other cost reduction tactics
[14, 15]. Also important is the generalization to structugradient dynamics. One such an application
with significant consequence is a proper projected gradiethod for the Toda lattice (1.3) for eigenvalue
computation.
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FIGURE 4.1. Step size variations by the SER strategy and gradient remtufdr CES by the BDF-based scheme (3.2).

6. Appendix. As is often the case in applications, algorithms should lezisfly designed to handle
specific gradient dynamics for its best efficiency. We hayal@ted the BDF-based iterative schemes as a
way to tackle the general gradient dynamics for its coniracnd transitional properties. Certainly, there
are other possible approaches. Without going into leng#tgil$, we briefly mention two other possible
ODE-based iterative schemes for gradient dynamics.

6.1. NDF-based methodsImplemented in the solvarde15s in the MATLAB ODE suite as an effec-
tive solver for still ODEs is the so called numerical diffetiation formulas (NDF):

p—1
Yit1 = Zaj}’kfj + hBE(yrr1) + BEYp (Yrs1 — Yrr1) (6.1)
J=0

where the quantity
p
Vi1 i= Z vy (6.2)
m=0

is calculable from previous steps via the back differenceraiorvy, := y. — yr—1 and the valuey, :=
Z‘;?Zl % is fixed. The motivation for the NDFs is that the parameatean be adjusted to gain more accuracy
without significantly sacrificing the stability [83]. Sinail to the BDFs, the NDFs can be made into contractive
and transitional iterative schemes for gradient dynamics.

Scheme:One application of the Newton iteration of (6.1) with stepesi;, to the gradient flow leads to

the iterative scheme:

11—k, ! 1 o
Xpa1:=Xp— (Tﬁzjln—FV?f(xk)) Vf(Xk)_m Zajxk,j—xk—i-nvpﬂ (xx—Xg+1)] | - (6.3)
j=0

Transitionality: From the identity that



we can write the intermediate vectog; as

p P P
Xkl = Xg + Z VX = X + Z VT AX 1 =X + Z

m=1 m=1 m=1 j=0
p—1 p R
=xi + Z Z (—1)/ ( i ) Axp_1—; =X + anAxk_j,
j=0 m=j+1 j=1
with the abbreviations
P ; m—1
S ) MR o0
m=j
Upon substitutings,; into (6.3) and rearranging terms, and with the additionahtionn, := —1, we
obtain the equivalence
=y
V2 f(xp)Axy + V(xg) = - Z (EJ + prnj) AxXp_j + EyppAxg—_p | (6.5)
j=0

The fact thatz‘j:0 n; = 0, together with (3.16), implies the coefficients of the timdeeAx;,, ..., Ax,_p
sum to the unity. So the right side of (6.3) can be regardechaverage. Thus the iterative scheme (6.3) is
still an inexact Newton method with averaging. Note thab)Bequires one extra memory than (3.13).

Contractivity: Since the iteration (6.3) can be regarded as an inexact Mawtthod, it already suggests
contractivity. An argument similar to Theorem 3.1 can els$htihat the NRF-based iteration (3.13) is indeed
contractive.

6.2. Rosenbrock-based methodsimplemented in the solverde23s in the MATLAB ODE suite is the
special Rosenbrock method

Yntl = ¥Yn Tt hko
Wki = f Yn
) (6.6)
Wky = f(yn+ 3hki) — hdJk
Wks = f(yn +hks) + (e — 2)hdJk; — ehdJks,

with d = m e=6+4++2,W:=1-hdJ,andJ := %’;"). The method is effective at crude tolerances

due to its FSAL (first same as last) afestability [83, Section 3.1], which makes it a good solver the
gradient trajectory. However, the method does not haveek&et transitional property.
One step of Rosenbrock iteration (6.6) is equivalent to tiuaéon

6f(xk)
oy

Bf(xk)
dy

1 1 1 1 1
Axk-l-gf (Xk+§AXL]) = @Axk—i— AXEC]

for Axy, whereAxEj] := hk; is aknown quantity. Linearizing the second term yields ggrapimate system

Of (xx) 1 1 1 0f(xk) 1)
A ~f =—A 1—— Ax;.
oy Xk F g (xe) = gpixit (1= 59) =5 = A%,
This expression looks like the inexact Newton form, but tredglits do not add up to one. Therefore, the
Rosenbrock-based iteration does not have the ability tesitian itself into a fast Newton method. Taking
advantage of its high efficiency for crude tolerance, howekie method might be used as the initial integrator
for steering the flow into the neighborhood:of before switching to other fast converging method.

(6.7)
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