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Abstract. Gradient adaption is ubiquitous in nature. The notion has also been employed over a wide range of applications. It
is often the case that each application has been given consideration separately for its best efficiency. Understanding the mathematical
foundations of effective algorithms for general gradient dynamics should be of practical importance across diverse fields. Contractivity
and transitionality are two such characteristics investigated in this paper. While standard, general-purpose numerical integrators are
readily applicable, they are sophisticatedly designed forthe purpose of closely tracking exact integral curves, which is slow, expensive,
and unnecessary for gradient flows. In contrast, this work discusses some nontraditional ways of discretization that exploit the gradient
structure, namely, they allow the possibility to relax the precision, hence the speedup; the ability to guide the path, hence the robustness;
and the contractibility to correct the error, hence the precision. These high-order iterative methods, capable of transforming themselves
into fast converging Newton-like methods when closing in a desired equilibrium point, can be combined with suitable starting procedure
in the initial phase to further improve both speed and precision.
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1. Introduction. Given a differentiable scalar functionf : Rn −→ R, the basic fact that its gradient
vector∇f(x) points in the steepest ascent direction with the maximum rate of change‖∇f(x)‖2 for the
function value at the pointx is well known. Generalizing to a differentiable functionalf over a Hilbert space,
the gradient should be interpreted as the Riesz representation of the Fréchet derivative of the functionalf ,
whose true denotation depends on, of course, the underlyinginner product. It is quite natural to expect that a
system adapts itself continuously in the gradient direction. Simply put, a dynamical system in the form

dx

dt
= −∇f(x), x(0) = x0, (1.1)

wheref is a second-order differentiable functional over an appropriately defined Hilbert spaceH , is referred
to as a (negative) gradient flow. The gradient dynamics was recognized and viewed challenging by Courant
and others in earlier days [8, Section 1.1]. Since then, it has long attracted research attention across both
fields of pure and applied mathematics. Far from being complete, we mention a few representative works on
the general theory [43, 47, 61, 75, 87, 92, 94, 99].

Gradient adaption plays a significant role in nature and in applications. Thermal conduction along the
negative temperature gradient of the isothermal surfaces and osmosis down the concentration gradient across
the cell membrane typify the gradient adaption. Mathematical models for the phase separation of materials in
iron alloys [18, 77], the segmentation or edge detection in image processing or computer vision [67, 90], the
surface evolution in differential geometry [12, 28, 86], the flow of an ideal gas in porous medium [98], and the
ground state in quantum systems [5] all employ this notion ofgradient dynamics. Numerous other systems
that evolve in time can also be interpreted in this way. See, for example, applications in the game theory [31,
78], probability [33], Markov chain [64], economics [32, 36], financial markets [32], quantum field theory
[25], network communication [81], circuit theory [88], mechanism design [84], low rank approximation
[59, 62], and the general surveys discussed in [42, 45, 47]. We give four specific examples below to motivate
the importance of gradient dynamics, followed by an outlineof possible approaches to a gradient dynamical
system.
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1.1. Examples of gradient flows.To solve each of the following four problems in the most efficacious
way probably requires specific and individually tailored method. However, together they demonstrate the
wide scope of applications of gradient dynamics. Along the outline, we also raise a few curious questions.

Example 1.Consider a heat equation of the form

∂u

∂t
= ∇2u+ p(u), (1.2)

for u = u(v, t) ∈ L2(U) with the boundary conditionsu|∂U = 0. Then it is not difficult to see that the
right-hand side is precisely the negative gradient of the functional

f(u) :=

∫

U

(
1

2
‖∇u‖2 − P (u)

)
dv,

whereP is such thatP ′ = p and guarantees the existence of a minimizer forf .
Indeed, it is known that "a surprisingly large number of wellknown diffusive partial differential equations

have the structure of a gradient flow" [76] with respect to some appropriately chosen energies and dissipative
mechanisms [68]. The dissipative mechanism can be quite general even if an inner product is not explicitly
known. Under the Wasserstein metric, for example, the Fokker-Planck equation is a Wasserstein gradient flow
of a specific functional [58, 76]. Mean curvature flow, as another example, is the gradient flow for the area of
hypersurfaces [22]. We understand that a PDE-based gradient dynamics can be approximated numerically by
an ODE system of the form (1.1) through proper discretization in the space variable. The techniques proposed
in this paper therefore should be applicable to PDE-based gradient dynamics as well.

Example 2. A major theme advocated and extensively demonstrated in thetwo books [94, 95] is that
"gradient dynamical systems cover many iterative formulasof numerical analysis". We mention from our
own experiences [19, 20] the Toda lattice

dX

dt
= [X,Π0(X)] (1.3)

for symmetric tridiagonal matricesX(t) ∈ Rn×n, whereΠ0(X) := X− − X−⊤ with X− denoting the
strictly lower triangular portion ofX and[·, ·] stands for the Lie bracket. On one hand, it is known thatX(t)
is a Hamiltonian flow maintaining the spectrum ofX(0) for all t. On the other hand, it is also known that the
dynamical system (1.3) is precisely the (projected) gradient flow for the objective functional [11]

f(Q) :=
1

2
‖Q⊤X0Q−N‖2F , (1.4)

subject to the constraintQ ∈ O(n), whereO(n) is the orthogonal group andN = diag{n, n− 1, . . . , 2, 1}.
That is,X(t) is a gradient flow moving to reduce the off-diagonal entries of X(t) = Q(t)⊤X0Q(t) while
aligning its diagonal entries in the same ordering as those inN .

Most interestingly, the sequence{X(k)} obtained by sampling the solution flowX(t) at integer times
corresponds to exactly the sequence generated by theQR algorithm for eigenvalue computation [23, 93],
attesting that the ever-importantQR algorithm is a gradient adaption. Though the popular shiftedQR algo-
rithm is already fast, is it possible to develop a new iterative scheme that moves along the "gradient trajectory"
of (1.3) to find its equilibrium point with significantly larger step sizes1 and, hence, the speed?

Example 3. In the same vein, many important numerical algorithms can also be interpreted via systems
and control theory as descent flows [6, 29, 37, 45, 49, 85, 92].Consider the basic model

dx(t)

dt
= φ(x, r), (1.5)

1The Toda lattice (1.3) is an ODE system constrained to the isospectral manifold. Any reasonable discretization of the solution
X(t) should respect this manifold constraint which is eigenvalue preserving. Geometric integration techniques are particularly suitable
for isospectral flows characterized by a Lie struture. See [16, 52, 53, 54, 55, 72], and the book [39]. However, so far as we know, these
Lie-structure preserving methods have not exploited the gradient structure yet [57].
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where the state variablex(t) is controlled by some properly selected functionφ(x, r) which depends on a
certain output feedbackr. Different choices ofφ can be used to manipulate the flowx(t) and, hence, lead to
various algorithms. It is convenient that the choice of the control strategyφ depends on optimizing a certain
cost functionV (x(t)) which, in turn, plays the role as a Lyapunov function for the dynamical system. In this
case,φ(x, r) is not necessarily the gradient ofV (x), but still points to a descent direction [91].

Take the classical problem of finding the root(s) of a given differentiable functiong : Rn → Rn as an
example. A reasonable choice of the feedback for monitoringthe progress made by any preferred algorithm
is the residue function

r(t) := −g(x(t)). (1.6)

Following [9] and [20], we summarize in Table 1.1 a few possible choices for the controlφ(x, r).

φ(x, r) dV
dt

dx
dt

g′(x)⊤r −‖g′(x)⊤r‖22 −g′(x)⊤g(x)

g′(x)−1r −‖r‖22 −g′(x)−1g(x)

g′(x)−1sgn(r) −‖r‖1 −g′(x)−1sgn(g(x))

sgn(g′(x)⊤r) −‖g′(x)⊤r‖1 −sgn(g′(x)⊤g(r))

g′(x)⊤sgn(r) −‖g′(x)⊤sgn(r)‖22 −g′(x)⊤sgn(g(x))

TABLE 1.1
Control strategies and the associated dynamical systems

It is not difficult to verify thatV (x) = 1
2‖g(x)‖22 andV (x) = ‖g(x)‖1 can be used, respectively, as the

cost functions in the first four cases and in the last case. Thefirst case corresponds exactly to the gradient flow
(1.1) with respect toV (x). The second case is the well-known continuous Newton method[48, 89] which is
not the gradient flow with respect to the Euclidean norm. However, because〈g′(x)−1r,g′(x)⊤r〉 = 〈r, r〉 ≥
0, the Newton direction forms an acute angle with the steepest descent direction. So the continuous Newton
flow is still a descent flow. Assuming thatg′(x) remains nonsingular, then the flow stops only whenr(x) = 0.
Similar decent properties hold for other cases, as is seen inthe second column aboutdV

dt
above. A descent

flow such as (1.5) for a suitable cost functionV (x) therefor generalizes the notion of the gradient flow.Is it
possible to integrate (1.5) more effectively than just the conventional continuation methods[48, 80]?

Example 4. In the setting of a Krěin space [13, 27, 35], we can even consider a flow of this form
{

dx
dt

= −∇xu(x,y),
dy
dt

= ∇yu(x,y),
(1.7)

whereu : Rn × Rm → R is sufficiently smooth and∇x represents the partial gradient with respect to the
variablex only, as a gradient flow [3, 10, 30]. What happens is that the inner product is now interpreted under
different “metric". While the flow (1.1) can be used to find stable equilibria of a system, the flow (1.7) can be
used to detect rare but perceptible transition events between long lived metastable states in a complex reaction
system. The presence of transition events, namely, saddle points, and the knowledge of their location in the
configuration space provide critical information for important systems such as phase transitions in nucleation,
conformational changes in macromolecules, and transitionstates in chemical reactions [44]. The saddle-point
flow (1.7) also arises naturally when solving a complex-valued differential system [7, 51]

dz

dt
= −g′(z), (1.8)

whereg : Cn → C is analytic. If we identifyz = x + ıy with x,y ∈ Rn andg(z) = u(x,y) + ıv(x,y),
theng′(z) must satisfy the Cauchy-Riemann equations which translateexactly into (1.7).
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In many ways, the saddle-point flows share properties similar to the gradient flows that we are about to
study [21]. In particular, the techniques developed through this study might be useful for complex-valued
differential systems.

1.2. Goals in gradient integrators. It should be self-evident from the above-mentionedexamples, other
widespread applications and references that having an effective gradient integrator in hand is of tremendous
value and practical importance. There are already many prominent advocates of this subject [8, 47, 92, 94].
As is typical the case, while the common element of the largernumber of applications is gradient dynamics,
each application probably deserves and has been given consideration separately for the best efficiency and
effectiveness. Among the various algorithms, it is critical to search for the common ground and ask what the
essential ingredients must be in order to make an algorithm effective. At this point, there are two major views
about a desirable gradient integrator. The difference is atexploiting two related but different properties of the
gradient flow, which leads to two related but different treatments.

Maintaining monotonicity. One universal property of a gradient flow is that the potential f(x(t))
decreases monotonically along the solution trajectoryx(t), i.e.,

f(x(t)) ≤ f(x(s)) for t > s,

with strict inequality except at stationary points off . Correspondingly, we would like a numerical method
to preserve the monotonicity at least locally, i.e., if the method starts fromxn = x(tn) exactly with no past
errors, then the approximate solutionxn+1 at tn+1 = tn + h produced by the numerical method for a step
sizeh would ensure that

f(xn+1) ≤ f(xn).

Gradient integrators for this purpose include algebraically stable Runge-Kutta methods [41, 50], discrete-
gradient methods [65, 73, 74], and average vector field collocation methods [38, 65]. More specifically,
within the class of algebraically stable Runge-Kutta methods, the Radau IIA methods under a mild step size
restriction enjoy good energy reduction and strong dampingproperty for stiff gradient systems, but the Gauss
methods do not have the damping property at all. On the other hand, the discrete-gradient methods and
the average vector field methods can diminish the energy without any step size restriction, but also have no
damping property for stiff gradient systems. Details can befound in a recent survey article [62].

Utilizing contractivity. The emphasis in this paper is on exploiting the second property of a gradient
flow — the contractivity. The rationale why this study is important is because it might help achieve the
ultimate goal of a gradient flow (1.1) (or a general descent flow (1.5)), namely, finding its limit pointx∗ =
limt→∞ x(t), more effectively. At first glance, it seems that we could simply tackle the first-order optimality
condition∇f(x) = 0 (or the nonlinear systemg(x) = 0) directly by using some general-purpose Newton-
like iterative methods. Such a view, however, fails to recognize why the gradient flow comes to play in the
first place. We mention two reasons for following a gradient trajectory:

1. First, the critical points off(x) might not be isolated or unique [1]. Merely satisfying the optimality
condition may give rise to a point far away from a desired solution x∗. For instance, the matrix
equation[X,Π0(X)] = 0 for the Toda lattice has infinitely many solutions, but we look for the
diagonal matrix that is orthogonally similar to the initialmatrixX0 for its eigenvalues. The integral
curveX(t) guides the way there and we have to follow the curve.

2. Second, most iteration methods suffer from the inherent limitation of local convergence. The gradi-
ent flow guarantees convergence off(x(t)).

On the other hand, it also seems that employing existing numerical integrators to carefully trace the trajectory
x(t) could serve as a means for findingx∗. As reliable as this approach might be, nonetheless, it usually
spends expensive computation at the transient state, whichwould be a waste if only the limit pointx∗ is
needed. An ideal gradient integrator should follow the truetrajectory approximately without striving for
precision and should be able to eventually rise to fast convergence to the limit point with high precision
[4, 75]. We think that the property of contractivity provides us with several possible avenues for this pursuit.
More rigorous technical details will be presented in a subsequent discussion.
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For the ease of discussion, we limit our consideration to theODE setting of gradient dynamics. For
PDEs of gradient nature, a suitable discretization of the space variable such as by the method of lines can
often reduce the problem to an ODE system in the form (1.1), which will not be elaborated in this paper. Thus,
this paper is organized as follows. In Section 2 we bring forth the essential notion of contractivity which has
been studied extensively in the literature. The gradient dynamics is contractive. Instead of employing aG-
stable linear multi-step method or an algebraically stableRunge-Kutta method which is known for producing
contractive numerical solutions, we argue that anyA0-stable method is sufficient for maintaining contractivity
for gradient dynamics. We exploit this property by proposing some new iterative schemes in Section 3.
Being of higher orders, these methods have the dual capabilities of initially tracking the true trajectory more
precisely by using larger step sizes and ultimately transforming themselves into fast converging algorithms.
We offer a mathematical justification on why these characteristics are inherited. Some experimental results
are reported in Section 4, which eventually suggests that a 2-stage hybrid method in a spirit similar to those
proposed in [14, 15] might be the most effective approach fortackling gradient dynamics.

2. Contractivity. For gradient flows, the monotonic decreasing of thef values along one single solu-
tion trajectoryx(t) is obvious, but it does not tell howx(t) is influenced at the presence of perturbations.
Relative to neighboring trajectories, perhaps the most conspicuous property of the gradient dynamics is the
contractivity which we describe below.

2.1. Contractive vector fields. A vector field2

y′ = f(t,y) (2.1)

with f : D ⊂ [a, b] × Rn → Rn is said to satisfy a one-sided Lipschitz condition3 if there exists a scalar
functionν(t) such that the inequality

〈f(t,y1)− f(t,y2),y1 − y2〉 ≤ ν(t)‖y1 − y2‖22 (2.2)

holds for ally1,y2 in the set{y ∈ Rn|(t,y) ∈ D}. The one-sided Lipschitz functionν(t) in (2.2) can be
negative. Suppose thaty(t) andz(t) are two solutions of (2.1). Then it can be argued that [60, Section 7.3]
(see also [41, Lemma 12.1])

‖y(t2)− z(t2)‖2 ≤ e
∫ t2
t1

ν(ξ)dξ‖y(t1)− z(t1)‖2, a ≤ t1 ≤ t2 ≤ b. (2.3)

A contraction happens (segmentally) over the interval[a, b] whene
∫ t2
t1

ν(ξ)dξ < 1 for a ≤ t1 ≤ t2 ≤ b. This
is the essence of the so called nonlinear stability theory [60, Chapter 7]. For our application, we shall limit
ourselves throughout this paper to the autonomous case where

f(t,y) = f(y) := −∇f(y). (2.4)

The following result showing local contraction follows from the general notion of asymptotic stability.
LEMMA 2.1. Suppose thatx∗ is an isolated stationary point off and that∇2f(x∗) is positive definite4.

Then there is a closed ballB centered atx∗ and a positive numberλB such that the gradient flow is contractive
in the sense that

‖y(t2)− z(t2)‖2 ≤ e−(t2−t1)λB‖y(t1)− z(t1)‖2, (2.5)

for any two gradient flowsy(t) andz(t) starting from withinB andt1 ≤ t2.

2To avoid confusion we shall reserve the boldfacedx for the state variable in a gradient flow andxk for the related iterates, while
we shall usey as the dependent variable of a general ODE system andyn for the discrete approximation aty(tn).

3A conventional Lipschitz condition necessarily implies a one-sided Lipschitz condition, but not the converse.
4In the case that∇2f(x∗) is only positive semi-definite, the eigenvectors corresponding to the zero eigenvalue form a center

manifold. A similar argument can be made by using the center manifold theory [17, 100]. So as to focus on the main ideas, we assume
the generic case of positive definiteness in this paper.
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FIGURE 2.1.Global convergence and local contraction in Example 5.

The real question is to ask how large the basin of contractioncan be for a gradient dynamics and what to
do if outside the basin of contraction. Since the following 1-D example can be worked out explicitly, we use
it to demonstrate our point [91].

Example 5.The differential equation

dx

dt
= x− x3

is a gradient system with the potential functionf(x) = (1−x2)2

4 . There are three equilibria{−1, 0, 1} at
whichf ′′(0) = −1 andf ′′(±1) = 2 > 0. So,x = ±1 are asymptotically stable. Indeed, the exact solution
is given by

x(t) =
x0√

x20 − x20e
−2t + e−2t

.

So, x(t) converges to±1 from everywhere except the unstable equilibrium pointx = 0. The basin of
attraction for the stationary pointx = 1, for example, is(0,∞). On the other hand, the contraction (2.5)
does not hold everywhere. The ball referred to in Lemma 2.1 aroundx = 1 can be the interval[1− δ, 1 + δ]
with δ < 1 − 1√

3
. A simple analysis shows that the contraction for flows converging tox = 1 does occur

whenever flows enter the domain( 1√
3
,∞). It is thus illustrated that contraction may not happen currently

as convergence. At the initial stage, it is important to relyon the convergence property to steer a gradient
flow into the basin of contraction. Once there, we can rely on the contraction property to find an equilibrium
without the need of following any particular trajectory precisely.

For a general gradient system, the ballB referred to in Lemma 2.1 can be as large as any compact
convex subset containingx∗ as an interior point, whereas Hessian∇2f(x) maintains positive definiteness in
B. Denote the positive minimal value

λB := min
y∈B

λ[1](∇2f(y)), (2.6)

whereλ[1](M) denotes the smallest eigenvalue of a symmetric matrixM . Then, using the convexity, it can
be argued that

〈−∇f(y1) +∇f(y2),y1 − y2〉 ≤ −λB 〈y1 − y2,y1 − y2〉 (2.7)
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for anyy1,y2 ∈ B. The actual basin of contraction (nearbyx∗) might be larger thanB, but is difficult to
specify in general. Note, however, that ifB1 ⊂ B2, thenλB1 ≥ λB2 , implying that the contraction gets
exponentially stronger whenx(t) gets closer tox∗. It is worth noting that the above argument is applicable,
not just to the stationary pointx∗, but to any pointx at which∇2f(x) is positive definite. After all, the notion
of contractivity, as is pointed out in (2.3), is a local property.

The fact that ultimately the vector field of gradients is contractive is of practical importance because, if
one solution inadvertently jumps on to a neighboring trajectory, the contraction will bring the paths back to
the same equilibrium point. This property gives us the leeway to follow the gradient trajectory loosely while
keeping the equilibrium in sight.

2.2. Contractive and transitional methods.When discretizing a contractive vector field for numerical
calculation, we certainly wish that the property of contraction is preserved by the underlying numerical
method. Considerable efforts have been taken toward this goal. See the book [41, Sections IV.12, V.6,
and V.9] and references contained therein for an in-depth discourse on this subject and a chronicle on the
development of its theory. A introductory overview of some main results can also be found in the books
[24, 60]. Without repeating the details, we simply mention that aG-stable linear multi-step methods [41,
Definition 9.1] and an algebraically stable Runge-Kutta methods [41, Definition 12.5] generate contractive
numerical solutions.

We quickly point out that these elegant results are developed for general contractive differential systems.
For gradient systems, one property standing out is that the Hessian of any sufficiently smooth objective
function f(x) is always symmetric and, hence, has only real eigenvalues. Since no complex eigenvalues
comes into play, we do not need the full potency of stability conditions of those general methods. Any
numerical ODE method whose region of absolute stability contains the negativex-axis while maintaining
contractivity is sufficient for following a gradient flow.

In this work, nevertheless, we do not settle for a contractive ODE integrator as is given! We do not adjust
the step sizes in accordance with the conventional way wherethe main concern is to maintain the precision
and the stability while tracking the entire trajectory! Instead, we interpret a numerical ODE scheme both as
an integrator and as an iterative process. We adjust the stepsizes so that the very same scheme transitions
itself from a classical integrator to a fast converging iteration. It is this kind non-traditional combination that
give us the edge of effectiveness. We demonstrate our point by the following example.

Example 6. Given the current approximateyk to y(tk) and a step sizehk, suppose thatyk+1 is to be
approximated by the implicit Euler method. Instead of iterating to convergence as we usually do to obtain
yk+1, we perform only one Newton iteration, immediately accept the outcome, and continue to the next step.
We thus yield the iterative scheme

xk+1 = φ(xk; ǫk), (2.8)

whereφ : Rn → Rn is defined by

φ(x; ǫ) := x−
(
1

ǫ
In +∇2f(x)

)−1

∇f(x) (2.9)

andǫ is regarded as a parameter. In the meantime, we vary the step size ǫk, not based on an error estimator,
but according to the so-called "switched evolution relaxation (SER)" strategy [97]

ǫk‖∇f(xk)‖2 ≡ c (2.10)

for a specified constantc. Clearly, such a strategy (2.10) has the characteristics ofbeing relatively small in
the initial phase and becoming large when∇f(xk+1) converges to zero in the terminal phase of the process.
In fact, it can be argued thatǫk+1 ≥ 2ǫk whenk is large enough [56, Lemma 2.1]. Thus, the scheme (2.9)
initially acts like an ordinary ODE integrator with small step sizesǫk, but asymptotically transitions itself
into a fast converging Newton-like iteration whenǫk → ∞. Such a process, known as the pseudo-transient
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iteration, is a special implicit upwind method used in the PDE community [70] for computing steady-state
solutions. We mention in passing that the SER strategy (2.10) is in an interesting contrast to the "artificial
time step" strategies discussed in [4] for explicit Euler steps.

We highlight two intrinsic features that will be common to other methods proposed later in this paper.
First, we can rewrite (2.8) in such a way that

‖∇2f(xk)∆xk +∇f(xk)‖2 ≤ ηk‖∇f(xk)‖2, (2.11)

with

∆xk := xk+1 − xk (2.12)

and

ηk := ‖
(
In + ǫk∇2f(xk)

)−1 ‖2. (2.13)

In this case, it is further known that

‖xk+1 − x∗‖2 = O(ηk‖xk − x∗‖2 + ‖xk − x∗‖22). (2.14)

Thereforexk converges at least superlinearly. Note that whenǫk goes to infinity,ηk goes to zero and (2.14)
behaves like quadratic convergence [26].

Second, we claim that the iterative scheme (2.8) is contractive nearby the stationary pointx∗. This is
important because the scheme (2.8) is not used as an ODE integrator in this area. It can be deduced that the
Jacobian ofφ atx∗ satisfies

∥∥∥∥
dφ(x∗; ǫ)

dx

∥∥∥∥
2

=
1

1 + ǫµ[1]
< 1, (2.15)

whereµ[1] denotes the smallest eigenvalue∇2f(x∗) which, by assumption, is positive. If{yk} and{zk} are
two sequences generated by (2.8) using the same sequence{ǫk} of step sizes and ifyk, zk are sufficiently
close tox∗, then by (2.15) we see that

‖yk+1 − zk+1‖2 = ‖φ(yk; ǫk)− φ(zk; ǫk)‖2 ≤ νk‖yk − zk‖2 (2.16)

for someνk < 1. In fact,ǫk is expected to be large at the final phase, so the contraction can become stronger
whenνk becomes smaller . Whether there is contraction at other locations along the iteration is harder to tell.
The Fréchet derivative ofφ on a general vectord ∈ Rn at a given pointx is characterized by

φ′(x; ǫ).d =

(
In −

(
(∇2f(x))−1

ǫ
+ In

)−1
)
d

−ǫ2
((
In + ǫ∇2f(x)

)−1 (∇3f(x).d
) (
In + ǫ∇2f(x)

)−1
)
∇f(x), (2.17)

where∇3f(x) : Rn → Rn×n is the Fréchet derivative of∇2f(x) and is a tensor-to-vector multiplication.
At a given pointx where∇2f(x) is positive definite, it can be argued that there exists a positive number
Υ(x) such that ifǫk ∈ [0,Υ(x)], then the operator normφ′(x; ǫk) is bounded by 1 and, hence, a contraction
happens. In the pseudo-transient iteration, however, we donot wish to see a bound onǫk. Such a dilemma
is somewhat of less concern in practice because before we reach the basin of contraction ofx∗ we normally
follow the gradient trajectory carefully anyway.

Different from the energy-diminishing approach in [62], the idea of the pseudo-transient method is to
start the scheme with a smallǫk to let the iteration process mimic an explicit, time-accurate integration. This
allows staying reasonably close to the gradient trajectorywhich leads to the basin of attraction. The step size
selection mechanism controls the transition. Diminishingvalues of∇f(xk) indicate largeǫk can be used,
which transforms the method to the Newton iteration and, hence, attains fast convergence. Our interest in this
paper is to search for some other gradient integrators of similar nature and test their workability.
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3. High-order BDF-based methods.Thus far, we have been speculating the basic idea of an ideal
method that can play dual roles in effectively tackling a gradient dynamics. The pseudo-transient method
outlined in Example 6 is based on the implicit Euler scheme which, used as a numerical ODE integrator in
the crucial initial phase, is of order 1 only. It is generallyexpected that high-order methods can integrate faster
with larger step sizes while maintaining the desirable precision. This should help move along the trajectory
more effectively into the final phase for finding the stable equilibrium. The main objective of this paper
is to propose some high-order methods. To convey the idea, weconcentrate on the backward differential
formulas (BDF) in this section. Our contribution is at establishing a mathematical foundation showing that,
when properly augmented, these schemes enjoy similar contractive and transitional properties as the first-
order pseudo-transient method. Similar arguments can be generalized to other types of schemes such as the
numerical differential formulas (NDF), which we will outline without giving as much detail in the appendix.

One important feature of the classicalp-step backward differentiation formula,p = 1, . . . , 6,

yk+1 =

p−1∑

j=0

αjyk−j + hβf(yk+1), (3.1)

is that its region of absolute stability contains the whole of negative real axis. This is desirable for using
large step sizes at the final phase of a gradient dynamics. Nevertheless, we do not employ existing, highly
sophisticated BDF-based stiff solvers for gradient flows. Instead, in the same spirit as the pseudo-transient
iteration, we start fromxk with step sizeǫk and advance toxk+1 by taking only one Newton iteration, which
can be expressed as

xk+1 := xk +

(
1

ǫkβ
In +∇2f(xk)

)−1

 1

ǫkβ




p−1∑

j=0

αjxk−j − xk


 −∇f(xk)


 . (3.2)

Two remarks are worth noting. First, in contrast to (2.9), the right-hand side of (3.2) involves multiple
steps. Such an iteration, however, is no more expensive thanthat in (2.8), except for a few extra memories
of past values and vector arithmetic operations. Second, weuse the same coefficientsα0, . . . , αp andβ
from a constant step size BDF scheme for all iterates, even though the past valuesxk, . . . ,xk−p+1 may have
obtained from variable step sizes. From the numerical ODE point of view, such a mechanical plug-in makes
no sense and is wrong. Nonetheless, we shall argue for its merits when (3.2) is regarded as a stand-alone
iterative scheme. It may seem more reasonable to first convert (3.1) to a one-step scheme via the Nordsieck
transform and then to form the iteration scheme from there bytaking one Newton step in the same spirit
as we do here. We shall prove in the later part of this section that the Nordsieck scheme has poor, if any,
transitional property. This irony of doing what is right (asan ODE method) and yet getting worse behavior
(in convergence) is an interesting contrast to our approach.

Through the vectorization

Xk :=
[
x⊤
k , . . . ,x

⊤
k−p+1

]⊤ ∈ R
pn, (3.3)

we may regard the iteration (3.2) as a fixed-point iteration

Xk+1 = ψ(Xk; ǫk), (3.4)

with

ψ(X ; ǫ) :=




x[0] +
(

1
ǫβ
In +∇2f(x[0])

)−1 (
1
ǫβ

(∑p−1
j=0 αjx

[j] − x[0]
)
−∇f(x[0])

)

x[0]

...
x[p−2]




(3.5)
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whereX is partitioned in blocks asX =
[
x[0]⊤, . . . ,x[p−1]⊤

]⊤
with x[j] ∈ Rn. The following result shows

that, similar to the pseudo-transient method, the more sophisticated scheme has the desirable property of
contractivity.

THEOREM3.1.Suppose thatx∗ is an isolated stationary point off and that∇2f(x∗) is positive definite.
Then there exists a neighborhoodB of x∗ such that

‖Yk+1 − Zk+1‖2 = ‖ψ(Yk; ǫk)− ψ(Zk; ǫk)‖2 ≤ νk‖Yk − Zk‖2 (3.6)

with someνk < 1, provided components ofYk andZk are from withinB.
Proof. The fixed-point of (3.4) isX∗ = [x∗⊤, . . . ,x∗⊤]⊤ at which the Jacobian ofψ is given by

dψ(X∗)

dX
=




Ω(ǫ)α0

ǫβ
Ω(ǫ)α1

ǫβ
. . . Ω(ǫ)

αp−1

ǫβ

In 0 0 . . . 0

0 In 0 0
. . .

...
...

...
0 0 0 . . . In 0




, (3.7)

where for convenience we introduce the abbreviation

Ω(ǫ) :=

(
1

ǫβ
In +∇2f(x∗)

)−1

. (3.8)

The Jacobian (3.7) appears as the structure of a block companion matrix. So eigenvalues of (3.7) are precisely
those of the matrix polynomial

p(λ) := Inλ
p − Ω(ǫ)

α0

ǫβ
λp−1 − Ω(ǫ)

α1

ǫβ
λp−2 − . . .− Ω(ǫ)

αp−1

ǫβ
. (3.9)

Let the eigenvalues of∇2f(x∗) be denoted byµ[1] ≤ µ[2] ≤ . . . ≤ µ[n−1] ≤ µ[n]. It suffices to consider the
roots of the polynomials

q(λ;µ[i]) := λp − α0

(1 + ǫβµ[i])
λp−1 − . . .− αp−1

(1 + ǫβµ[i])
, i = 1, . . . , n. (3.10)

If the step sizeǫ is large enough such that

p−1∑

j=0

|αj | < 1 + ǫβµ[1], (3.11)

then, using the Rouché theorem, we see that all roots are bounded within the unit disk.
The above proof does not make use of the values of the coefficientsαj andβ of the BDF scheme. These

coefficients really come to play in the following lemma asserting the transitional property that the multi-step
scheme (3.2) can also be regarded as an inexact Newton method, whence the fast convergence.

THEOREM 3.2. Defineζ0 = 1 and

ζj := 1−
j−1∑

i=0

αi, j = 1, . . . p− 1. (3.12)
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Then the BDF-based iteration (3.2) is equivalent to

∇2f(xk)∆xk +∇f(xk) = − 1

ǫk




p−1∑

j=0

ζj

β
∆xk−j


 , (3.13)

whereas the summation on the right side of (3.13) is an average of the time series∆xk, . . . ,∆xk−p+1.
Proof. It is a known fact that for each fixedp, the coefficients of a BDF in the form (3.1) necessarily

satisfy the unique algebraic relationships [41, 60]

p−1∑

j=0

αj = 1, (3.14)

p−1∑

j=0

(j + 1)αj = β. (3.15)

Using (3.14), we can rewrite the summation on the right side of (3.2) recursively as

xk −
p−1∑

j=0

αjxk−j =

p−1∑

j=0

αj(xk − xk−j) =

p−1∑

j=1

(
1−

j−1∑

i=0

αi

)
∆xk−j .

An rearrangement of terms in (3.2) leads to (3.13). To see theaveraging effect, the identity

p−1∑

j=0

ζj = β (3.16)

is simply a rearrangement of the summation in (3.15).
It should be noted that some of the weightsζj

β
in (3.13) might be negative, but they sum to be 1. The

average nature

∆xk :=

p−1∑

j=0

ζj

β
∆xk−j (3.17)

serves as a good estimate of the convergence in the followingsense which generalizes that in (2.13) forp > 1.
COROLLARY 3.3. Suppose that the SER strategy (2.10) is used. Then the sequence{∆xk} determines

the rate of convergence. In particular, iflimk→∞ ∆xk = 0, thenxk converges to a stationary pointx∗

superlinearly.
Proof. By Lemma 3.2, the residual of the (Newton) iteration is given byrk := − 1

ǫk
∆xk. By the theory

of the inexact Newton method, the rate of convergence depends on the forcing sequence [26, Corollary 3.5]

ηk :=
‖rk‖2

‖∇f(xk)‖2
=

1

c
∆xk, (3.18)

wherec := ǫ0‖∇f(x0)‖2 is a constant determined by the first step sizeǫ0.
By now, most of properties known for the pseudo-transient method have been generalized to the class of

BDFs. Of particular usefulness is that a higher order BDF hasthe advantages of allowing larger steps in the
initial stage when tracing a gradient trajectory and, whenxk is close enough tox∗, it transitions itself to a
faster Newton method.

In the remaining of this section, we clarify the question of whether the multi-step scheme (3.2) should
be first rewritten in the one-step Nordsieck form [41, 60] before employing the SER strategy to change the
step sizes. It is known that by defining then× (p+ 1) matrix

Zk :=

[
yk, hy

(1)
k ,

h2

2
y
(2)
k , . . . ,

hp

p!
y
(p)
k

]
, (3.19)
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wherey(j)
k is an approximation toy(j)(xk), the p-step BDF method is equivalent to [40, Section III.6]

Zk+1 = ZkP
⊤ +

(
hf(yk+1)− Zk[0, 1, 2, . . . , p]

⊤) ℓ⊤, (3.20)

whereP ∈ R(p+1)×(p+1) is Pascal matrix

P :=




1 1 1 1 . . . 1
0 1 2 3 p

0 0 1 3
...
0 0 0 . . . 1



,

ℓ = [β, 1, ℓ2, . . . , ℓp]
⊤ ∈ R(p+1)×1 is a specific vector whose other entries are known [40, Section III.6,

Table 6.2]. The first column in the equation (3.20) is a nonlinear system

yk+1 = yk +

p∑

i=1

hi

i!
y
(i)
k + β

(
hf(yk+1)−

p∑

i=1

hi

(i − 1)!
y
(i)
k

)
(3.21)

in the unknownyk+1. Onceyk+1 is obtained, the other columns are explicitly determined from (3.20).
We work out the Nordsieck-based iteration for the casep = 2 as an example.
Example 7.The constant step size 2-step BDF method is

yk+1 =
4

3
yk −

1

3
yk−1 +

2h

3
f(yk+1). (3.22)

The corresponding nonlinear system in the Nordsieck form isgiven by

yk+1 = yk +
h

3
y′
k − h2

6
y′′
k +

2h

3
f(yk+1). (3.23)

The difference between (3.22) and (3.23) is that the former requires the past valueyk−1 with a fixed step size
h, while the latter depends solely on the current valueyk and its derivatives and, hence,h can be arbitrary.

Applying (3.23) to the gradient flow by taking one Newton correction with step sizeǫk yields an explicit
iterative scheme

xk+1 = xk +

(
3

2ǫk
In +∇2f(xk)

)−1(
3

2ǫk

(
ǫkx

′
k − 1

3

ǫ2k
2
x′′
k

))
. (3.24)

If the step size is changed toǫk+1, then we are ready for the next iterationxk+2 by taking

ǫk+1x
′
k+1 := −ǫk+1∇f(xk+1), (3.25)

ǫ2k+1

2
x′′
k+1 = −1

3

(
ǫk+1

ǫk

)2(
ǫkx

′
k − ǫ2k

2
x′′
k + ǫk∇f(xk+1)

)
. (3.26)

To analyze the limiting behavior of (3.24) nearx∗, it is necessary to consider the local behavior of
xk,x

′
k,x

′′
k simultaneously. Define the column vectorWk := [x⊤

k ,x
′
k
⊤
,x′′

k
⊤
]⊤ ∈ R

3n. We can rewrite (3.24)
and the associated derivative information as a fixed-point iteration

Wk+1 = ϑ(Wk; ǫk), (3.27)

whereϑ : R3n −→ R3n is defined by

ϑ(W ; ǫ) :=




w[0] +
(
In + 2ǫ

3 ∇2f
(
w[0]

))−1
(
ǫw[1] − ǫ2

6 w
[2]
)

−∇f
(
w[0] +

(
In + 2ǫ

3 ∇2f
(
w[0]

))−1
(
ǫw[1] − ǫ2

6 w
[2]
))

2
3ǫ

(
−∇f

(
w[0] +

(
In + 2ǫ

3 ∇2f
(
w[0]

))−1
(
ǫw[1] − ǫ2

6 w
[2]
))

−w[1] + ǫ
2w

[2]
)



,
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andW is partitioned in blocks asW =
[
w[0]⊤,w[1]⊤,w[2]⊤

]⊤
with w(j) ∈ Rn. It is easy to check that the

fixed point of (3.27) must be of the form(x∗,0,0). Through some tedious but straightforward manipulations,
it can be shown that the spectrum of the Jacobian matrix ofϑ at the equilibrium point(x∗,0,0) consists of
eigenvalues of each of the3× 3 matrices




1 ǫ
1+ 2

3 ǫµ
[i] − ǫ2

6(1+ 2
3 ǫµ

[i])

−µ[i] − ǫµ[i]

1+ 2
3 ǫµ

[i]

ǫ2µ[i]

6(1+ 2
3 ǫµ

[i])

− 2
3ǫµ

[i] − 2
3ǫ

(
ǫµ[i]

(1+ 2
3 ǫµ

[i])
+ 1

)
2
3ǫ

(
ǫ2µ[i]

6(1+ 2
3 ǫµ

[i])
+ ǫ

2

)



, i = 1, . . . n, (3.28)

which are

0,
2±

√
1− 2ǫµ[i]

3 + 2ǫµ[i]
, i = 1, . . . n, (3.29)

respectively. For eachi = 1, . . . n, all eigenvalues are in the unit disk for any step sizesǫ and converge to
zero whenǫ goes to infinity. Hence, the local convergence by the iteration (3.24) is guaranteed.

Without repeating the details, the above argument can be extended to the generalp = 1, . . . , 6. We even
can still write the scheme derived from the Nordsieck-basedmethods as an inexact Newton iteration, but it
is at this point that the difference between a Nordsieck-based iteration and a BDF-based iteration becomes
more obvious as we now explain.

LEMMA 3.4. For a fixedp = 1, . . . , 6, let xk+1 denote the result of one Newton step of the nonlinear
equation (3.21) applied to the gradient flow with step sizeǫk and starting valuexk. Then

∇2f(xk)∆xk +∇f(xk) = ∇f(ŷk+1) +
1

βǫk
(ŷk+1 − xk+1), (3.30)

whereŷk+1, depending on fixedxk andǫk, is the exact solution to (3.21).
Proof. One Newton step applied to (3.21) leads to

(
In + βǫk∇2f(xk)

)
∆xk =

p∑

i=1

hi

i!
x
(i)
k − β

p∑

i=1

hi

(i− 1)!
x
(i)
k − βǫk∇f(xk).

A rearrangement shows that

βǫk
(
∇2f(xk)∆xk +∇f(xk)

)
= (ŷk+1 − xk + βǫk∇f(ŷk+1))−∆xk,

whereas the right hand side follows from (3.21).
Note that the residualrk := ∇f(ŷk+1) +

1
βǫk

(ŷk+1 − xk+1) is only implicitly defined becausêyk+1 is
yet to be calculated. If the SER strategy is used in this one-step Nordsieck setting, then the forcing sequence
becomes

ηk =
1

βc
‖βǫk∇f(ŷk+1) + (ŷk+1 − xk+1)‖2 (3.31)

which, according the theory of inexact Newton methods [26],determines the rate of convergence. An intuitive
way to see whyηk would be small is that if{xk} ever converges, then the sequence{ŷk} should behave like

ŷk+1 ≈ x∗ − βǫk∇f(ŷk+1) ≈ xk+1 − βǫk∇f(ŷk+1). (3.32)

As such, there should be a cancelation in (3.31) to makeηk small. In our numerical experiment, however, we
find thatηk diminishes slowly in general for a reason not fully understood at present. For now, we conclude
that, under the SER strategy, the transitional ability of the Nordsieck-based iterative scheme is poor and do
not recommend this conversion.
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4. Numerical experiment. Thus far, we have proposed some high-order BDF-based iterative schemes
that are contractive and transitional. In this section we carry out a few numerical experiments to demonstrate
these concepts. For quick implementation, critical issuessuch as effective step size selection or other cost
reduction tactics are not considered in these experiments.We employ the same SER strategy across the board
for all orders, which itself may not be the best policy. We aimat comparing step sizes variation and checking
whether the methods themselves will transform at the end stage.

We choose a few interesting application problems with knownsources to benchmark the performance.
These are the Müller-Brown potential energy surface (MBPES) [71], the Powell badly scaled function (PBSF)
[69], the chemical equilibrium system (CES) [66], the stead-state reaction rate equation (SSRRE) [82], and
the circuit design problem (CDP) [79], all of which are knownto be challenging [2]. These problems are set
up as gradient dynamical systems in the form (1.1). Althoughthese are optimization problems whose equi-
libria can be found directly by existing optimization packages, we stress that there are numerous applications
where the process of evolution from the starting point to thestationary point is important to practitioners.
Tracking the gradient dynamics is more than just finding its stationary points.

4.1. Test on low-precision low-order ODE integrators.To set a point of reference, we employ stan-
dard ODE solvers in MATLAB as the base for evaluating the performance. These solvers are theode23s
which is order 2 and the BDF inode15s with MaxOrder = 2. Built in these ODE solvers is the step size
selection strategy which estimates the local errorei in the entryyi at each step and chooses step sizes to
ascertain that the criterion

|ei| ≤ |yi|RelTol + AbsTol (4.1)

is satisfied. This more sophisticated strategy differs fromthe SER strategy in that the latter takes no local
errors into account. We are interested in low precision withthe hope that the contractivity of the gradient
dynamics will keep the convergence in bay, so we set the localtoleranceAbsTol = RelTol = 10−2.

We do not preset the interval length of integration, but let the process terminate automatically when one
of the following events occurs:

‖∇f(xk)‖ < TerTol or
‖∇f(xk)‖
‖∇f(x0)‖

< TerTol or ‖xk − xk−3‖ < TerTol, (4.2)

where the termination toleranceTerTol is set at10−9. On the other hand, high precision integration, such
as settingAbsTol = RelTol = 10−12 to follow the flow closely, provides information about how long the
analytic gradient trajectory takes to reach its equilibrium point [75].

Involved in the overhead of these methods are time steps, failed steps, function evaluations, Jacobian
evaluations, LU decompositions, linear solvers, and so on.Roughly speaking, these parameters depend
linearly on the number of steps, so we report only the time steps in Table 4.1. Detailed statistics on this
experiment and all other tests reported herein can be furnished upon request.

ode23
(10−2)

BDF (order
2) (10−2)

ode15s (full)
(10−12)

integration
length

MBPES 21 51 1441 0.06
PBSF 249 142 1651 4.94e+04
CES 253 526 5133 1.01e+05

SSRRE 66 159 3378 5.39e+05
CDP 86 139 3358 6.01e+02

TABLE 4.1
Time steps and length of integration needed by standard ODE integrators.

It should be clear from this experiment that low-precision and low-order ODE integrators are sufficient
for gradient dynamical systems. There is really no need to track the trajectories in high precision. This, of
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course, is mainly due to the inherent contractivity of the gradient dynamics. It is also worth noting that, even
though the integration lengths might be long, the time stepsrequired are only in hundreds by these integrator,
suggesting that the step size selection strategy (4.1) is also capable of adopting very large step sizes while
satisfying the specified local tolerance condition.

4.2. Test on high order BDF-based pseudo-transient methods. Using the same stopping criteria in
the preceding experiment, we now test the BDF-based pseudo-transient methods (3.2) on the same five prob-
lems. We choose initial step sizeǫ0 = 10−2. After generating enough starting values via the explicit Euler
formula, we varyǫk by the SER strategy. Summarized in Table 4.2 is a comparison on the numbers of steps
taken by the best multi-step BDF iterative schemes (3.2) against those byode23s with local error tolerance
10−2. It should quite obvious that the BDF-based pseudo-transient methods generally require much fewer
iterations for convergence.

ode23
(10−2)

BDF-based
Transient

(order)

MBPES 21 9 (2)
PBSF 249 25 (4)
CES 253 30 (1)

SSRRE 66 27 (2)
CDP 86 36 (2)

TABLE 4.2
Comparison of time steps betweenode23s as an ODE integraor versus the best (order) transitional BDFscheme (3.2).

What is not clear in Table 4.2 is why the best BDF-based methodis not necessarily of the highest order.
This might have something to do with our using the SER strategy for all methods. This strategy is proven
successful only for the order-1 pseudo-transient method [56, Lemma 2.1], but might not be as effective
for higher-order methods. This area is widely open for further research! See [4, 34, 46, 63, 75, 96]. To
demonstrate our point, we repeatedly test the CES problem bydifferent starting values. From Table 4.3, we
see that the cost ofode23s is fairly stable, but the numbers of steps for the BDF-based methods fluctuate.

ode 23s BDF1 BDF2 BDF3 BDF4 BDF5

253 39 20 31 29 22
231 32 29 26 36 77
224 36 17 45 44 40
229 24 214 24 39 43
227 38 43 33 32 36

TABLE 4.3
Repeated tests ofode23s vs. BDF-based iterative schemes (3.2) on CSE with differentstarting values.

On the other hand, Figure 4.1 typifies the history of gradientreduction and the variation of step sizes
based on the SER strategy. The drawings clearly manifest thequadratic convergence of the gradient and
the exponential growth ofǫk at the final stage of iteration, even though the SER strategy is used as a rough
estimator.

5. Conclusion. Gradient dynamics appears in a wide range of disciplines. This work explores some
general mathematical characteristics that an effective gradient dynamics algorithm should bear. In particular,
we propose some ODE-based iterative methods, but do not follow the usual numerical ODE protocols. Innate
to these methods are their transition capability and contractivity property. Preliminary experiments, even by
a rudimentary step size selection strategy, evidence the potential of these methods.

Many questions remain open, including proper step size control strategies and other cost reduction tactics
[14, 15]. Also important is the generalization to structured gradient dynamics. One such an application
with significant consequence is a proper projected gradientmethod for the Toda lattice (1.3) for eigenvalue
computation.
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FIGURE 4.1.Step size variations by the SER strategy and gradient reduction for CES by the BDF-based scheme (3.2).

6. Appendix. As is often the case in applications, algorithms should be specially designed to handle
specific gradient dynamics for its best efficiency. We have exploited the BDF-based iterative schemes as a
way to tackle the general gradient dynamics for its contractive and transitional properties. Certainly, there
are other possible approaches. Without going into lengthy details, we briefly mention two other possible
ODE-based iterative schemes for gradient dynamics.

6.1. NDF-based methods.Implemented in the solverode15s in the MATLAB ODE suite as an effec-
tive solver for still ODEs is the so called numerical differentiation formulas (NDF):

yk+1 =

p−1∑

j=0

αjyk−j + hβf(yk+1) + βκγp (yk+1 − ỹk+1) , (6.1)

where the quantity

ỹk+1 :=

p∑

m=0

▽
myk (6.2)

is calculable from previous steps via the back difference operator▽yk := yk − yk−1 and the valueγp :=∑p
j=1

1
j

is fixed. The motivation for the NDFs is that the parameterκ can be adjusted to gain more accuracy
without significantly sacrificing the stability [83]. Similar to the BDFs, the NDFs can be made into contractive
and transitional iterative schemes for gradient dynamics.

Scheme:One application of the Newton iteration of (6.1) with step sizeǫk to the gradient flow leads to
the iterative scheme:

xk+1 :=xk−
(
1−κγpβ
ǫkβ

In+∇2f(xk)

)−1

∇f(xk)−

1

ǫkβ




p−1∑

j=0

αjxk−j−xk+κγpβ (xk−x̃k+1)




 . (6.3)

Transitionality: From the identity that

▽
myk =

m∑

j=0

(−1)j
(
m

j

)
yk−j ,
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we can write the intermediate vectorx̃k+1 as

x̃k+1 = xk +

p∑

m=1

▽
mxk = xk +

p∑

m=1

▽
m−1∆xk−1 = xk +

p∑

m=1

m−1∑

j=0

(−1)j
(
m− 1
j

)
∆xk−1−j

= xk +

p−1∑

j=0

p∑

m=j+1

(−1)j
(
m− 1
j

)
∆xk−1−j = xk +

p∑

j=1

ηj∆xk−j ,

with the abbreviations

ηj :=

p∑

m=j

(−1)j−1

(
m− 1
j − 1

)
, j = 1, . . . p. (6.4)

Upon substituting̃xk+1 into (6.3) and rearranging terms, and with the additional notation η0 := −1, we
obtain the equivalence

∇2f(xk)∆xk +∇f(xk) = − 1

ǫk




p−1∑

j=0

(
ζj

β
+ κγpηj

)
∆xk−j + κγpηp∆xk−p


 . (6.5)

The fact that
∑p

j=0 ηj = 0, together with (3.16), implies the coefficients of the time series∆xk, . . . ,∆xk−p

sum to the unity. So the right side of (6.3) can be regarded as an average. Thus the iterative scheme (6.3) is
still an inexact Newton method with averaging. Note that (6.5) requires one extra memory than (3.13).

Contractivity: Since the iteration (6.3) can be regarded as an inexact Newton method, it already suggests
contractivity. An argument similar to Theorem 3.1 can establish that the NRF-based iteration (3.13) is indeed
contractive.

6.2. Rosenbrock-based methods.Implemented in the solverode23s in the MATLAB ODE suite is the
special Rosenbrock method





yn+1 = yn + hk2

Wk1 = f(yn)

Wk2 = f
(
yn + 1

2hk1

)
− hdJk1

Wk3 = f(yn + hk2) + (e− 2)hdJk1 − ehdJk2,

(6.6)

with d = 1
2+

√
2
, e = 6 +

√
2,W := I − hdJ , andJ := ∂f(yn)

∂y
. The method is effective at crude tolerances

due to its FSAL (first same as last) andL-stability [83, Section 3.1], which makes it a good solver for the
gradient trajectory. However, the method does not have the desired transitional property.

One step of Rosenbrock iteration (6.6) is equivalent to the equation

∂f(xk)

∂y
∆xk +

1

d
f

(
xk +

1

2
∆x

[1]
k

)
=

1

hd
∆xk +

∂f(xk)

∂y
∆x

[1]
k

for ∆xk, where∆x
[1]
k := hk1 is a known quantity. Linearizing the second term yields an approximate system

∂f(xk)

∂y
∆xk +

1

d
f (xk) =

1

dh
∆xk + (1 − 1

2d
)
∂f(xk)

∂y
∆x

[1]
k . (6.7)

This expression looks like the inexact Newton form, but the weights do not add up to one. Therefore, the
Rosenbrock-based iteration does not have the ability to transition itself into a fast Newton method. Taking
advantage of its high efficiency for crude tolerance, however, the method might be used as the initial integrator
for steering the flow into the neighborhood ofx∗ before switching to other fast converging method.
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