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Abstract
In regard to the linear subspace 7 (n) of n x n symmetric Toeplitz matrices over the
real field, the collection S(n) of all real and orthogonal matrices @ such that QT QT ¢
T (n) whenever T' € 7 (n) forms a group, called the stability group of 7 (n). This paper
shows that S(n) is finite. In fact, S(n) has exactly eight elements regardless of the
dimension n. Group elements in S(n) are completely characterized.



1. Introduction.

In all discussion that follows, we shall consider only matrices over the real field.

An n X n matrix T = (¢;;) is symmetric and Toeplitz if there exist real scalars
r1,...,7n such that

tij = Tlimj1]

for all = and 7. Clearly a symmetric Toeplitz matrix is uniquely determined by the
entries of its first column. Thus a symmetric Toeplitz matrix will be denoted by T'(r)
if its first column is the vector r € R™. It is also clear that the linear subspace 7(n) of
all symmetric Toeplitz matrices is spanned by the matrices

(1) E® .= 1)

where e(®), 1 = 1,...,n, is the 1** standard basis in R”. With respect to the Frobenius
norm, elements in the basis {E®} are mutually orthogonal.

Due to their role in important applications like the trigonometric moment problem,
the Szego theory and the signal processing, many properties of Toeplitz matrices have
been studied over the years. See, for example, [1, 4, 5, 8] and the many references
contained therein.

One interesting problem that remains unsolved is the so called inverse Toeplitz
eigenvalue problem where a vector 7 is to be found so that 7'(r) has a prescribed set
of eigenvalues. Equally difficult is the problem of identifying an orthogonal matrix so
that its columns are eigenvectors of a certain Toeplitz matrix. It is toward the second
problem that we find ourselves faced the notion of stability subgroup of 7(n) in the
orthogonal group O(n).

The stability group S(n) of 7(n) is defined to be

(2) S(n) = {Q € O(n)| QTQT € T(n)if T € T(n)}.

The name ”group” is well justified because for each fixed @ € S(n) the action QT QT is
a bijection from 7 (n) to itself. Definition (2) is a generalization of the usual stability
subgroup defined at a single point in a topological space [7, p74].

Obviously, the identity matrix I and the backward identity matrix J where

00 ... 0 1]

00 10

(3) J = :
0

1 0 ... 0 0|

are in S(n). In this note, we show that S(n) has exactly eight elements regardless of
the dimension n. We characterize all elements in S(n) explicitly.



2. Main Result.

For each fixed @ € O(n), the action QTTQ is linear on 7(n). So it suffices to
consider the actions of @ on the basis {E(M"), ... E™}.

For k=1,...,n, let

(4) E®) .= QE®RQT.

Obviously £*) are still mutually orthogonal with respect to the Frobenius norm. Since
EMW = EM) we see that if Q € S(n) then the diagonal elements of E®) must be
identically zero for all £ > 2. This observation alone suffices to show that S(n) is finite.
The reason is given below.

LEMMA 2.1. The vector & = [z1,...,z,]T solves the system of polynomials
(5) Z m? =1
7=1
n—k+1
(6) Z zjtitg—1 = 0, fork=2,...n

if and only if = +eW) forj =1,...n

Proof. The lemma can be proved easily by induction. The last equation (i.e., when
k = n) implies that z; = 0 or z, = 0. In either case we can apply the induction
hypothesis to the reduced equations.

The result also follows from a tedious but straightforward computation by using
the theory of Grobner bases [6]. O

Denote the matrix @ by columns @ := [¢(!), ..., ¢(™] where ¢\) = [qgj), gD,
Then for all £ > 2,

~ ok n—k+1 N (k1T ok T
(1) B® =y (q(a)q(ﬁ )T 4 G l+k=1) ) )

=1

As mentioned earlier, if @ € S(n) then the (z,7) diagonal element
. T
(8) Ez(zk) -9 Z q(J) (3+k-1)

of E®) must be zero for k = 2,...,n. Applying Lemma 2.1 to (8) for each fixed 1,
together with the fact that all rows of @ are mutually orthogonal, we conclude that

LEMMA 2.2. If Q € S(n), then @ must be of the form of a permutation matriz
where the value 1 may possibly be replaced by —1. In particular, the stability group S(n)
of T(n) has at most 2"n! elements.

We can deduce the structure of S(n) further from Lemma 2.2. Indeed, since
Q@ € S(n) is a permutation-type matrix, it must be that either QE™QT = E®) or
QEM™QT = —E™_ This implies that



LEMMA 2.3. If @Q € S(n), then Q must be of the structure that either

00 ...0 +1
0 0
(9) Q= P
0 0
410 ... 0 0|
or
(41 0 ... 0 0]
0 0
(10) Q= P
0 0
| 00 ... 0 1|

where P is a permutation-type matriz of dimension n — 2.

We observe a Toeplitz matrix T'(r) with r = [ry,...,7,]T can be written as
i 71 T Tn-1 Tn |
T2 Tn—1
T(r)= T(r")
Tn—1 T2
| Tn Tn-1 T2 ™ J

where T'(r') is the Toeplitz matrix with 7' = [ry,...,7,_5]T. Tt follows that if QT(r)Q7 €
T (n), then PT(r'\PT € T(n — 2). Applying Lemma 2.3, we conclude that P will have
the same structure as in (9) or (10). In fact, we claim

LEMMA 2.4. Suppose @ € S(n). If Q has structure (9), the P cannot have
structure (10). If Q has structure (10), then P cannot have structure (9).

Proof. 1t suffices to consider one case. Suppose @ is of the structure

(1 0 0 0]
00 1 0
Q=1|": :
01 00
1 0 0 0 1|
Then
[0 1 0 0]
10 00
QEVQT = | ¢
0 1
100 ... 1 |




which certainly is not Toeplitz. 0O

Repeatedly applying Lemmas 2.3 and 2.4, we conclude that

LEMMA 2.5. If Q € S(n), then @ must be of the form of the identity matriz I or
the backward identity matriz J where the value 1 may possibly be replaced by the value
—1. In particular, S(n) has at most 2" elements.

We now determine the sign pattern for elements in S(n). Again, we observe that
any 3 x 3 principal submatrix, indexed by {+ — 1,7,7 4+ 1}, of a Toeplitz matrix T'(r) is
a Toeplitz matrix T'(r") with 7" = [r1,7s,73]. Consider the submatrix R of @ € S(n)
that corresponds to the same index set {¢ — 1,7,2 + 1}. From Lemma 2.5, R is either
a diagonal or a backward diagonal matrix with 1 or —1 as the non-zero elements. We
now claim

LEMMA 2.6. The non-zero elements of R must be either that all are of the same
sign or that they alternate signs.

Proof. The otherwise case is that two consecutive elements of R have the same sign
and the third element has the opposite sign. It suffices to consider

1 0 0
R=|0 -1 0
0 0 -1
But then
rT —To —T3
RT(’I‘”)RT =| —ry T T
—T3 Ta T1

which in general cannot be Toeplitz. 0O

Since the matrix R proved in Lemma 2.6 represents a typical block of any @ € S(n),
we finally conclude that

THEOREM 2.7. Suppose n > 1. The stability group S(n) of T(n) has ezactly eight
elements, regardless of the dimension n. The elements are £1, £J, £1I' and +£J' where

f—1 0 0 0 0 7
0 1 0
0 0 —1
(11) I .= }
0 (1)1 0
| O 0 (=)™ |
and
0 0 0 —1 7
0 0 0 1 0
(12) g 0 0 -1 0 0
0 (1)1 0 0
L (—=1)” 0 0 0 |
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