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Abstract. It is known that there is a close relationship between matrix groups and linear transformations. The
purpose of this exposition is to explore that relationship and to bridge it to the area of applied mathematics. Some
known connections between discrete algorithms and differential systems will be used to motivate a larger framework
that allows embracing more general matrix groups. Different types of group actions will also be considered. The
inherited topological structure of the Lie groups makes it possible to design various flows to approximate or to effect
desired canonical forms of linear transformations. While the group action on a fixed matrix usually preserves a
certain internal properties or structures along the orbit, the action alone often is not sufficient to direct the orbit to
the desired canonical form. Various means to further control these actions will be introduced. These controlled group
actions on linear transformations often can be characterized by a certain dynamical systems on a certain matrix
manifolds. Wide range of applications starting from eigenvalue computation to structured low rank approximation,
and to some inverse problems are demonstrated. A number of open problems are identified.
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1. Introduction. Any linear transformation over finite dimensional spaces can be rep-
resented by a matrix together with matrix-vector multiplication. Linear transformation is one of
the simplest yet most profound ways to describe the relationship between two vector spaces. To
further deduce the essence of a linear transformation, it is often desired to identify a matrix by
its canonical form. For years researchers have taken great effort to describe, analyze, and modify
algorithms to achieve this goal. Thus far, this identification process is mostly done via iterative
procedures of which the success is evidenced by the many available discrete methods.

In his book, Geometric Methods in the Theory of Ordinary Differential Equations, V. I. Arnold
raised a related and interesting question [1, Page 239], “What is the simplest form to which a family
of matrices depending smoothly on the parameters can be reduced by a change of coordinates
depending smoothly on the parameters?” In this quotation, we italicize the two phrases to further
accentuate the important inquiries that

• What is qualified as the simplest form?
• What kind of continuous change can be employed?
Recently it has been observed that the use of differential equations to issues in computation

can afford fundamental insights into the structure and behavior of existing discrete methods and,
sometimes, can suggest new and improved numerical methods. In certain cases, there are remark-
able connections between smooth flows and discrete numerical algorithms. In other cases, the flow
approach seems advantageous in tackling very difficult problems.

What is being talked about thus far can be categorically characterized as a realization process.
Realization process, in a sense, means any deducible procedure that we use to rationalize and solve
problems. The simplest form therefore refers to the agility to think and draw conclusions out of
the form. In mathematics, the steps taken in a realization process often appears in the form of an
iterative procedure or a differential equation.

All together, it appears that both discrete approach and flow approach are actually following
the orbit of a certain matrix groups action on the underlying matrix . The question to ask,
therefore, is to what canonical form a matrix or a family of matrices can be linked by the orbit
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of a group action. The choice of the group, the definition of the action, and the targets intended
to reach will effect the various transitions that have been studied in the literature. This paper
will attempt to expound the various aspects of the recent development and application in this
direction. Some possible new research topics will also be proposed. The earliest discussion along
these lines seem to be in [21].

A realization process usually consists of three components: First of all, we will have two
abstract problems of which one is a make-up and is easy to solve while the other is the real
problem and is difficult. The basic idea is to realize the solution of the difficult problem through a
bridge or a path that starts from the solution of the easier problem. Once the plan is set, we then
need a numerical method to move along the path to obtain the desired solution.

To build the bridge, sometimes we are given specific construction guidelines. For example, the
bridge could be constructed by monitoring the values of certain specified function. In this case,
the path is guaranteed to work. The projected gradient method is a typical representation of this
approach. Sometimes the guidelines are not so specific and hence we are kind of constructing the
bridge instinctively. We can only hope that the bridge will connect to the other end. It takes efforts
to prove that the bridge actually makes the desired connection. A typical continuation method in
this class is the homotopy method. Another situation is that the bridge seems to exist unnaturally.
But the matter of fact is that usually a much deeper mathematics or physics is involved. When we
begin to understand the theory, we are often amazed to see that these seemingly unnatural bridges
exist by themselves naturally.

We shall be more specific about how a bridge could be built. For now, be it sufficient to say
that a bridge, if exists, usually is characterized by an ordinary differential equation and that the
discretization of a bridge, or a numerical method in travelling along a bridge, usually produces
an iterative scheme. Known as the geometric integration, research of numerical integrators that
respect the underlying geometric structure has been attracting considerable attention recently, but
will be out of the scope of this survey.

2. A Case Study. Before we move into more details, we use two classical examples
and their connections to demonstrate the main points made above. We also briefly describe their
generalization with the hope that this discussion would serve as the steppingstone and shed light
on the thrust throughout this paper. More details can be found in [11].

2.1. Discreteness versus Continuousness. Consider first the symmetric eigenvalue
problem that has been of critical importance in many applications. Given a symmetric matrix A0,
the problem is to find all scalars λ so that the equation

A0x = λx (2.1)

has a non-trivial solution x. Currently, one of the most crucial techniques for eigenvalue compu-
tation is by iteration. Recall the fact that any matrix A enjoys the QR decomposition:

A = QR,

where Q is orthogonal and R is upper triangular. The basic QR algorithm defines a sequence of
matrices {Ak} via the recursion relationship [26]:

{
Ak = QkRk,
Ak+1 = RkQk.

(2.2)

Because Ak+1 = QT
kAkQk, every matrix Ak in the sequence has the same eigenvalues as A0. More

importantly, it can be proved that the sequence {Ak} converges to a diagonal matrix and, hence,
eigenvalues are found.
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In contrast, let a symmetric matrix X be decomposed as

X = Xo +X− +X+,

where Xo, X−, and X+ denote the diagonal, the strictly lower triangular, and the strictly upper
triangular parts of X, respectively. Define

Π0(X) := X− −X−
>
. (2.3)

The Toda flow is an initial value problem defined by [22, 34]:

{
dX(t)
dt = [X(t),Π0(X(t))],

X(0) = X0,
(2.4)

where [M,N ] :=MN −NM denotes the commutator bracket. It is known that when the solution
of the Toda flow (2.4) is sampled at integer times, the sequence {X(k)} gives rise to the same
iterates as does the QR algorithm (2.2) applied to the matrix A0 = exp(X0). Furthermore, it can
be proved that the evolution of X(t) starts from X0, converges to the limit point of Toda flow,
which is a diagonal matrix, and that X(t) maintains the same spectrum as that of X0 for all t.
For tridiagonal matrices, the equation (2.4) known as the Toda lattice is a Hamiltonian system
constructed from some physics settings [34]. A certain physical quantities are kept at constant,
that is, the Toda flow is a completely integrable system [23].

In both approaches, the eigenvalue computation is cast as a realization process that starts
from the “easy” matrix whose eigenvalues are to be found and ends at the “difficult” matrix which
is the diagonal matrix carrying the eigenvalue information. The bridges that connect the original
matrix to the final diagonal matrix are the QR algorithm in the discrete process and the Toda flow
in the continuous process, respectively. Maintaining isospectrality everywhere along the bridges is
the most important property inhered in both bridges. It is remarkable that the QR algorithm and
the Toda flow are so closely related.

Consider next the least squares matrix approximation problem which also plays a significant
role in disciplines of various areas. Given a symmetric matrix N , the problem is find a least squares
approximation of N while maintaining a prescribed set of eigenvalues {λ1, . . . , λn}. The problem
can be formulated as an equality constrained minimization problem as follows:

Minimize F (Q) :=
1

2
||Q>ΛQ−N ||2

Subject to QTQ = I.

While iterative optimization techniques such as the augmented Lagrangian methods or the se-
quential quadratic programming methods could readily be applied to solve this problem, none of
these techniques respects the matrix structure. For example, the constraint carries lots of algebraic
redundancies and actually defines only a n(n− 1)/2-dimensional manifold.

In contrast, the projected gradient of F can easily be calculated and a projected gradient flow
can be defined via the double bracket differential equation [6, 16]:

{
dX(t)
dt = [X(t), [X(t), N ]],

X(0) = Λ,
(2.5)

The solution X(t) := Q(t)>ΛQ(t) moves in a descent direction to reduce ‖X(t)−N‖2 as t goes to
infinity. It can be proved that the optimal solution X can be fully characterized in terms of the
spectral decomposition of N and is unique.
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In this setting, the evolution starts from the “easy” matrix which is the diagonal matrix of
the prescribed eigenvalues and converges to the limit point which solves the least squares problem.
The flow is built on the basis of systematically reducing the difference between the current position
and the target position. This differential system is a gradient flow.

At first glance, the eigenvalue computation and the least squares matrix approximation seem
to be two unrelated problems. However, when X is tridiagonal and

N = diag{n, . . . , 2, 1},

it can easily be verified that [5]

[X,N ] = Π0(X).

In other words, the gradient flow (2.5) in fact is also a Hamiltonian flow (2.4).

2.2. Generalization. Both differential systems (2.4) and (2.5) are special cases of the
more general Lax dynamical system:

{
dX(t)
dt := [X(t), k1(X(t))],

X(0) := X0,
(2.6)

where k1 : Rn×n → Rn×n is some selected matrix-valued function to be specified later. Associated
with (2.6), we define two parameter dynamical systems:

{
dg1(t)
dt := g1(t)k1(X(t)),

g1(0) := I,
(2.7)

and

{
dg2(t)
dt := k2(X(t))g2(t),

g2(0) := I,
(2.8)

with the property that

k1(X) + k2(X) = X. (2.9)

The following theorem has been established earlier [19].

Theorem 2.1. For any t within the interval of existence, the solutions X(t), g1(t), and g2(t)
of the systems (2.6), (2.7), and (2.8), respectively, are related to each other by the following three
properties:

1. (Similarity Property)

X(t) = g1(t)
−1X0g1(t) = g2(t)X0g2(t)

−1. (2.10)

2. (Decomposition Property)

exp(tX0) = g1(t)g2(t). (2.11)

3. (Reversal Property)

exp(tX(t)) = g2(t)g1(t). (2.12)
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The consequences of Theorem 2.1 are quite broad and significant. The similarity property,
for example, immediately implies that the solution X(t) to (2.6) is isospectral. The theorem also
suggests an abstraction of the QR algorithm in the following sense: It is known that the (Lie) group
Gl(n) of real-valued n × n nonsingular matrices can be decomposed as the product of two (Lie)
subgroups in the neighborhood of I if and only if the corresponding tangent space (Lie algebra)
gl(n) of real-valued n× n matrices can be decomposed the sum of two (Lie) subalgebras. By the
decomposition property and the reversal property, the Lie structure apparently is not needed in our
setting. It suffices to consider a factorization of a one-parameter semigroup in the neighborhood of
I as the product of two nonsingular matrices, that is, the decomposition as is indicated in (2.11).
Then, correspondingly there is a subspace decomposition of gl(n) as is indicated in (2.9). Some of
the jargons will be clarified in the next section. Our point at present is to bring forth the intriguing
structure that is underneath the transformations.

Analogous to the QR decomposition, the product g1(t)g2(t) will be called the abstract g1g2
decomposition of exp(X0t). By setting t = 1, we see that

{
exp(X(0)) = g1(1)g2(1),
exp(X(1)) = g2(1)g1(1).

(2.13)

Since the dynamical system for X(t) is autonomous, it follows that the phenomenon characterized
by (2.13) will occur at every feasible integer time. Corresponding to the abstract g1g2 decomposi-
tion, the above iterative process for all feasible integers will be called the abstract g1g2 algorithm. It
is thus seen that the curious iteration in the QR algorithm is completely generalized and abstracted
via the mere subspace splitting (2.9).

3. General Framework. What is being manifested in the preceding section is but a
special case of a more general framework for the realization process. We have already seen a
resemblance between the Toda flow X(t) defined by (2.4) and the isospectral flow X(t) defined by
(2.6). The former can be considered as a curve on the “orbit” Q(t)>X0Q(t) under the orthogonal
similarity transformation by all n× n orthogonal matrices Q which form a group while the latter
can be considered as a curve on the orbit g1(t)

−1X0g1(t) under the similarity transformation by
whatever matrices g1(t) that can be defined but not necessarily form a group. It is natural to
exploit what other transformations and sets from which a transformation is taking place can be
characterized in general.

3.1. Matrix Group and Actions. We begin the generalization with the notion of ma-
trix groups. We shall eventually drop the requirement of group structure in the later part of this
discussion. Many manifolds arisen from applications are not groups themselves, but still can be
“parameterized” by groups.

Recall that a subset of nonsingular matrices (over any field) which are closed under matrix
multiplication and inversion is called a matrix group [2, 3, 20]. A smooth manifold which is also
a group where the multiplication and the inversion are smooth maps is called a Lie group. It has
been shown that every matrix group is in fact a Lie group [28]. The reason that Lie groups are
interesting is because this particular entity inherits both algebraic and geometric structures. The
most remarkable feature of a Lie group is that the structure is the same in the neighborhood of
each of its elements. We shall elaborate more on this point later.

Matrix groups are central in many parts of mathematics and applications. Lots of realization
processes used in numerical linear algebra are the results of actions of matrix groups. For the
convenience of later references, we tabulate in Table 3.1 some classical matrix groups and their
subgroups over R.

Any of these matrix groups could be used to transform matrices. To be more precise, we define
the action of a group according to the following rule.
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Group Subgroup Notation Characteristics

General linear Gl(n) {A ∈ Rn×n|det(A) 6= 0}

Special linear Sl(n) {A ∈ Gl(n)|det(A) = 1}

Upper triangular U(n) {A ∈ Gl(n)|A is upper triangular}

Unipotent Unip(n) {A ∈ U(n)|aii = 1 for all i}

Orthogonal O(n) {Q ∈ Gl(n)|Q>Q = I}

Generalized orthogonal OS(n) {Q ∈ Gl(n)|Q>SQ = S},
S is a fixed symmetric matrix

Symplectic Sp(2n) OJ(2n), J :=

[
0 I

−I 0

]

Lorentz Lor(n, k) OL(n+ k),
L := diag{1, . . . , 1

︸ ︷︷ ︸

n

,−1, . . .− 1
︸ ︷︷ ︸

k

}

Affine Aff(n)

{[
A t

0 1

]

| A ∈ Gl(n), t ∈ Rn

}

Translation T rans(n)

{[
I t

0 1

]

| t ∈ Rn

}

Isometry Isom(n)

{[
Q t

0 1

]

| Q ∈ O(n), t ∈ Rn

}

Center of G Z(G) {z ∈ G|zg = gz, for every g ∈ G},
G is a given group

Product of G1 and G2 G1 ×G2 {(g1, g2)|g1 ∈ G1, g2 ∈ G2},
(g1, g2) ∗ (h1, h2) := (g1h1, g2h2),
G1 and G2 are given groups

Quotient G/N {Ng|g ∈ G},
N is a fixed normal subgroup of G

Hessenberg Hess(n) Unip(n)/Zn

Table 3.1

Examples of classical matrix groups over R.

Definition 3.1. Given a group G and a set V, a function µ : G × V −→ V is said to be a
group action of G on V if and only if

1. µ(gh,x) = µ(g, µ(h,x)) for all g, h ∈ G and x ∈ V.
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2. µ(e,x) = x, if e is the identity element in G.
In our applications, the set V is used to specify the principal characteristics of the matrices

that we are interested. The action, in turn, is used to specify the transformations that are allowed.
Given an arbitrary x ∈ V, two important sets are associated with a group action. These are the
stabilizer of x,

StabG(x) := {g ∈ G|µ(g,x) = x}, (3.1)

which is a subgroup of G, and the orbit of x,

OrbG(x) := {µ(g,x)|g ∈ G}. (3.2)

The orbit of a matrix under a certain group action is particularly relevant to the central theme of
this paper. To demonstrate how some of the conventional transformations used in practice can be
cast as group actions, we list in Table 3.2 some of the useful actions by matrix groups.

Set V Group G Action µ(g,A) Application

Rn×n Any subgroup g−1Ag conjugation

Rn×n O(n) g>Ag orthogonal similarity

Rn×n × . . .× Rn×n

︸ ︷︷ ︸

k

Any subgroup (g−1A1g, . . . , g
−1Akg) simultaneous reduction

S(n)× SPD(n) Any subgroup (g>Ag, g>Bg) symm. positive definite
pencil reduction

Rn×n × Rn×n O(n)×O(n) (g>1 Ag2, g
>
1 Bg2) QZ decomposition

Rm×n O(m)×O(n) g>1 Ag2 singular value decomp.

Rm×n × Rp×n O(m)×O(p)× Gl(n) (g>1 Ag3, g
>
2 Bg3) generalized

singular value decomp.
Table 3.2

Examples of group actions and their applications.

Groups listed in Table 3.1 and actions listed in Table 3.2 represent only a small collection of
wild possibilities. They already indicate a wide open area for further research because, except for
the orthogonal group O(n), not many other groups nor actions have been employed in practice. In
numerical analysis, it is customary to use actions of the orthogonal group to perform the change
of coordinates for the sake of cost efficiency and numerical stability. It becomes interesting to ask,
for example, what conclusion could be drawn if actions of the isometry group Isom(n) are used
instead. The isometry group is appealing for at least three reasons: that the inverse of an isometry
matrix is easy to compute since

[
Q t

0 1

]−1

=

[
Q> −Q>t

0 1

]

;

that the numerical stability by isometric transformation is guaranteed; and that the isometry
group contains the orthogonal group as its subgroup and hence offers more flexibilities. To our
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knowledge, however, we have seen the usage of such an isometric transformation only in the
discipline of physics, but rarely in numerical computation.

Some more exotic actions include, for example, the orthogonal conjugation plus shift by the
product group of the orthogonal group O(n) and the additive group R+ of real numbers,

µ((Q, s), A) := Q>AQ+ sI, Q ∈ O(n), s ∈ R+;

the orthogonal group with scaling by the product group of O(n) and the multiplicative group R×
of nonzero real numbers,

µ((Q, s), A) := sQ>AQ, Q ∈ O(n), s ∈ R×;

or even the orthogonal conjugation with multiple scalings,

µ((Q, s, t), A) := diag{s}Q>AQdiag{t}, Q ∈ O(n), s, t ∈ Rn
×.

It is important to note that, by using the group inverse, the information of A can be retrieved at
any point along any of the orbits defined above. The issue is how to define curves on these orbits
so that the limit points would be useful for us to retrieve information about A. We do not think
preposterous group actions by arbitrary groups are all useful. We do want to point out, however,
that there are many unanswered questions that deserve further study.

3.2. Tangent Space and Projection. Given a group G and its action µ on a set V, the
associated orbit OrbG(x) characterizes the rule by which x is to be changed in V. Depending on
the group G, an orbit is often a high dimensional manifold that is too “wild” to be readily traced
for finding the “simplest form” of x. Therefore, depending on the applications, it is desired to
build a path, bridge, curve, or differential equation on the orbit so as to connect x to its simplest
form. We have yet to define what is meant by the canonical form, but we first understand the
notion of a vector field on a manifold.

A differential equation on the orbit OrbG(x) is equivalent to a differential equation on the
group G. We have seen this relationship in Section 2. The Lax dynamics (2.6) describes a bridge
for the isospectral curve X(t) on the orbit under orthogonal conjugation. Correspondingly, the
parameter dynamics (2.7) and (2.8) characterize the flows for g1(t) in O(n) and g2(t) in U(n),
respectively.

To stay in either the orbit or the group, the vector field of the dynamical system must be
distributed over the tangent space of the corresponding manifold. Most of the tangent spaces for
matrix groups can be calculated explicitly. If some kind of objective function has been used to
control the connecting bridge, the gradient of the objective function should be projected to the
tangent space.

Again, for completeness, we briefly review the notion of tangent space for a matrix group
below. Given a matrix group G which is a subgroup in Gl(n), the tangent space to G at an element
A ∈ G can be defined as the set

TAG := {γ
′(0)|γ is a differentiable curve in G with γ(0) = A}. (3.3)

The tangent space of a matrix group G at the identity I is so critical that it deserves a special
notation. We shall state the following facts without the proof.

Theorem 3.2. Let � denote the tangent space TIG of a matrix group G at the identity I.
Then

1. The set � is a Lie subalgebra in Rn×n. That is, if α′(0) and β′(0) are two elements in � ,
then the Lie bracket [α′(0), β′(0)] is also an element � .
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2. The tangent space of a matrix group has the same structure everywhere in the sense that
the tangent space at any elements A in G is a translation of � via

TAG = A � . (3.4)

3. The Lie subalgebra � can be characterized as the logarithm of G in the sense that

� = {M ∈ Rn×n| exp(tM) ∈ G, for all t ∈ R}. (3.5)

Tangent spaces for some of the groups mentioned earlier are listed in Table 3.3.

Group G Algebra � Characteristics

Gl(n) gl(n) Rn×n

Sl(n) sl(n) {M ∈ gl(n)|trace(M) = 0}

Aff(n) aff(n) {

[
M t

0 0

]

|M ∈ gl(n), t ∈ Rn}

O(n) o(n) {K ∈ gl(n)|K is skew-symmetric}

Isom(n) isom(n) {

[
K t

0 0

]

|K ∈ o(n), t ∈ Rn}

G1 ×G2 T(e1,e2)G1 ×G2
�
1 ×

�
2

Table 3.3

Example of tangent spaces.

The exponential map exp : � → G, as we have seen in (2.11), is a central step from a Lie algebra
� to the associated Lie group G [8]. Since exp is a local homeomorphism, mapping a neighborhood
of the zero matrix O in � onto a neighborhood of the identity matrix I in G, any dynamical system
in G in the neighborhood of I therefore would have a corresponding dynamical system in � in the
neighborhood of O. It is easy to see that for any fixed M ∈ � , the map

γ(t) := exp(tM) (3.6)

defines a one-parameter subgroup in G.
Thus far we have drawn only an outline suggesting that different transformations can be unified

under the same framework of tracing orbits associated with corresponding group actions. Under
this framework it is plausible that more sophisticated actions could be composed that, in turn,
might offer the design of new numerical algorithms. We point out specifically that, because of the
Lie structure, the tangent space structure of a matrix group is the same at every of its element. It
is yet to be determined how a dynamical system should be defined over an orbit or, equivalently,
over a group so as to locate a certain canonical matrix on the orbit. Toward that end, the notion
of “simplicity” of a matrix must be addressed. We shall demonstrate that such a conception varies
according to the applications in the next section. Once the goal is set, we shall also discuss how
various objective functions could be used to control the dynamical systems that drive curves on the
orbits to a desired limit point. The vector field of such a dynamical system, if can be defined, must
be lying in the tangent space. This requisite usually can be assured by a proper projection onto
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the tangent space. If the tangent space of a matrix group is known, then the projection usually
can be calculated explicitly.

We illustrate the idea of projection as follows. By Theorem 3.2, the tangent space of O(n) at
any orthogonal matrix Q is

TQO(n) = Qo(n).

It is not difficult to see that the normal space of O(n) at any orthogonal matrix Q is

NQO(n) = Qo(n)⊥,

where the orthogonal complement o(n)⊥ is precisely the subspace of all symmetric matrices. The
space Rn×n can be split as the direct sum of

Rn×n = Qo(n)⊕Qo(n)⊥.

Any X ∈ Rn×n therefore has a unique orthogonal splitting as

X = Q(QTX) = Q

{
1

2
(QTX −XTQ)}+Q{

1

2
(QTX +XTQ)

}

.

The projection of X onto the tangent space TQO(n) is given by the formula

ProjTQO(n)X = Q

{
1

2
(QTX −XTQ)

}

. (3.7)

4. Canonical Form. We point out earlier that one of the main purposes in a realization
process is to identify the simplest representation of a given linear transformation. The superlative
adjective “simplest” is a relative term which should be interpreted broadly. Roughly speaking,
canonical form refers to a “specific structure” by which a certain conclusion can be drawn or a
certain goal can be achieved. Thus, depending on the applications, the specific structure could refer
to a matrix with a specified pattern of zeros, such as a diagonal, tridiagonal, or triangular matrix.
It could also refer to a matrix with a specified construct, such Toeplitz, Hamiltonian, stochastic, or
other linear varieties. It could even refer to a matrix with a specified algebraic constraint, such as
low rank or nonnegativity. To reach each of the different canonical forms, different group actions
and different curves on the orbits must be taken. We find that continuous group actions often
enable to tackle existence problems that are seemingly impossible to be solved by conventional
discrete methods.

Listed in Table 4.1 are some commonly used canonical forms together with desired actions to
reach these forms.

It should be noted that in the last example above we have slightly extended the meaning of an

orbit. The map (U, S, V ) ↪→
(
diag

(
USS>U>

))−1/2
USV > is not a group action. However, it is a

natural way to define the set of rank k matrices whose rows are normalized to unity. The manifold
of images under such a nonlinear map certainly is nontrivial but, analogous to a group orbit, is still
computational traceable if we know how to manage the changes of U , S, and V in their respective
groups. Generalizations such as this offer considerably more flexibility in applications. We shall
see few more similar generalizations in the sequel.

5. Objective Functions. The orbit of a selected group action only defines the rule by
which a transformation is to take place. To connect the current point and the desired canonical
form on a given orbit, a bridge in the form of either an iterative scheme or a differential equation
must be properly formulated. With the help of some objective functions, it is easy to control the
construction of such a bridge. In this section, we outline some ideas on how objection functions
could be designed.
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Canonical form Also know as Action

Bidiagonal J Quasi-Jordan Decomp., P−1AP = J ,
A ∈ Rn×n P ∈ Gl(n)

Diagonal Σ Sing. Value Decomp., U>AV = Σ,
A ∈ Rm×n (U, V ) ∈ O(m)×O(n)

Diagonal pair (Σ1,Σ2) Gen. Sing. Value Decomp., (U>AX,V >BX) = (Σ1,Σ2),
(A,B) ∈ Rm×n × Rp×n (U, V,X) ∈ O(m)×O(p)× Gl(n)

Upper quasi-triangular H Real Schur Decomp., Q>AQ = H,
A ∈ Rn×n Q ∈ O(n)

Upper quasi-triangular H Gen. Real Schur Decomp., (Q>AZ,Q>BZ) = (H,U),
Upper triangular U A,B ∈ Rn×n Q,Z ∈ O(n)

Symmetric Toeplitz T Toeplitz Inv. Eigenv. Prob., Q>diag{λ1, . . . , λn}Q = T ,
{λ1, . . . , λn} ⊂ R is given Q ∈ O(n)

Nonnegative N ≥ 0 Nonneg. inv. Eigenv. Prob., P−1diag{λ1, . . . , λn}P = N ,
{λ1, . . . , λn} ⊂ C is given P ∈ Gl(n)

Linear variety X Matrix Completion Prob., P−1{λ1, . . . , λn}P = X,
with fixed entries {λ1, . . . , λn} ⊂ C is given P ∈ Gl(n)
at fixed locations Xiν ,jν = aν , ν = 1, . . . , `

Nonlinear variety Test Matrix Construction, P−1ΛP = U>ΣV
with fixed singular values Λ = diag{λ1, . . . , λn} and P ∈ Gl(n), U, V ∈ O(n)

and eigenvalues Σ = diag{σ1, . . . σn} are given

Maximal fidelity Structured Low Rank Approx.
(
diag

(
USS>U>

))−1/2
USV >,

A ∈ Rm×n (U, S, V ) ∈ O(m)× Rk
× ×O(n)

Table 4.1

Examples of canonical forms used in practice.

5.1. Least Squares and Projected Gradient. We begin with the most general setting
of projected gradient flows on a given continuous matrix group G ⊂ Gl(n). Let X be a fixed matrix
in a subset V ⊂ Rn×n. Let f : V −→ Rn×n be a differentiable map with a certain “inherent”
properties such as symmetry, isospectrality, low rank, or other algebraic constraints. Suppose that
a group action µ : G × V −→ V has been specified. Suppose also that a projection map P from
Rn×n onto a singleton, a linear subspace, or an affine subspace P in Rn×n is available. Elements in
the set P carry a certain desired structure, for example, the canonical form. Consider the functional
F : G −→ R

F (g) :=
1

2
‖f(µ(g,X))− P (µ(g,X))‖2F . (5.1)
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The goal is to minimize F over G. The meaning of this constrained minimization is that, while
staying in the orbit of X under the action of µ and maintaining the inherent property guaranteed
by the function f , we look for the element g ∈ G so that the matrix f(µ(g,X)) best realizes the
desired canonical structure in the sense of least squares.

Though iterative methods based on conventional optimization techniques for (5.1) are possible,
we find that the projected gradient flow approach can conveniently be formulated as follows:

Algorithm 5.1. (Projected Gradient Flow) A generic projected gradient flow can be con-
structed via three steps:

1. Compute the gradient ∇F (g).
2. Project ∇F (g) onto the tangent space TgG of G at g.
3. Follow the projected gradient numerically until convergence.
We note that there are many new techniques developed recently for dynamical systems on

Lie groups, including the RK-MK methods [32], Magnus and Fer expansions [4] and so on. A
partial list of references for Lie structure preserving algorithms can be found in the seminal review
paper by Iserles el al [30] and the book by Hairer el al [29]. These new ODE techniques certainly
can benefit the computations described in this paper, but we shall avoid discussing computational
specifics in the current presentation.

Applications embracing the framework of projected gradient approach are plenty. The follow-
ing differential equations exemplify various dynamical systems on some appropriate orbits after
computing gradients of some appropriate objective functions and performing projections onto some
appropriate tangent spaces. Many other applications can be found in the excellent book by Helmke
and Moore [27]. To keep this paper concise, we shall not give out great details for each of the
cases. Readers are referred to the references for more careful layout of the settings.

Example 1. Given a symmetric matrix Λ and a desirable structure V, find a symmetric
matrix X in V or closest to V and has the same spectrum as Λ [16].

{

Ẋ = [X, [X,P (X)]],
X(0) = Λ.

(5.2)

There are many important applications of (5.2). We point out specifically that, by taking Λ =
diag{λ1, . . . , λn} and by choosing the structure retained in V, the flow (5.2) can be used to tackle
various kinds of very difficult structured inverse eigenvalue problems [17].

Example 2. Given a sequence of matrices A1, . . . , Ak ∈ Rn×n and desirable structures in
each individual V1, . . . ,Vk, reduce each Ai to Xi that is closest to the structure Vi simultaneously
by orthogonal similarity transformations [12].







Ẋi =

[

Xi,
∑p

j=1

[Xj ,P
T
j (Xj)]−[Xj ,P

T
j (Xj)]

T

2

]

,

Xi(0) = Ai, i = 1, . . . k.
(5.3)

A similar dynamical system can be derived if orthogonal equivalence transformations are used.
Simultaneous reduction problems arise from areas such system identification where it is desirable
to model complicated phenomena by as fewer variables as possible.

Example 3. Given a matrix A ∈ Cn×n, find its nearest normal matrix approximation W ∈
Cn×n [12, 33].

{

Ẇ =
[

W, [W,diag(W ∗)]−[W,diag(W ∗)]∗

2

]

,

W (0) = A.
(5.4)

We note that this interesting approximation problem can be solved by using the unitary group
over the complex domain.
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Example 4. Construct a symmetric matrix with prescribed diagonal entries a and spectrum
{λ1, . . . , λn} [13].

{

Ẋ = [X, [diag(X)− diag(a), X]],
X(0) = diag{λ1, . . . , λn}.

(5.5)

This inverse problem is the harder part of the Schur-Horn Theorem [25].
Example 5. Given a matrix pencil A − λB where A is symmetric and B is symmetric and

positive definite, and two desirable structures V1 and V2, find a matrix pencil X−λY in or closest
to the structure under the congruence transformation [18].

{
Ẋ = −

(
(XW )T +XW

)
,

Ẏ = −
(
(YW )T + YW

)
,

W := X(X − P1(X)) + Y (Y − P2(Y )). (5.6)

This problem is a generalization of Example 5.1a to matrix pencils. The congruence transformation
guarantees that the spectrum of the pencil X − λY is the same as that of A− λB.

5.2. Systems for Other Objectives. The least squares formulation (5.1) is but one
way to define a dynamical system on an orbit. In this section, we briefly review some systems that
are impelled by other objectives in mind. Some are defined even under no palpable objectives.

Example 6. The solution X(t) to the Toda flow (2.4) starting with a symmetric and tridi-
agonal initial value X(0) will remain to be tridiagonal and symmetric for all t ∈ R. The lattice
actually arises from the dynamics of a special mass-spring system [22, 34]. It is the setup of the
physical configuration that induces the tridiagonal structure. It is the law of the Hamiltonian
equations that governs the definition of the vector field. Other than these, there was no specific
objective function used. The extension of (2.4) to general matrices,

Ẋ = [X,Π0(G(X))], (5.7)

where G(z) is an analytic function over spectrum of X(0), appears to be done totally by brutal
force and blind reasoning [11, 35]. Nevertheless, the differential equation approach nicely explains
the pseudo-convergence and convergence behavior of the classical QR algorithm for general and
normal matrices, respectively. The sorting of eigenvalues at the limit point had been observed, but
did not seem to be clearly understood until Brockett’s double bracket flow [6],

Ẋ = [X, [X,N ]], (5.8)

where N is a fixed and symmetric matrix, was developed. The differential system (5.8) is a special
case of the projected gradient flow (5.1) where G = O(n), µ(Q,X) = Q>ΛQ, P (µ(Q,X)) ≡ N , and
f is the identity map. It follows that sorting is necessary in the first order optimality condition [11].
Furthermore, by taking the special diagonal matrix N = diag{n, n− 1, . . . , 2, 1} in the symmetric
and tridiagonal case, it can be checked that the double bracket flow is exactly the same as the
Toda lattice [5]. Thus, here comes the sudden understanding that the classical Toda lattice does
have an objective function in mind.

The componentwise scaled Toda flow [14],

Ẋ = [X,K ◦X], (5.9)

where K is fixed and skew-symmetric and ◦ denotes the Hadamand product, is yet another venture
into abstract mathematics where no explicit objective function in sight. By varying K, it offers
considerable flexibilities in componentwise scaling and enjoy very general convergence behavior.
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Example 7. Consider further some flows on the orbit OrbO(m)×O(n)(X) under equivalence
actions. Any flow on the orbit OrbO(m)×O(n)(X) under equivalence must be of the form

Ẋ = X(t)h(t)− k(t)X(t),

where h(t) ∈ o(n) and k(t) ∈ o(m) are functions of skew-symmetric matrices.
Mimicking the way that the Toda flow is related to the QR algorithm, the differential system

{
Ẋ1 = X1Π0(X

−1
2 X1)−Π0(X1X

−1
2 )X1,

Ẋ2 = X2Π0(X
−1
2 X1)−Π0(X1X

−1
2 )X2,

(5.10)

is a continuous realization of the discrete QZ algorithm that has used for solving the generalized
eigenvalue problem [9]. The original objective in deriving (5.10) was simply to fill in the natural
generalization of the Toda flow in the same way as the QZ algorithm generalizes the QR algorithm.

In contrast, the SV D flow [10],
{

Ẏ = YΠ0

(
Y (t)>Y (t)

)
−Π0

(
Y (t)Y (t)>

)
Y,

Y (0) = Y0,
(5.11)

where Y0 is a bidiagonal matrix was designed with two specific objectives in mind: one is that
both skew-symmetric matrices h(t) and k(t) are kept tridiagonal and the other is that Y (t) is kept
bidiagonal throughout the continuous transition. Componentwise, the resulting dynamical system
can be represented simply by

ẋi,i = xi,i
(
x2
i,i+1 − x2

i−1,i

)
, 1 ≤ i ≤ n,

ẋj,j+1 = xj,j+1

(
x2
j+1,j+1 − x2

j,j

)
, 1 ≤ j ≤ n− 1,

but we think that the matrix equation (5.11) clearly manifests the group actions. It turns out
that the flow (5.11) gives rise to the Toda flows for the tridiagonal matrices Y >Y and Y Y >. We
mention that a related flow in fact interpolates the SVD algorithm and has been used to prove
certain stability properties of a hybrid-SVD algorithm introduced by Demmel and Kahan. See
[24].

6. Generalization to Non-group Structures. Thus far, it appears that the orthogonal
group O(n) is the most frequently employed group for actions. Though orthogonal group actions
seem to be significant enough, it is at least of theoretical interest to ask the following questions:

• Can any advantages or applications be taken out of actions by other matrix groups?
• What can be said of the limiting behavior of dynamical systems defined on orbits by using
different groups and actions?

• Does the isometry group, as a larger group, offer any serious alternatives to the orthogonal
group?

As many as there are unexplored groups or actions, so are there many of these questions yet to be
answered. Not all these groups or actions will be useful, but we think that there is a wide open
area in this direction that deserves further study.

Furthermore, we think that the idea of group actions, least squares, and the corresponding
gradient flows can be extended to other structures that have the construct of groups but are not
groups. Some of the structures that have found applications in practice include, for example, the
Stiefel manifold,

O(p, q) := {Q ∈ Rp×q|Q>Q = Iq}; (6.1)

the manifold of oblique matrices,

OB(m,n) := {Q ∈ Rm×n|diag(QQ>) = Im}; (6.2)
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the cone of nonnegative matrices,

C(n) := {R ◦R|R ∈ Rn×n}; (6.3)

the manifold of low rank matrices,

L(m,n, k) := O(m, k)× Rk
× ×O(n, k); (6.4)

and semigroups such as the standard symplectic matrices,

Z(n) :=

{[
α αt
sα α−> + sαt

]

∈ R2n×2n |s and t symmetric and positive definite

}

. (6.5)

These sets do not meet the criteria of being a Lie group, but can be characterized by using the
product topology of some separate groups. In other words, groups can be used as some superficial
coordinate systems to describe the motions on these manifolds. The framework discussed earlier
thus can still be applied.

We illustrate how to use the above ideas to tackle some very challenging problems. So far as
we know, no effective iterative methods are available yet that can address these difficulties.

Example 8. The stochastic inverse eigenvalue problem is to construct a stochastic matrix
with prescribed spectrum. The best known result in this regard is the Karpelevic theorem which
characterizes completely the set Θn of eigenvalues of all n × n stochastic matrices [31]. The
forward problem of eigenvalue locations is complicated enough. As is illustrated in Figure 6.1, the
boundaries of Θn involve highly nonlinear curves. The inverse problem is even harder because,
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Fig. 6.1. Θ4 by the Karpelevič theorem.

even if all n points in a given set are in Θn, there is no obvious way to qualify whether these given
n points would belong to the same spectrum of a certain stochastic matrix.

Actually, it is generically true that the stochastic inverse eigenvalue problem would have been
solved if the nonnegative inverse eigenvalue problem were solved. But even for the latter, the
inverse eigenvalue problem has been a long standing open question.

Combining the ideas of least squares, actions and the generalizations, we can recast the inverse
problem through a continuous realization process as the following minimization problem:

Minimize F (g,R) :=
1

2
||gJg−1 −R ◦R||2,

Subject to g ∈ Gl(n), R ∈ gl(n),
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where J is a real-valued matrix carrying the prescribed spectral information (since the spectrum
could be complex-valued, but is closed under complex conjugation). Note that the constraints
literally are immaterial because both Gl(n) and gl(n) are open sets. No projection onto the
constraints is needed. Thus

{
ġ = [(gJg−1)>, α(g,R)]g−>

Ṙ = 2α(g,R) ◦R,
(6.6)

with α(g,R) := gJg−1 − R ◦ R, represents the steepest descent flow in Gl(n) × gl(n). To further
stabilize the computation and avoid g−1, we introduce a “parametrization ” of g by its analytic
singular value decomposition [7, 36] in the product group O(n) × Rn

× × O(n). Suppose g(t) =
X(t)S(t)Y (t)> is the singular value decomposition of g(t) where S(t) is a diagonal matrix with
elements from Rn

× and X(t) and Y (t) are elements from O(n). Then the relationship of derivatives

XT ġY = XT Ẋ
︸ ︷︷ ︸

Z

S + Ṡ + S Ẏ TY
︸ ︷︷ ︸

W

, (6.7)

is clearly true. Define Υ := X>ġY with ġ given by (6.6). Then we now has a differential system,







Ṡ = diag(Υ),

Ẋ = XZ,

Ẏ = YW,

(6.8)

that governs how the triplet (X(t), S(t), Y (t)) should be varied in the groupO(n)×Rn
××O(n). Note

that in the above Z andW are skew-symmetric matrices obtainable from off-diagonal elements of Υ
and S. Total together, the objective function F now is a function of the four variables (X,S, Y,R)
in O(n)× Rn

× ×O(n)× gl(n)

Example 9. Given a matrix A ∈ Rn×m whose rows are of unit length, consider the problem of
finding an approximation matrix Z ∈ Rn×m of A whose rows are also of unit length, but rank(Z) =
k where k < min{m,n}. This low rank approximation problem in the oblique spaceOB(n,m) arises
from many areas of important applications including factor analysis and data mining [15]. The
tangling of two constraints, unit row length and low rank, makes the approximation difficult to
find. However, we can recast the problem as minimizing the functional,

E(U, S, V ) :=
1

2
‖
(
diag(USSU>)

)−1/2
USV > −A‖2F , (6.9)

with U ∈ O(n, k), S ∈ Rk
×, and V ∈ O(m, k), where O(p, q) denotes the Stiefel manifold. By

construction, the product Z =
(
diag(USSU>)

)−1/2
USV > is guaranteed to be of rank k and in

OB(n,m). We thus can control the feasible matrix Z by controlling the variables (U, S, V ). The
Stiefel manifold is not a group, but its tangent space can be explicitly calculated. It can be shown
that the projection PO(p,q)(M) of any matrix M ∈ Rp×q onto the tangent space TQO(p, q) is given
by

PO(p,q)(M) = Q
Q>M −M>Q

2
+ (I −QQ>)M. (6.10)

Replacing M in (6.10) by the appropriate partial derivatives of E with respect to U and V ,
respectively, we have established the projected gradient flow. Detailed calculations and numerical
evidence are given in [15].
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7. Conclusion. There is a close relationship between matrix groups and linear transfor-
mations. Group actions together with properly formulated objective functions can offer a channel
to tackle various classical or new and challenging problems arisen from applied linear algebra.
This note outlines some basic ideas and examples with the hope to bring together the notions of
group theory, linear transformations, and dynamical systems as a tool to undertake the task of
system identification by canonical forms. More sophisticated actions can be composed that might
offer the design of new numerical algorithms. The list of applications continues to grow. New
computational techniques for structured dynamical systems on matrix group will further extend
and benefit the scope of this interesting topic.
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