ON A VARIATIONAL FORMULATION OF THE GENERALIZED
SINGULAR VALUE DECOMPOSITION
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Abstract. A variational formulation for the generalized singular value decomposition (GSVD) of
a pair of matrices A € R™*™ and B € RP*™ is presented. In particular, a duality theory analogous to
that of the SVD provides new understanding of left and right generalized singular vectors. It is shown
that the intersection of row spaces of A and B plays a key role in the GSVD duality theory. The main
result that characterizes left GSVD vectors involves a generalized singular value deflation process.
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1. Introduction. The singular value decomposition (SVD) of a given matrix A €
RT)’LXTL IS

(1) UTAV = S = diag{oy,...,0,}, ¢ = min{m,n}

where U € R™*™ and V € R™™" are orthogonal matrices, S € R™*" is zero except for
the real nonnegative elements oy > 03 > ... > 0, > 0,41 = ... = 0, = 0 on the leading
diagonal with r = rank(A). The o,,¢ = 1,...,¢ are the singular values of A. Of the
many ways to characterize the singular values of A, the following variational property
is of particular interest [4].

THEOREM 1.1. Consider the optimization problem

N |
220 x|’
where || - || denotes the 2-norm of a vector. Then the singular values of A are precisely

the stationary values, i.e., the functional evaluations at the stationary points, of the
objective function ||Ax||/||x|| with respect to x # 0.

We note that the stationary points @ € R"™ in the problem (2) are the right singular
vectors of A. At each of such points, it follows from the usual duality theory that
there exists a vector y € R™ of unit Euclidean length such that y” Az is equal to the
corresponding stationary value. This y is the corresponding left singular vector of A.

The main purpose of this paper is to delineate a similar variational principle that
leads to the generalized singular value decomposition (GSVD) of a pair of matrices
A€ R™" and B € RP*". While the variational formula analogous to (2) for the GSVD
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is well-known, the corresponding duality theory has apparently not been developed. (See
[1] for a related treatise.) The purpose of this note is to fill the duality theory gap for

the GSVD problem.
Let R(M) and N (M) denote, respectively, the range space and the null space of
any given matrix M. We will see that the intersection of row spaces of A and B,

RANORBY) = {z € B" | " = 2"A=y"B for some v € R and y € R’}

plays a fundamental role in the duality theory of the associated GSVD. The equivalence

C[_‘;]:[AT,BT][_§]:0<:>xTA:yTB

suggests that the null space of the matrix C' := [AT, BT],

(3) N(C):H_‘;]eRm+p|c[_ﬂ:o},

may be interpreted as a “representation” of R(AT)NR(BT). But this representation

is not unique in that different values of e N(C) may give rise to the same

z € R(ATYNR(BT). In particular, all points in the subspace
(4) S::H_z]eRm”IgTA:hTB:o}

collapse into the zero vector in R(AT)NR(BT). For a reason to be discussed in the
sequel (see (16) and the argument thereafter), the subspace S should be taken out of con-
sideration. More precisely, define the homomorphism H : N(C) — R(AT)N\R(BT)
by

X

_y])<:>ZT::L'TA:yTB,

<= |

and define, for every l N ] € N(C), the quotient map 71'([ _;j ]) to be the coset of S

containing l N ], le.,
-y

o) S

Y -y

Then the first homomorphism theorem for vector spaces (See, for example, [5, The-
orem 4.a]) states that R(AT)N\R(BT) is isomorphic to the quotient space N(C)/S
where

©) views={=(| 1| ] exier}
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It is in this quotient space that we establish the duality theory.

Recall that linearly independent vectors in N (C') that are not in S will gener-
ate naturally linearly independent vectors in the quotient space N'(C)/S through the
quotient map. Thus the simplest way to represent N (C')/S is through the orthogonal
complement St of S in N(C). Define N(AT) and N(B”) to be matrices so that their
columns span, respectively, the null spaces N'(AT) and N'(BT). Define

AT BT
(7) 7= | NATHT 0
0 N(BT)T

Then NV (C')/S can be uniquely represented by the subspace

(8) N(Z):H_‘;]eRm+p|Z[_‘;]:o}.

We shall have the dimension counted carefully in §2.
Our discussion is based upon the following formulation of the GSVD for A and B
by Paige and Saunders [6] (or QSVD in [3]) that generalizes the original concept in [9]:
DEFINITION 1.1. Assume rank(C') = k, then there exist orthogonal U € R™ ™ and
V e RP*P and an invertible X € R™*" such that

ut oo A Q4 0
g MR
with Q4 € R and Qp € RP*F given by

r s k—r—s

_ 14 r
0, = Sa S
04 m—r—3s
s k—r—s
_Op p—k—+r
0y = Sg ] S
I Ig k—r—s
where 14 and Ig are identity matrices, O4 and Op are zero matrices with possibly no
rows or no columns, and Sy = diag{wg), o ,wf:)} and Sg = diag{wg), o ,w](;)} satisfy
1>wg)2...2w1(f)>0, 0<w](31)§...§w](§)<1,

wX)Q + wg)2: 1.

The quotients




are called the generalized singular values of (A, B) for which we make use of the notation
A = diag{\,..., As} . The values of r and s are defined internally by the matrices A
and B.

Suppose we partition X into four blocks of columns X = [X;, X5, X3, X4] with
column sizes r, s, k—r —s and n—k, respectively. Correspondingly, suppose we partition
U into U = [Uy, Uy, Us] with column sizes r,s,m —r — s and V into V = [V}, V4, V3]

with column sizes p — k 4+ r, s,k — r — s, respectively. Observe that

r 1, 0
XTATAX = 54 ,
0T0,
L0 ... 0
 0L0g 0
XTBTBX = S
I
0 . 0

where, for simplicity, we have used “0” to denote various zero matrices with appropriate
sizes. Upon examining the second column block, we notice that

ATAX, = BTBX,A”
That is, {\?|i = 1,...,s} is a subset of the eigenvalues of the symmetric pencil
(10) ATA - uBTB.

Similarly, we point out the following remarks to include all other cases [3, 6]:

1. If k < n, then ATAX, = BT BX, = 0 implies that every complex number is an
eigenvalue of (10). This is the case that is considered of little interest. We will
refer to eigenvalues of this type as defective.

2. Since ATAX3 = 0 and BT BX5 # 0, the pencil (10) has 0 as an eigenvalue with
multiplicity & —r — s.

3. Since BTBX; = 0 and ATAX; # 0, we may regard that the pencil (10) has co
as an eigenvalue with multiplicity r.

We view the relationships

UFAX, = 54,
VIBX, = Ss.

as the fundamental and most important components of (9). We refer to the corre-
sponding columns of Uy and V; as the left generalized singular vectors of A and B,
respectively. Note that there are two such left vectors for each generalized singular
value, one for A, and one for B.

Similar to Theorem 1.1, we have the following variational formulation.
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THEOREM 1.2. Consider the optimization problem

A
B || Ba

(11)

Then the generalized singular values, A1,..., s, of (A, B) are precisely the nonzero
finite stationary values of the objective function in (11).
Proof. The stationary values of || Az||/|| Bz|| are square roots of those of the function

(Azx, Az)

f@) = (Bx, Bx)

where (-,-) is the standard Euclidean inner product. It is not difficult to see that the
gradient of f at © where Bx # 0 is given by

2

W (ATA:L' — f(:z;)BTB:I;) .

Vi(z)=
The theorem follows from comparing the first order condition V f(z) = 0 with (10). O
Obviously, the corresponding stationary points @ € R" for the problem (11) are
related to columns of the matrix Xy (up to scalar multiplications), which are also
eigenvectors of the pencil (10). What is not clear are the roles that Uz and V; play in
terms of the variational formula (11). In this note we present some new insights in this
regard.
In the usual SVD duality theory the left singular vectors can be obtained from the

optimization problem

T A
(12) max M,
v20 ||yl

a formula similar to (2). Thus one might first guess that the duality theory analogous
to (11) would be the problem

o tAL
M550 1B

However, this is certainly not a correct form as a single row vector y? is not compatible
for left multiplication on both A and B. We will see correct dual forms for the GSVD
in (18) and (23).

2. Duality Theory. For convenience, we denote

U = [uf,... ul)]
‘/2 = [vf)v sy vgz)]‘
It follows from
(13) UTAX = S4S5'ViPBX = AV BX
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that UI'A = AV, B or equivalently
Uy B
" [ ]-o

Note that the columns of both U, and V5 are unit vectors. Given any l . ] in the

null space of C' with ||z|| # 0 and ||y|| # 0, we observe that

o 1 T
i) - 3]0

| ] {ly]]

(15) C

where x/||z|| and y/||y|| are also unit vectors. Comparing (15) with the relationship
(14), we are motivated to consider the role that each generalized singular value \; plays
in the optimization problem:

Il
(16) max .
v ] |z]]
C =0,z#0
)
However, we need to hastily point out a subtle flaw in the formulation of (16). Consider

a given point l _;j ] € S with ||z]| # 0 and ||y|| # 0. Then l ot ] € S for arbitrary

—By

a, f € R. In this case, the optimization subproblem

(17) max M

T A=yT B=0,2#0 Hl’ H

becomes the problem

18]
max
o,BER,a#£0 |Oé|

that obviously has no stationary point at all and has maximum infinity. The trouble

persists so long as l ¢ ] contains components from S. It is for this reason that the

subspace S should be taken out of consideration. We should, instead of (16), consider
the modified optimization problem (See (7) and (8))

(18) max M

[ z ] ks
EN(Z),2#0
-y

We will prove that each A; corresponds to a stationary value for the problem (18). But
first it is worthy to point out some interesting remarks:



1. The optimization problem (18) is consistent with the ordinary singular value

. AT 1 x
problem where B = [. In this case, Z = l N(ATYT 0 ] Thus l y ] e N(Z)

implies that y = ATz # 0. The forbidden situation z7A = y? = 0 in (18) is
not a concern in this case because of the homogeneity in z, and only implies
that 0 is a stationary value (or equivalently A has a zero singular value.) Thus
in the case of the ordinary SVD the problem (18) reduces to (12).

2. Tt is clear that dim(AN(C)) = m + p — k since we assume rank(C') = k. The
structure involved in (9) implies that for S defined in (4) it must be

S =R(Us) B R(V).

That is, the size of N(AT) and N(BT) should be m x (m —r — s) and p x
(p — k + r), respectively. It follows that dim(S) = m +p — k — s. The
space we are interested in is the quotient space N(C')/S. Tt is known from
the homomorphism theorem that dim(N(C)/S) = dim(N(C)) — dim(S) [5,
Lemma 4.8]. Thus dim(NV(C)/S) = s. We will see below that this dimension
count agrees with our assumption that there are s generalized singular values.
The following theorem is critical to the study of stationary values and stationary
points of the optimization problem (18).

v
be a basis for the subspace N(Z). Then the non-defective finite nonzero eigenvalues of
the symmetric pencil of (10),

THEOREM 2.1. Let the columns of the matrix l ¢ ] with ® € R™** and ¥ € RP*®

ATA — uBT B,
are the same as those of the pencil

(19) Ty — \oT 0.

Proof. Suppose AT Az = uBT Bz. Since p is non-defective and nonzero, AT Az =

pBT Bx # 0. That is, l X ] represents a nonzero element in N'(C)/S. Thus there

—pnBax
exist vectors v € R*, v £ 0, £4 € R™™"7%, £ € RP™ such that

Az = ®v+ N(ATE,
—uBx = Vo4 N(BT)¢g.

It follows that
(VT — 50T @) = —p(®T A+ W B)a + (u@ " N(AT)e4 — VI N(BT)ég) = 0.

In the above, we have used the fact that 7 l $ ] = 0. This shows that p is an eigenvalue

of (19) with v as the corresponding eigenvector.
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To complete the eigenvalue (generalized singular value) set equality, suppose now

that (UT0 — A®T®)v = 0 with A # 0,00 and v # 0. We want to show that the equation

][]

has a solution x. If this can be done, then since [AT, BT]

o
v
an eigenvector of the pencil ATA — BT B with eigenvalue .

] = 0 it follows that z is

To show (20) means to show that the vector l iz

] is in the column space of the

matrix l _)\g ] It suffices to show that
dov Yy
2 )]
wherever
T _\pT ¥y _
(22) | AT, AB][Z]_O.

Rewrite (22) as [AT, BT] l ] = 0, showing that l ] € N(C). We therefore

Y Y
—\z —\z
must have

y = Gw+ N(A s
Az = \I/w—I—N(BT)nB

for some vectors w,n4 and np of appropriate size. Substituting y and z into (21) implies

[ yl, 2T ] l $Z ] = w! (®Tdv — %WT\IIU) + (i N(AT)Tdv — %nBN(BT)T\Ilv = 0.
The assertion is therefore proved. 0O

COROLLARY 2.2. The generalized singular values A\;, 1 = 1,...,s, are the station-
ary values associated with the optimization problem (18).

Proof. We have already seen in Theorem 1.2 on how the generalized singular values
of (A, B) are related to the pencil ATA — uBT B, which are now related to the pencil
U — A@T®. By Theorem 1.2 again, we conclude that the generalized singular values
of (A, B) can be found from the stationary values associated with the optimization
problem

¥l
% o]

(23)

which is equivalent to (18). O



We now characterize the stationary points of (18). In particular, we prove the
following result which completes our duality theory. Aside from the fundamental con-
nection between the GSVD and its duality theory, the eigenvalue deflation of the proof
should be of special interest in its own right.

THEOREM 2.3. Suppose l ! ] l s ] are stationary points for the problem
_ys

—n
(18) with corresponding stationary values Ay, ..., As. Define

;
(24) u; = ——,
|
(25) v; = gi_
il
Then the columns of the matrices U = [uy,...,us] and V = [v1,...,v,] are the left

generalized singular vectors of A and B, respectively.

Proof. Suppose l

o ] is an associated stationary point of (18) with the stationary

value Ay. (The ordering of which stationary value is found is immaterial in the following
discussion. We assume A; is found first.) Taking this vector to be the first basis vector

() - 1 (I)Q

v -y Yy
where ®, € R™*6=1 and ¥y, € RPXG~D are to be defined below. Consider the stacked
matrix

in V(Z), we may write

AT BT
g | NAn? 0
2 0 N(BTT
at 0

Note that, due to the last row in 75, the null space of Z; is a proper subspace of that
of Z with one less dimension. We may therefore use a basis of the null space of Z; to
®,

v ] In this way, we attain the additional property
2

form the columns of the matrix l
that

xipq)g =0.
Note that the eigenvector of (19) corresponding to eigenvalue A; is the same as the

stationary point for the problem (23) with stationary value A;. Since (23) is simply a

—n
point associated with (18), the eigenvector of (19) corresponding to A; must be the unit
vector ¢; € RY. It follows that

coordinate representation of (18) and we already assume that l s a stationary

y?\llz = 07
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and hence

Wy — AeTe = | VIV~ ATn 0 ] .

0 Uy, — AGT o,

We have thus shown that the eigenvalues of the pencil W1 W, — A®T®, are exactly those
of the pencil ¥TW¥ — A®dT® with Ay excluded. Note that the submatrix l $2 ] spans
2

—n
stationary point is found, we may therefore deflate (18) to the problem

a null subspace of Z that is complementary to the vector “ ] After the first

(26) max M

l x] Ealn
Z2 :0,1’750
-y

A stationary point of (26) will also be a stationary point of (18) since it gives the same
stationary value in both problems. This deflation procedure may be continued until all
nonzero stationary values are found.

Then, by construction, UTU = I and VIV = I. Furthermore, we have

UTA=AVTB,

which completes the proof. O
That is, we have derived two matrices U and V' that play the same role as that of
Uy and V3, in (9) respectively.

3. Summary. We have discussed a variational formulation for the GSVD of a
pair of matrices. In particular, we characterize the role of the left generalized singular
vectors in this formulation.

We summarize the analogies between the SVD and the GSVD in the following
table. The stationary values in any of the variational formulations below give rise to
the corresponding singular values.

There is a close correspondence between the (generalized) eigenvalue problem and
the (generalized) singular value problem, as is indicated in Theorem 1.1 and Theo-
rem 1.2. The result in Theorem 2.1 and Theorem 2.3 apparently are new, and shed
lights on the understanding of the left singular vectors.

Some of the available numerical methods and approaches for computing the GSVD
are available in [2, 7, 8, 10]. The deflation process used in the characterization of the left
singular vectors can be carried out effectively by updating techniques [4]. We anticipate
that the discussion here might lead to a new numerical algorithm, especially when a
few singular values are required and the matrix (' is sparse.

Acknowledgment. We want to thank an anonymous referee for the many valuable
suggestions that significantly improve this paper.
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Regular Problem

Generalized Problem

Decomposition

UTA=SVT

See formula (1)

UTAX = AVTBX

See Formula (13)

Right Singular Vector

X

Variational Formula

(including zero oy, \;)

max
z#0

See formula (2)

|| Ax|]
1Bl

max
Bxz#0

See formula (11)

Left Singular Vector U T, vIr
max IEil} T rr%ax H%H
AT H A B
Variational Formula l N(ATYT 0 H v ] =0,770 N(AT)T 0 l _:1; ] =0,2#0
¥ 0 N(BT)T ¥
_ [lAT ||
(= AToroego )

(only positive o;, A;)

See formula (12)

See formula (18)

TABLE 1

Comparison of variational formulations between SVD and GSVD.
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