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ABSTRACT 

Recently the homotopy method has been applied to solve linear algebraic eigen- 
value problems. On the basis of theoretical advantages and practical experiments, the 
method has been suggested as a serious alternative to EISPACK for finding all isolated 
eigenpairs of large, sparse linear algebraic eigenvalue problems on SIMD machines. 
This note offers a simpler proof than Li and Sauer’s of the existence of homotopy 
curves for eigenvalue problems of general matrices. 

1. INTRODUCTION 

Let A, B E Q= n Xn and p E C. Consider the linear algebraic eigenvalue 
problems 

Ax=j.w 0.1) 

and 

Ax = pBx. 0.2) 

We shall assume that the factorization of A and B is either impossible or 
undesirable, as might be the case if A and B are large and structured. One 
approach to these problems is to impose an additional normalization condi- 
tion 

s*x = 1, (1.3) 
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and to formulate (1.1) and (1.2), respectively, as systems of n + 1 polynomials 
in n + 1 variables (xi,. . . , x,, p): 

f(w)= [“,:,--4”] =o 

and 

(1.4 

Since the higher order Frechet derivatives can easily be determined, the 
conventional Newton’s methods can be applied to solve these equations 
[l, 31. In doing so, it is easy to see that Newton’s method amounts to a 
version of the inverse power method [lo, 121. Unfortunately, Newton’s 
method can converge (if it ever converges) to only one zero at a time. When 
computing several eigenpairs, one has to restart the iteration either by 
making suitable initial guesses or by choosing the normalization vector c as a 
vector orthogonal to those eigenvectors already found [l]. 

In [2], a homotopy method was proposed by this author to find all 
eigenpairs of (1.1) when A is n by n real, symmetric, and tridiagonul with 
nonzero off-diagonal elements. It was shown that there were exactly n 
independent smooth curves connecting obvious points to the desired eigen- 
pairs. The homotopy method clearly has the following theoretical advantages: 

(1) All isolated eigenpairs are guaranteed to be reached. The method 
even can approximate nonisolated eigenpairs. 

(2) The homotopy curves correspond only to different initial values of the 
same ordinary differential equations. Hence all curves can be followed 
simultaneously if there are enough processors. 

(3) The symmetric tridiagonal structure remains unchanged under the 
homotopy transition. 

Recently Rhee [9] explored the homotopy method further by showing that 
the local conditioning of the homotopy curves was affected by two factors 
only-the separation of eigenvalues of the transition matrix D + t(A - D) 
and the closeness of D to A, where D is the diagonal matrix (or any other 
simple matrix) used at t = 0. In particular, this implies that the conditioning 
of the homotopy curve is independent of the size of the matrix. He also 

developed a numerical algorithm of which test results consistently showed 
that the overall complexity of the homotopy method for finding all eigenpairs 
would be 0( n’) as opposed to 0( n2.‘) of the standard subroutine IIMTQL~ in 
EISPACK. All of this evidence seems to suggest that the homotopy method 



LINEAR ALGEBRAIC EIGENVALUE PROBLEMS 227 

might be used a serious alternative to EISPACK for finding all eigenpairs of 
large scale symmetric eigenvalue problems on SIMD machines. 

The key issue encountered in applying the continuation method is the 
selection of an appropriate homotopy equation so that the existence of curves 
connecting the trivial solution and the desired solutions is assured and so that 
the numerical work in following these curves is at reasonable cost. It was not 
clear whether the homotopy proposed in [2] could be applied to solve (1.1) 
for general matrices. Apparently, the proof given in [2] depends upon the 
symmetric tridiagonal structure, which seems difficult to generalize. 

Recently Li, Sauer, and Yorke [S] proposed a homotopy method for the 
case when A is a general matrix and B is nonsingular. Li and Sauer further 
proposed in [S] a homotopy method for the case when B is singular. In both 
articles, the main idea is to perceive the systems (1.4) and (1.5) to be in the 
n-dimensional projective space, then to identify the singularity structure of 
zeros at infinity, and then to construct a homotopy which respects this 
special structure for all t E [O,l). The proofs utilized the concept of the 
resultant of polynomials [ 131 to assure that the singularity structure of zeros 
at infinity remained unchanged throughout the deformation and, finally, a 
version of Bezout’s theorem [4] to count the number of isolated zeros in C “. 

In this paper, we show that the homotopy equation formed in [2] for 
tridiagonal symmetric matrices works equally well for general matrices. We 
also construct a homotopy equation for the problem (1.2) when both A and 
B are general matrices. The idea in this paper should be credited to Li et al. 
[S, 61. But we do not rely on the relatively sophisticated machinery from 
algebraic geometry. The justification of our homotopy method is based on a 
rather simpler version of the resultant theorem which will be discussed in the 
next section. Sections 3 and 4 are then devoted to the analysis of the 
homotopy equations for (1.1) and (1.2), respectively. 

2. PRELIMINARY RESULTS 

We first briefly review the concept of the resultant of two polynomials. 
Let 

p(x) = a& + a,xn-’ + * * * + a,, 

(2.1) 
q(x) = bgxrn + b@-l+ - * * + b, 

be two polynomials with coefficients a, and bj in C. Then the determinant R 



228 

of the n+m byn+m matrix 
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a0 a, * * 

a0 a1 * 
. . ..*........ 

b. b, . . 

bo h, - 
. . . ..*.*..... 

b0 

* an . . a* . . . . . . . . . . ..*....... 
a0 a, * * . a, 

* bnl 
. . 4n . . . . . . . . . . . . . . s.,... 

b, . - - - b,,, 

(2.2) 

is called the resultant of the polynomials p(x) and q(x). We note that R is 
homogeneous of degree m in the ai’s and homogeneous of degree n in the 
bj’s. The following resultant theorem was well established in [13]. 

THEOREM 2.1. The reszeltunt R vanishes if and only if either the poly- 
nomials p(x) and q(x) have a common nonconstant factor, or both leading 
coeficients a, and b, vanish. 

Now we recall a fact concerning the topology of the locus of common 
zerosofasystemofpolynomials.Let P=(p,,...,pk)~Ckbyasystemof k 
nonzero polynomials in the n variables (x,, . . . , x,) E C “. The following 
decomposition theorem can be found in [7]. 

THEOREM 2.2. The set P-‘(O) can be expressed as P-l(O) = X0 U X, 
U +.* UX”_,, where each Xi is either an empty set or an idimenkmul 
complex manifold with finitely many components. 

With the resultant theorem and the decomposition theorem on hand, we 
now establish the diagonal perturbation theorem for the eigenvalues of a 
general matrix. 

THEOREM 2.3. Given an arbitrary matrix A E CnXn, the complement U 
ofthesetE={(dl,...,d,)ECn; D=diag(d,,...,d,) suchthutA+Dhus 
multiple eigenvulues) is open, is dense, and has fill Lebesgue memre 
in C”. 

Proof. Let c(X) = det(A + D - XI) represent the characteristic poly- 
nomial of A + D. Then A + D has a multiple eigenvalue if and only if c(X) 
and its derivative c’(X) have a common root. The leading coefficients of c(A) 
and c’(h) obviously are different from zero. Therefore, by Theorem 2.1, 
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A + D has a multiple eigenvalue if and only in the resultant R of c(X) and 
c’(X) vanishes. Notice that R is not identically zero, since, by the Gershgorin 
theorem, one may choose the d,‘s far away enough from each other and the 
origin to make A + D only have simple eigenvalues. Notice also that R is a 
polynomial in the undetermined variables d,, . . . , d ,,. So, by Theorem 2.2, the 
set E = R-l(O) has measure zero. Furthermore, R cannot vanish identically 
in any open set; otherwise R would be identically zero everywhere. This 
shows that U is dense. n 

A result similar to Theorem 2.3 can also be established for the diagonal 
perturbation of a matrix pencil (A, B). 

THEOREM 2.4. Given two a&ray matrices A, B E 42 nXn where none of 
the diagonal elements of B is zero, then the complement U of the set 
E = {(d,,..., d,)EC”]D=diag(d,,..., d,) such that the matrix pencil 
(A + D, B) has multiple eigenvalues) is open, is dense, and has fill 
L.ebesgu measure in 4: “. 

Proof. The proof is almost exactly the same as in Theorem 2.3 except 
that when showing the resultant is not identically zero we need to apply a 
generalized Gershgorin-type theorem for the generalized eigenvalue problem. 
This theory was first established by Stewart in [ll]. The nonzero diagonal 
elements of B are required to ensure the separation of eigenvalues at infinity. 
Readers are invited to finish the details of the proof. n 

3. THE REGULAR EIGENVALUE PROBLEM 

We shall construct a homotopy function H: C n x C x [0, l] + C n X C as 
follows: 

H(w,t) = 
/LX-- [D+t(A-D)]x 1 +(x*X-l) ’ (34 

where D is a randomly generated diagonal matrix. Without causing any 
ambiguity, the homotopy function (3.1) can also be regraded as a mapping 
H: R2n X R2 X [0, l] + W2” X W. We are interested in the set H-‘(O). Note 
that H( x, CL, 0) = 0 corresponds to the trivial eigenvalue problem ,ux = Dx, 
and H( x, CL, 1) = 0 corresponds to the problem (1.1). 
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Let Q = Q(x, p, t) be the n by n + 1 complex matrix 

Q(wL,t)= [pZ- [D+t(A-D)],x]. (3.2) 

Consider the set E= {(d,,...,d,)~C”; D=diag(d,,...,d,) such that 
70 + A has multiple eigenvalues for at least one r E (0, oo)}. By Theorem 
2.3, we know that topologically E is of real codimension one in C”. 
The complement U of E is open, is dense, and has full measure in C n. If 
the elements of D are chosen from U, then the transition matrix a(t) = D + 
t( A - D) will have simple eigenvalues for all t E [0, 1). 

If ZZ(x, p, t) = 0, then 

a(t)x = px. (3.3) 

We claim 

LEMMA 3.1. Zf ZZ(x, p, t) = 0 for some t E [0, l), then the n by n + 1 
complex matrix Q = Q(x, p, t) is of complex rank n. 

Proof. Let P be the nonsingular matrix such that 

P-l(t)[~z--(t)]P(t)=J(t), (34 

where .Z( t ) is the Jordan canonical form of PI - a(t). Since a( t ) has only 
simple eigenvalues for t E [0, l), J(t) actually is a diagonal matrix. The rank 
condition for the matrix Q(x, Z.L, t) is the same as that for the matrix 

G(x,p.,t)= [J(t>J-‘(tb]. (3.5) 

Without loss of generality, we may assume the (1,l) component of G is zero. 
Since 2: is proportional to the first column of the matrix P, the column vector 
P- ‘x mus’ be of the form P- ‘x = [c, 0,. . . ,O] r for some nonzero complex 
number c. Ic follows that the matrix Q is of complex rank n. m 

Recall that a linear transformation from 6 n+ ’ to @ n can be regarded as a 
linear transformation from IW2n+2 to lR2” if each component, say z = a + ib, 
of the complex matrix is replaced by the 2 by 2 real matrix 
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Let Q=Q(x,p,t)d enote the 2n by 2n + 2 real matrix associated with the n 
by n + 1 complex matrix Q. Suppose each component xk of the complex 
vector x is written as xk = ok + ib,. Define the 2n + 1 by 2n +2 real matrix 
M = M(x, p, t) as fohows: -- 

M(r,pL,t)= 
6 I a,,b,,a,,...,a,,b,,O,O ’ 

(3.6) 

We claim 

LEMMA 3.2. If H(x,p,t)=O f or some t E [0, l), then the 2n + 1 by 
2n +2 real matrix M = M(x, p, t) is of real rank 2n + 1. 

Proof. If H(x, p, t) = 0, then, by (3.3) the last row of M is orthogonal 
to all other rows of M. The assertion follows now from Lemma 3.1. n 

Regarding the homotopy function H as the one defined in the real space, 
we now summarize our major results in the following theorem. 

THEOREM 3.3. There exists an open dense set U with full Lebesgue 
measurein C”suchthatifd=diag(d,,...,d,) with(d,,...,d,)EU, then: 

(1) The zero set H-‘(O) = {(x, p, t)lH(x, p, t) = 0 for some t E [O,l)} 
with H defined by (3.1) is a %dimensional smooth submunifold in R2” X R2 
XR. 

(2) H-‘(O) is unifmly bounded and hence is extendable to t = 1. 

Proof. The first part follows immediately from Lemma 3.2 and the 
implicit function theorem. It only remains to show the uniform boundedness 
of H-‘(O). To see this, observe that for any (x, p, t) E H-l(O) we have 
II(+, pcL,t)ll < 2+ l/4. But f rom (3.3), it is clear that 1~1~ ~~D~~+ IlAll. The 
continuity then assures that this uniform bound still holds when t -+ 1. n 

REMARK 3.4. For i=l,..., n, let ei represent the ith standard unit 
vector in R”. It is obvious that yi = (e,, di,O) E H-l(O). Let C( yi) denote the 
component of yi in H-l(O). Since H(x,p, t) = 0 implies H(yx, p, t) = 0 
whenever y E Q: and IyI = 1, C(y,) indeed is a 2dimensionaI cylindrical tube 
whose cross section with each hyperplane t = constant E [0, 1) is a unit circle 
centered at (0, p) E Iw 2n X Iw 2 for some p. The implicit function theorem and 
Lemma 3.2 guarantee that this circle can be continued in both positive and 
negative directions of t. 
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We now show how to extract a path from the tube C(y,) that could be 
followed numerically and would lead from t = 0 to t = 1. According to 
Remark 3.4, we may require further that this path to be parametrized by the 
variable t. Among the many possible ways to define such a path, we find the 
integral curve of the vector field satisfying the following conditions appears 
to be easier to implement: If H is considered as a mapping from 08 2n X R 2 X 
[0, l] to R 2n x R, so that (x, p) is identified as a vector in 08 2n X R2 and 
(A - D)x and ix as vectors in R 2n, then 

M(r,‘,t)[;] = [‘“,“q 
i 

[ ][I iXT,O l-i= 0. 

(3.7) 

(3.3) 

The last equation (3.8) simply means the vector field is always perpendicular 
to the circle of the intersection of the hype&me t = constant and the tube. 
The2n+2by2n+2realmatrix 

is precisely the real representation of the n + 1 by n + 1 complex matrix 

pZ- [D+t(A-D)], x 

x*9 1 0 * 

Therefore, the remaining numerical work amounts to solving the following 
initial value problems in C n X 4=: 

pZ- [D+t(A-D)], 

x*9 
(3.9) 

x(O) = ei, P(O) = 4 

for i=l,...,n. 

REMARK 3.5. Let k, and k, represent the algebraic and geometric 
multiplicities of an eigenvalue p of A, respectively. Let x be a corresponding 
normalized eigenvector of 1-1. 
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FIG. 1. A = i i . 
( 1 

FIG. 2. A = “0 i . 
( 1 

(1) If k, = k, = 1, i.e. if (x, p) is an absolutely isolated eigenpair of A, 
then it is easy to see that the corresponding matrix G(x, p, 1) is still of full 
complex rank. So the integral curve determined by (3.9) passes through the 
hyperplane t = 1 transversely. 

(2) If k, = 2, then the matrix of the right-hand side of (3.9) is necessarily 
singular. But according to Theorem 3.3, the curve determined by (3.9) for 
t < 1 can always be extended to reach t = 1. Figures 1 and 2 exemplify, 
respectively, the projections of H- '(0) into the space of (x, t) E IL! 2 X [0, l] 
for the cases k, = 1 and k, = 2. 

4. THE GENERALIZED EIGENVALUE PROBLEM 

For the generalized eigenvalue problem (1.2), we shall construct a homo- 
topyfunction H: C”XCX[O,1]+C”XC asfollows: 

H(w,t)= 
[(l- t)(cpI - D) + t(pB - A)] x 

;( x*x - 1) 1 , (4.1) 
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where CEC and D=diag(d,,..., d,) are randomly generated. Note that 
H(x, p,O) = 0 corresponds to the trivial problem C/AX = DC, and H(x, EL, 1) 
corresponds to the problem (1.2). Let P(t) =(l- t)cI + tB and o(t) = 
(1- t)D + tA. 

It is easy to see that there exists an open dense set V in C such that if 
c E V, then P(t) is nonsingular and has no zero diagonal elements for each 
t E [0, 1). We shall assume henceforth that c E V. 

Let Q = Q( X, EL, t ) be the n by n + 1 complex matrix 

Q(wL,t)= [P(t)/-W,kWxl. (4.2) 

Consider the set E= {(d,,...,d,)~C”; D=diag(d,,...,d,) such that 
[ /3(t )] -‘a(t) has multiple eigenvalues for at least one t E [0, 1)). It follows 
again from Theorem 2.4 that topologically E is of real codimension one in 
@ “. Therefore, the complement U of E is open, is dense, and has f’uh measure 
in C “. If the diagonal elements of D are chosen from U, then for 0 < t < 1 

and for any /A the matrix p(t )p - a(t) can have at most one zero eigenvalue. 
If H( X, p, t ) = 0, then x will be an eigenvector of /3( t )p - a( t ) associated 

with the simple eigenvalue 0. From now on ah the discussions are analogous 
to those in the previous section. In particular, the matrix Q(x, ,a, t) is of 
complex rank n. Without repeating the proof, we summarize our results in 
the following theorem: 

THEOREM 4.1. There exists an open dense set U with fill Lebesgue 
measure in C n and an open dense set V in C such that if c E V and if 
D = diag(d, ,..., d,) with (d, ,..., d,) E U, then: 

(1) The zero set H-‘(O) = {(x, p, t)lH(x, p, t) = 0 for some t E [O,l)} 
with H defined by (4.1) is a 2dimensionul smooth submunifold in R 2n x R 2 

XR. 
(2) The solution to the initial value problems in C n x C 

1 BWP--(Y(t) B(t)x 
x* I[1 1 

* = [I@--)+(A-D)IX ) (4.3) 

0 i 0 1 
x(O) = e,, 40) = di/c 

for i = l,..., n characterize n smooth curves on the set H-‘(O). 

REMARJC 4.2. The following are discussions of the behavior of curves 
defined by (4.3) as t + 1. We shall exclude the two extreme cases where 
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either det(@ - A) = 0 or det(pLB - A) = nonzero constant. In the former 
case, every complex value is an eigenvalue of the problem (1.2). In the latter 
case, the problem (1.2) has no eigenvalue at all. 

(1) Suppose that B is nonsingular. Then P(t) is continuous and nonsingu- 
lar for all t E [O,l]. If H(x, 1-1, t) = 0, let +(t) = IIP(t)x(t)ll. Obviously +([O, 11) 
is a compact subset not containing 0. Since 1~1~ Ila(t)ll/llP(t)r(t)ll, we have 
shown that the set H-‘(O) is uniformly bounded. Furthermore, a discussion 
analogous to that made in the previous section can be given. In particular, it 
can be shown now that each isolated eigenvector of (1.2) will be reached by 
at least one homotopy curve in H- ‘(0). 

(2) Suppose that B is singular. Then some of the curves defined by (4.3) 
will blow up as t + 1. But still it can be shown that each isolated eigenvector 
of (1.2) must be reached by at least one homotopy curve. 

5. CONCLUSIONS 

The homotopy method can be applied to solve the linear algebraic 
eigenvalue problems for general matrices. The two special homotopy equa- 
tions (3.1) and (4.1) are constructed for the problems (1.1) and (1.2), 
respectively. We have shown that in either case the zero set {(x, p, t) E Q: n x 

Q= X [O,l); H(x, CL, t) = 0} is a Bdimensional smooth manifold. Homotopy 
curves on the zero set can be defined by the initial value problems (3.9) and 
(4.3), respectively. We also have shown that each isolated eigenvector to- 
gether with its corresponding eigenvalue is connected by at least one of these 
homotopy curves. In fact, each isolated eigenpair is connected transversely 
by a unique homotopy curve. 

Since the homotopy curves correspond only to different initial values of 
the same ordinary differential equations, the independence of these curves 
makes it feasible to follow several curves simultaneously on a multiprocessor 
machine. Note also that the homotopy equations constructed in (3.1) and 
(4.1) do not cause any destruction of the matrix structure of A or B. Together 
with sparse matrix techniques, the homotopy method therefore might become 
attractive for solving large scale linear algebraic eigenvalue problems. 

REFERENCES 

1 P. M. Anselone and L. B. Rail, The solution of characteristic value-vector 
problems by Newton’s method, Numer. Math. 11:38-45 (1968). 

2 M. T. Chu, A simple application of the homotopy method to symmetric eigen- 
value problems, Linear Algebra A&. 59:85-90 (1985). 



236 MOODY T. CHU 

3 

10 

11 

12 

13 

L. Collatz, Functional Analysis and Numerical Mathematics, Academic, New 
York, 1966. 
W. Fulton, Intersection Theory, Springer, New York, 1984. 
T. Y. Li and T. Sauer, Homotopy method for generalized eigenvahre problems, 
Linear Algebra Appl. 91:65-74 (1987). 
T. Y. Li, T. Sauer, and J. A. Yorke, Numerical solution of a class of deficient 
polynomial systems, SZAM I. Numer. Anal. 24:435-451 (1987). 
J. Mihror, Sin&or Points of Complex Hypersurfmes, Ann. of Math. Stud., 61, 
Princeton U.P., 1968. 
G. Peters and J. H. Wilkinson, Ax = A& and the generalized eigenproblems, 
SZAM I. Nurncr. Anal. 7:479-492 (1970). 
N. H. Bhee, The Homotopy Method for the Symmetric Eigenvalue Problems, 
Ph.D. Dissertation, Michigan State Univ., 1987. 
A. Ruhe, Algorithms for the nonlinear eigenvahre problem, SIAM J. Numer. 
Anal. 4:674-689 (1973). 
G. W. Stewart, Gershgorin theory for the generalized eigenvahre problem Az = 
XBx, Math. Cump. 29:600-606 (1975). 
H. Unger, Nichtlineare Behandlung von Eigenwertaufgaben, Z. Angew. Math. 
Mech. 30:281-282 (1959). 
B. L. van der Waerden, Algebra, Vol. 2, Frederick Ungar, New York, 1970. 

Received June 1987; final munu.wript accepted 23 September 1987 


