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ABSTRACT 

The homotopy method is used to find all eigenpairs of symmetric matrices. A 

special homotopy is constructed for Jacobi matrices. It is shown that there are exactly 
n distinct smooth curves connecting trivial solutions to desired eigenpairs. These 
curves are solutions of a certain ordinary differential equation with different initial 
values. Hence, they can be followed numerically. Incorporated with sparse matrix 
techniques, this method might be used to solve eigenvalue problems for large scale 
matrices. 

1. INTRODUCTION 

Solving a symmetric eigenvalue problem 

Ax=Xx 

can be thought of as solving a nonlinear algebraic equation 

f(x,X)=O, 

where f:!R" ~03 +IR"XR is defined by 

f(x,X)=(Ax-Ax,%). 

(1.1) 

(1.2) 

(1.3) 

From this point of view, many well-developed methods can then be employed 
to find zeros of this f. For example, if the spectrum a(A) of A is simple, as 
will be assumed henceforth, then the classical Newton’s method and its many 
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improved modifications are particularly well suited for solving (1.2) since its 
higher Frechet derivatives can easily be determined-the second derivative is 
constant and higher derivatives vanish. For a general discussion of this 
approach, see, for example, [6] and [ll]. Unfortunately, Newton’s method can 
converge (if it ever converges) to only one zero at a time. In order to obtain 
all n eigenpairs of A, we have to restart the iteration by making n suitable 
guesses. In this paper we are interested in applying the homotopy method to 
solve the problem (1.2). As will be shown in the sequel, one of the advantages 
is the existence of n disjoint smooth curves in ll&! ’ x R each of which leads 
from an obvious starting point to the desired eigenpair (x, h) of (1.1). 
Furthermore, together with the large scale matrix techniques, this method can 
be used to solve eigenvalue problems for sparse matrices. 

Homotopy methods for finding zeros are known variously as “continua- 
tion methods” or “Davidenko’s methods.” The basic idea is to construct a 
homotopy from a trivial map to the one of interest. Under suitable conditions, 
a curve starting from the trivial solution will then lead us by a smooth path to 
the desired solution. This method in spirit is the same as the degree theory. 
But in practice it becomes very attractive because of its global and probabilis- 
tic features. For a general discussion of the underlying theory and some of its 
numerical treatments, see, for example, [l, 2, 5, 7, 8, 9, 121. 

The difficulty encountered in applying the homotopy method is the 
selection of an appropriate homotopy equation so that (1) the existence of a 
curve connecting the trivial solution and the desired solution is assured and 
(2) the numerical work in following this curve is at reasonable cost. Toward 
this end, one possible approach is to view (1.3) as a system of n + 1 quadratic 
polynomials in n + 1 unknowns. Then the special homotopy suggested in [3] 
seems applicable for solving (1.2). 0 ne realizes immediately, however, that 
there is a great waste in doing so, since there are at least 2”+’ - n curves 
diverging to infinity. In this paper a much simpler homotopy is constructed. 
We show that there are exactly n disjoint curves leading us to the n 

eigenpairs. These curves are characterized by an explicit ordinary differential 
equation with distinct initial values. Thus they can be followed easily by any 
available ODE software solvers. 

We begin in the next section with a description of this particular homoto- 
py equation. Then we show why this homotopy will work. Some comments 
about the applicability of this method are made in Section 3. 

2. METHOD AND THEOREMS 

Through a standard tridiagonalization process, we may assume, without 
loss, that the matrix A is a Jacobi matrix with nonzero off-diagonal elements. 
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Let D be an arbitrary diagonal matrix with distinct elements. Construct the 
homotopy equation H: Iw ” x R x R -+ [w n x Iw as follows: 

H(x,X,t)= [D+t(A-D)]x-++j. 
( 

(2.1) 

We claim 

LEMMA 1. The point 0 E II2 n x 52 is a regular value for H. In other words, 

foreach(x,X,t)E[WnXaBXIWsuchthatH(x,X,t)=OtheJacobianmatrix 

D Cx,h,t,H always has rank n + 1. 

Proof. Observe that 

Dcx,X,r,H= 
D+t(A-D)-X -x (A-D)X 

_ XT 

I 
(2.2) 

0 0 . 

If H(x, X, t)= 0, then 

[D+t(A- D)]x=hx (2.3) 

and 

xr, = 1. 

Equation (2.3) implies that the vector x is orthogonal to the rows of D + t(A 

- D) - X. Since D + t(A - D) - X also has simple spectrum [4, Lemma 6.11, 
the first n columns of DCx,x rJ , H are linearly independent. By symmetry, we 
also know the (n + 1) x ( n + 1) square matrix 

%df= 
D+t(A-D)-X --x 

_ XT 
0 1 (2.5) 

has rank n + 1. This finishes the proof. 

Indeed, one even knows that 

u(D~~,~,H)=u(D+~(A- D)-h)U{l, -l} - (0). (2.6) 
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The following lemma is a standard result from the differential topology 

[lOI. 

LEMMA 2. ?'hesetr={(x,h,t)E08"X[WXIW:H(x,h,t)=O} isaone 
dimensional smooth manifold. Hence, each component is a smooth curve and 
is either diffeemorphic to a circle or an interval. 

Along each component, we may take the derivative with respect to the arc 
length s. The set I is then characterized by 

(2.7) 

Notice that I will 
would be singular. 
becomes 

never turn back, i.e. dt/ds z 0, since otherwise DC*, x,H 
Thus I can be parametrized by the variable t and (2.7) 

D+t(A-D)-X 

- XT 
(2.8) 

Let r,={(x,X)EIW”X[W:(H(x,X,t)=O for some tE[O,l]}. It is im- 
portant to know whether the curve I will diverge to infinity or not. For this 
we claim 

LEMMAS. The set r,, is bounded. Together with the fact that dt/ds # 0, 
the curve, therefore, always connects the trivial solution of H(x, h,O) = 0 to 
the desired solution of H(x, X, 1) = 0. 

Proof. For any (x, A, t ) E r, it is clear that 

By (2.3), ]A( t )I is bounded by 

IA(t)l G llD + t(A - D)ll G IlDll + IlAll 

(2.9) 

if t E [0, 11. In fact we can get bounds trivially by Gerschgorin’s theorem. 
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3. APPLICABILITY 

89 

We have shown that P consists of exactly n curves which are solutions of 
the differential equation (2.8). Hence, these curves may be followed numeri- 
cally by using any of the available differential equation solvers. To be more 
specific, to follow the ith component of I, we start from the trivial solution 

where e, is the standard i th unit vector and d, is the i th element of D. The 
step-by-step evaluation of the tangent vector can be obtained by solving the 
system 

D+t(A-D)-X 

- XT 
;‘I[ ;I=[ -(A;D)*] (3.2) 

using any typical linear equation solvers. It is worth noting that the standard 
LU decomposition, for example, will produce one fill-in only at the (n, n) 
position if A is a Jacobi matrix, so the method is particularly attractive for 
solving large scale tridiagonal eigenvalue problems. 

It should be noted also that the Jacobi structure of the matrix A is only a 
sufficient condition for Lemma 1. This condition may be rephrased as 
“chasing D so that the matrix (1 - t)D + tA always has simple spectrum for 
each t E [O,l].” Alternatively, all we require is the full rank of the matrix 
D cx, x, ,,H, and then we can use (2.7) instead (2.8). Evidently the sparse matrix 
techniques can be incorporated in any of these cases. 
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