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Abstract� A general framework for the least squares approximation of symmetric�de�nite pencils
subject to generalized eigenvalues constraints is developed in this paper� This approach can be adapted
to di�erent applications� including the inverse eigenvalue problem� The idea is based on the observation
that a natural parameterization for the set of symmetric�de�nite pencils with the same generalized
eigenvalues is readily available� In terms of these parameters� descent �ows on the isospectral surface
aimed at reducing the distance to matrices of the desired structure can be derived� These �ows can be
designed to carry certain other interesting properties and may be integrated numerically�
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�� Introduction� Let A and B be two square matrices of size n� A matrix pencil
of A and B is a family of matrices A � �B� parameterized by � � C � Elements in the
set ��A�B� de�ned by

��A�B� �� fz � C j det�A� zB� � �g���

are called the generalized eigenvalues of the pencil� It is easy to see that there are
n generalized eigenvalues if and only if rank�B� � n� If B is rank de�cient� then
��A�B� may be �nite� empty� or in�nite� Generalized eigenvalues are preserved under
equivalence transformations� i�e�� ��A�B� � ��Y HAX� Y HBX�� provided X and Y are

nonsingular matrices and Y H denotes the conjugate transpose of Y �
In this paper we shall limit our discussion to R

n�n � the Euclidean space of all n�n

real	valued matrices equipped with the Frobenius inner product

hX� Y i ��
X
i�j

xijyij��
�

For convenience� we also introduce the notation G�n� and s�n� representing� respec	
tively� the general linear group of all nonsingular matrices and the linear subspace of all
symmetric matrices in R

n�n � It is frequently the case in practice� and will be assumed
henceforth� that A is symmetric and B is symmetric and positive de�nite� Pencils
of this variety are referred to as symmetric�de�nite pencils ��
� For convenience� the
corresponding pair of matrices are referred to a symmetric�de�nite pair�
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Obviously A��B is symmetric	de�nite if and only if P TAP��P TBP is symmetric	
de�nite for all P � G�n�� This congruence transformation naturally delineates a �pa	
rameterization� for the set

M�A�B� �� f�P TAP� P TBP � � R
n�n � R

n�n jP � G�n�g����

We shall show that M�A�B�� consisting of all symmetric	de�nite pairs with the same
generalized eigenvalues ��A�B�� is made of smooth submanifolds in R

n�n � R
n�n �

This paper concerns the construction of a symmetric	de�nite pencil satisfying si	
multaneously conditions on its structure and spectrum� We cast the problem as a task
of �nding the shortest distance between the set of structured matrices and the isospec�
tral set M�A�B�� where ��A�B� is the prescribed spectrum� The approximation is
measured by the Frobenius norm over the product space s�n� � s�n�� so a solution is
best in the sense of least squares�

More speci�cally� let Vi� i � �� 
� denote either a single matrix or an a�ne subspace
in s�n� whose elements� quali�ed by satisfying certain speci�ed conditions on their
structure� are being approximated� De�ne P � s�n�� s�n� �� V� � V� by

P�X� Y � �� �P��X��P��Y �����

where P� and P� denote� respectively� the projections from s�n� onto V� and V� with
respect to the inner product �
� � In case Vi is a singleton� de�ne Pi�X� � Vi� The
approximation is considered through the optimization problem�

min
�X�Y ��M�A�B�

�



k�X� Y �� P�X� Y �k�����

i�e�� the part of �X� Y � that does not carry the desirable structure is being minimized�
We emphasize here that the desirable structure in V� can be de�ned independently of
that in V��

One important point should be clari�ed before we move on to the discussion of
solving ���� We mention that there are two constraints� the spectrum and the structure�
imposed upon an ideal problem� In practice� it may occur that one of the two constraints
should be more critical than the other due to� for example� the physical realizability� On
the other hand� there are also situations where one constraint could be more relaxed
than the other due to� for example� the physical uncertainty� Structural constraint
usually is imposed due to the physical realizability� Spectral constraint often carry
some physical uncertainty� In reality� it is often di�cult to maintain both the spectral
constraint and the structural constraint concurrently� When these constraints cannot
be satis�ed simultaneously� a least squares solution becomes the next best thing we can
hope for� Depending upon which constraint is to be enforced explicitly� we would have
di�erent ways of de�ning a least squares approximation� The situation in ��� is such
that while the pair of matrices �X� Y � vary among the isospectral surface M�A�B� and
hence keep the spectrum ��A�B�� the discrepancy between �X� Y � and the desirable
structure is minimized� Another situation� which is not addressed in this paper� is to






seek for a symmetric	de�nite pair of matrices �X� Y � in the space V� � V� �and hence
the structure is maintained� so that the discrepancy between the two sets ��X� Y � and
��A�B� is minimized� At the �rst glance� these two situations appear to be quite
di�erent� In particular� a parameterization for symmetric	de�nite pairs of matrices
with structure speci�ed by V� and V� is di�cult� if not impossible� to obtain� However�
it is remarkable that in certain special circumstances these two seemingly unrelated
problems can be shown to be equivalent� One such a case is the inverse ordinary
eigenvalue problem that has already been discussed in �

� In this paper� we shall focus
on ��� only�

The choices of Vi in the set	up make the problem ��� quite versatile in application�
We mention three immediate applications below� We shall come back in a later part
of this paper to explain more speci�cally how these problems can be solved by our
technique�

Problem �� Given a symmetric�de�nite pair of matrices � �A� �B� and real numbers
��� � � � � �n� �nd the least squares approximation �X� Y � to � �A� �B� such that �X� Y � is
still symmetric�de�nite but ��X� Y � � f��� � � � � �ng�

A question that resembles Problem � but in the context of ordinary eigenvalue
problems� i�e�� when Y � �B � I� can be answered by the Wielandt	Ho�man theorem
��� ��
� For generalized eigenvalue problems� however� the perturbation theory is much
more complicated� See� for example� ���� Chapter VI� Section �
� Our approach� by
taking A � diagf��� � � � � �ng and B � I in the de�nition of the isospectral surface
M�A�B�� and V� � �A and V� � �B in the de�nition of the projection P� o�ers an
interesting and easy way to solve Problem ��

Problem �� Given a symmetric�de�nite pencil A � �B� �nd all its generalized
eigenvalues�

Among the well	known numerical methods for the symmetric �ordinary� eigenvalue
problem� one idea of Jacobi is to systematically reduce the norm of o�	diagonal elements�
A similar idea can be applied to Problem 
 if we take V� and V� to be the subspace
of all diagonal matrices� In this way� the minimization in ��� amounts to reducing the
o�	diagonal elements of both X and Y simultaneously by congruence transformation�
We shall see that a simple analysis on the stationary points of ��� re	establishes the
well	known fact that any symmetric	de�nite pair can be simultaneously diagonalized�

Problem �� Given a symmetric�de�nite pair � �A� �B� and values ��� � � � � �n� �nd a
diagonal matrix D so that �� �A �D� �B� � f��� � � � � �ng�

Generalized eigenvalue problems arise� for example� when a Sturm	Liouville prob	
lem is discretized by high	order implicit �nite di�erence schemes ���
� An inverse prob	
lem� such as Problem �� is then to reconstruct a certain physical parameter from the
natural frequencies� Research on inverse �ordinary� eigenvalue problems has been exten	
sive and fruitful� See� for example� ��
 and the references contained therein� Obviously�
if �B � �L�LT is the Cholesky decomposition of �B� then Problem � can be reformulated
as �nding D such that ���L��� �A�D��L�T � I� � f��� � � � � �ng� which becomes an inverse
ordinary eigenvalue problem� On the other hand� we may choose� among several op	
tions to be discussed in the sequel� V� to be the a�ne subspace of �A plus all diagonal
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matrices� V� � �B� A � diagf��� � � � � �ng� and B � I� Our approach avoids the inversion
of any matrix and guarantees a least squares solution even if an exact solution does not
exist�

The multiplicative inverse eigenvalue problem is another important class of prob	
lem in applications� The question centers around �nding a diagonal matrix D�� so that
the �preconditioned� matrix D��M possesses a specialized spectrum� A multiplicative
inverse eigenvalue problem can be formulated as an inverse generalized eigenvalue prob	
lem M ��D in a setting similar to Problem � except the �rst entry M is held constant
instead�

Solving ��� by standard techniques for constrained optimization problems is not
easy because of the matrix structure involved� The main point of this paper is to
cultivate descent �ows on M�A�B� for solving ��� in general� Our approach o�ers a
new channel for tackling generalized spectrally constrained problems� The scheme of
following �ows in the open set G�n� has a similar spirit of an interior	point method
��� ��
� an area that has attracted enormous attention in recent years� However� our
methods di�er from the traditional interior	point methods in several aspects� Neither
our objective function nor our feasible set is convex ��� ��� ��
� and for the most part
of our �ows the dynamics is directed by the objective value rather than the penalty
function �
�
� We shall comment on this connection again at the end of Example � in
x��

This paper is organized as follows� We begin in x
 to study the geometry of the
isospectral set M�A�B�� We shall show by the algebraic curve theory that M�A�B� is
a union of smooth manifolds� We even can count its dimension in the generic case� In x�
we outline a framework from which speci�c di�erential equations can be designed based
on needs or circumstances� The di�erential equations produce descent �ows for ����
Our approach is �exible� yet it o�ers some theoretical insights as well as ready	made
numerical algorithms� In an earlier paper ��
� projected gradient �ows were derived for
least squares approximations with ordinary spectral constraints� Our development here
is similar� except that no projection of the gradient is needed this time because G�n�
itself is an open set in R

n�n � On the other hand� it will become clear in our study that
in order for a �ow to maintain a certain additional property� such as being de�ned on
M�A�B� without reference to its parameterization� the descent direction somehow has
to be a modi�cation of the gradient� This point will become manifest in x�� We highlight
some speci�c applications in x�� Finally in x� we report some numerical experiments�

�� Isospectral Surface� By �ows we mean integral curves of a di�erential system�
To de�ne �ows on the set M�A�B�� we have to be certain �rst of all that M�A�B� is
made of smooth entities� Toward this� we establish two results in this section concerning
the topology of M�A�B��

Theorem ���� Given any symmetric�de�nite pair of matrices �A�B�� the set
M�A�B� consists of all symmetric�de�nite pairs with generalized eigenvalues ��A�B��

Proof� It is clear that if �X� Y � � M�A�B�� then X��Y is symmetric	de�nite and
��X� Y � � ��A�B�� It is known that any symmetric	de�nite pencil can be simultane	
ously diagonalized by congruence transformations� Therefore� if a symmetric	de�nite






pencil X � �Y has the same generalized spectrum ��A�B�� then X � �Y is congruent
to diag���A�B��� �I and hence to A� �B� This proves the assertion�

The de�nition ��� may be thought of as an algebraic way to parameterize the set
M�A�B�� Note that the parameters come from G�n� which is an open set in R

n�n �
The parameterization implies� therefore� that M�A�B� can be a geometric entity of
dimension at most n�� More precisely� we have the following theorem�

Theorem ���� For any given symmetric�de�nite pair �A�B�� M�A�B� is a dis�
joint union of smooth manifolds� each of which has only �nitely many components and
has dimension at most n� in R

n�n � R
n�n�

Proof� Consider the vector c�X� Y � �� �c��X� Y �� � � � � cn�X� Y �
T whose components
are de�ned by the coe�cients in the polynomial

det�X � zY � � ����n det�Y �zn �
n��X
i��

cn�i�X� Y �zi�

Clearly each ck�X� Y � is a polynomial in the entries of X and Y � Suppose ��A�B� �
f��� � � � � �ng� Consider the algebraic variety

V���� � � � � �n� �� f�X� Y � � s�n�� s�n�jc�X� Y � � ����n det�Y ��g���

where � �� ���� � � � � �n

T with �k �� ����k

P
i������ik

�i� � � � �ik � It follows from Whitney�s
strati�cation theorem ��
� Theorem 
�� and 
��
 that V���� � � � � �n� can be expressed
as a �nite disjoint union of smooth manifolds� each of which has only �nitely many
components� Observe that

M�A�B� � V���� � � � � �n� � �s�n�� C�n��

where C�n� is the cone of symmetric and positive de�nite matrices in R
n�n � Since C�n�

obviously is a submanifold in s�n�� the assertion follows�
The gauge n� of the dimension is not necessarily an overestimate� We can maintain

a little bit more precision on the dimensions of submanifolds involved in Theorem 
�
�
A somewhat related discussion can be found in ��
� Let

� �� max
�X�Y ��V���������n�

rank

�
�c

��X� Y �

�
�

De�ne

N ���� � � � � �n� �� f�X� Y � � V���� � � � � �n�jrank

�
�c

��X� Y �

�
� �g����

Whitney�s theorem a�rms that V���� � � � � �n��N ���� � � � � �n� is a smooth manifold of
dimension n�n������ Furthermore� because the rank de�cient condition in ��� imposes
extra polynomial equations on �X� Y �� the set N ���� � � � � �n� itself� if not empty� is a
union of manifolds with lower dimensions� It follows that V���� � � � � �n��N ���� � � � � �n�
is the largest manifold component of V���� � � � � �n� in the sense that N ���� � � � � �n� is
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nowhere dense and has measure zero relative to V���� � � � � �n�� Observe that involved in
��� are n�n��� unknowns and n equations� so it must be that � � n� It follows that the
dimension of V���� � � � � �n�� N ���� � � � � �n� is at least n

�� Together with Theorem 
�
�
we conclude that if

M�A�B� � N ���� � � � � �n� � �����

then M�A�B� is a smooth manifold of dimension exactly n�� Sard�s theorem ���

guarantees that for almost all choices of �A�B�� the condition ��� holds� In particular�
it can be shown that ��� holds if �A�B� has distinct generalized eigenvalues� The above
result on the parameterization and dimensionality for isospectral symmetric	de�nite
pairs of matrices seems to be known the �rst time� Though the result may not appear
too surprising� the way it is obtained by utilizing the Whitney�s theorem is of interest
in its own right�

We stress before we move on to describe �ows onM�A�B� that for our application it
is not essential whether the setM�A�B� itself is a one	piece manifold� The di�erentiable
�ows that will be de�ned later automatically stay on smooth components of M�A�B��

We conclude this section by one example showing that the inverse eigenvalue prob	
lems for matrix pencils could be quite intricate� We show that in special circumstances
M�A�B� may be a proper subset of N ���� � � � � �n�� Consider the case when n � 
�
A � � and B � I� Then M�A�B� � f��� P TP �jP � G�n�g� Though G�
� has dimen	
sion �� M�A�B� obviously has dimension �� It is interesting to note that for a pair

X � �xij� and Y � �yij� to be in V��� �� a necessary condition is that the entries satisfy
the equations�

x�� � x���

y�� � y���

x�� � jx��j
sgn�x���y�� �

q
y��� � y��y��

y��
�

x�� �
�y��x�� � 
x��y��

y��
�

provided y��y�� �� �� There are four free parameters in de�ning V��� ��� However� if Y
is required to be positive de�nite� then X � � is the only possible solution�

�� Descent Flows� The parameterization ��� provides grounds for maneuver on
M�A�B� to reduce the objective value in ���� In this section� we discuss how to take
advantage of this parameterization to formulate descent �ows�

We start with working within the parameter space G�n�� For convenience� we
introduce the abbreviation��

���P � �� P TAP � P��P
TAP �

���P � �� P TBP � P��P
TBP �

����

�



when the symmetric	de�nite pair �A�B� is �xed� The objective function in ��� is equiv	
alent to the function F � G�n� �� R where

F �P � ��
�



�h���P �� ���P �i� h���P �� ���P �i� �����

The following result is critical in our development�
Theorem ���� The gradient rF of F is given by

rF �P � � 
 fAP���P � �BP���P �g �����

Proof� Observe that the Fr�echet derivative of F at P acting on H � R
n�n can be

calculated as follows�

F ��P �H � h���P �� HTAP � P ���P
TAP �HTAP � P TAH � P ���P

TAP �P TAHi

�h���P �� HTBP � P ���P
TBP �HTBP � P TBH � P ���P

TBP �P TBHi

� 

n
h���P �� P TAH � P ���P

TAP �P TAHi

� h���P �� P TBH � P ���P
TBP �P TBHi

o
� 


n
h���P �� P TAHi� h���P �� P TBHi

o
� 
hAP���P � �BP���P �� Hi���
�

In the above� the second equality is due to the symmetry of the matrices involved�
The third equality follows from the fact that the action of P �i �at P

TAP and P TBP �
respectively� on any point �P TAH and P TBH� speci�cally� resides in the tangent
space of Vi whereas the range of �i is perpendicular to the tangent space of Vi� The last
equality is obtained by utilizing the adjoint property of the Frobenius inner product� It
follows from ��
� that the gradient rF of F may be interpreted as asserted�

Obviously� the di�erential equation

�P �t� �� �rF �P �t�������

where �P means the derivative of P with respect to a certain arti�cial parameter t� de�nes
the steepest descent �ow P �t� on G�n� for F � It should be cautioned however that the
open setG�n� has boundarymade of all n�n singular matrices� The di�erential equation
���� alone cannot guarantee that the �ow P �t� will stay away from the boundary of
singular matrices� The �rst example in x� clearly illustrates this occurrence�

Through the parameterization relationship�
X�t� � P �t�TAP �t�
Y �t� � P �t�TBP �t��

����

each �ow in the parameter space G�n� has a corresponding �ow on M�A�B�� Related
to the �ow P �t� de�ned by ����� for example� is the �ow X�t� de�ned by �

�X � �

n
���P �P TA�P � ���P �P TBAP

�



�P TA�P���P � � P TABP���P �
o

����

� �

n
	��X�X�P TP ���X � 	��Y �Y �P TP ���X

�X�P TP ���X	��X� �X�P TP ���Y 	��Y �
o
�����

where we have denoted �
	��X� �� ���P �
	��Y � �� ���P �

�����

to emphasize the dependence of the system on the variables X and Y � A similar �ow
Y �t� can also be de�ned�

Neither ���� nor ���� is useful in that the di�erential system depends explicitly on
the parameterization variable P � That dependence means that to integrate ���� or ����
one must also integrate ����� This is a waste since the parameter �ow P �t� needs to be
integrated in any case� It perhaps would be more economical to obtain X�t� and Y �t�
directly from �����

Note also that the system ���� de�nes the steepest descent �ow� There are sit	
uations when one prefers to relinquish the steepest descent property in exchange for
maintaining other attributes� In the following we introduce several other descent �ows
for this purpose�

We �rst illustrate a situation where the description of X�t� and Y �t� can be implicit
in the parameter P �

Corollary ���� The �ow de�ned by

�P �� �
�



PP TrF �P ������

is a descent �ow�
Proof� Observe that

hrF �P ���PP TrF �P �i � �hP TrF �P �� P TrF �P �i 	 �

and that the equality holds only when rF �P � � �� Thus� the di�erential system �����
though not the steepest one� continues to de�ne a descent �ow for F �

Upon substitution� the corresponding �ow �X�t�� Y �t�� on M�A�B� is de�ned by
the di�erential system� ��

�
�X � �

�
�XW �T �XW

�
�Y � �

�
�YW �T � YW

�����

with

W �� X	��X� � Y 	��Y ���
��

Note that the di�erential system ���� is autonomous inX and Y � and makes no reference
to the variable P � The computation of P �t� as well the troublesome matrix inversion
such as �P TP ��� in ���� are thus avoided�

�



M(A,B)

All critical poiints

(A,B)
~ ~

Two special critical points

X

Y

Fig� �� Geometry of a pseudo solution�

It is worth noting that the critical points of the di�erential system ���� are exactly
the same as the stationary points of the optimization problem ���� provided that crit	
ical point is nonsingular� The optimization problem ���� therefore� can be solved by
integrating ���� from a suitable starting point� say �X���� Y ���� � �A�B�� until a limit
point is located�

The simplest case of ���� when n � � is rather illuminating� Corresponding to
a given pair of numbers �A�B� with B 
 �� the set M�A�B� � f�X� Y � � R

� jX �
AP �� Y � BP �� P �� �g is an half array that emanates from but does not include
the origin in the direction �A�B�� In particular� M�A�B� is an unbounded open set�
Suppose we want to solve Problem � mentioned in x�� The corresponding di�erential
system of ���� becomes

�
�X � �
X�X�X � �A� � Y �Y � �B��
�Y � �
Y �X�X � �A� � Y �Y � �B���

�
��

All critical points of �
�� are included in the set

f�X� Y �jX�X � �A� � Y �Y � �B� � �g�

which is the dotted circle represented in Figure �� But relative to M�A�B� where the
�ow starting from X��� � A and Y ��� � B resides� only the two critical points�

��� �� and

�
C�C �A� �B�

I � C�
�
C �A� �B

I � C�

	
�

�

�



with C �� AB��� are most pertinent� Consider the case when the target point � �A� �B�
is located in the lower half plane of the line that passes through the origin and is
perpendicular to the arrayM�A�B� �see the shaded region in Figure ��� Obviously the
shortest distance from � �A� �B� to M�A�B� is attained only at the origin� but that point
does not belong toM�A�B�� Thus� Problem � should have no true solution is this case�
Nonetheless� the �ow de�ned by �
�� stays on the half array and indeed moves toward
the origin� In this way� we end up with a pseudo solution in the sense that the solution
is still a least squares approximation but that point is not from within M�A�B�� On
the other hand� the second critical point �

� in this case is away from the set M�A�B�
by a positive distance and hence can never be realized� We shall refer back to �
�� in
x� for further discussion of higher dimension case�

We next mention two more descent �ows that possess some additional interesting
properties�

Corollary ���� The di�erential equation

�P �� �
�



P
n
P TrF �P ��rF �P �TP

o
�
��

de�nes a descent �ow� Furthermore�

P �t�P �t�T � constant�

Proof� From the fact that

hrF �P �� P
n
P TrF �P ��rF �P �TP

o
i � hP TrF �P �� P TrF �P ��rF �P �TP i

and the equality that

hM�M �MT i �
X
j ��i

�mij �mji�
� 
 �

for any square matrix M � �mij�� it follows that the �ow P �t� enjoys the descent
property� Furthermore� because the quantity in the braces of �
�� is skew	symmetric�

it is easy to see that P �P T � �PP T � �� Thus P �t�P �t�T � P ���P ���T for all t�
The corresponding �ow on M�A�B� are integral curves of the double	bracket sys	

tem� �
�X � �X� �X�P��X�
 � �Y�P��Y �


�Y � �Y� �X�P��X�
 � �Y�P��Y �



�
��

where �X� Y 
 �� XY � Y X denotes the Lie bracket� Note that the system �
�� is
autonomous� Note also that if P ��� � I from the beginning� then P �t� remains orthog	
onal for all t� Our notion here generalizes that of orthogonal similarity transformation
discussed in ��
�

Corollary ���� The di�erential equation

�P �� �
�




n
rF �P �P T � PrF �P �T

o
P�
��

�	



is a descent �ow� Furthermore�

P �t�TP �t� � constant�

Proof� The proof is similar to Corollary ����
Although it looks similar to �
��� this new system �
�� by no means is a trivial

alternation �say� by taking the transpose� of �
��� In particular� it can be checked by
substitution that the corresponding di�erential equation for X�t� and Y �t� depends
explicitly on the variable P in �
��� a predicament that does not occur in �
��� The
system �
�� is especially useful for attacking problems where the corresponding �ow
Y �t� is expected to be constant� Problem � is one such instance� We shall be more
speci�c on its application in the next section�

We conclude this section with one remark on the asymptotic behavior of the �ows�
Theorem ���� For all the �ows P �t� de�ned above� the corresponding �X�t�� Y �t��

converges� Generically� the limit point is a stationary point� possibly on the boundary
of M�A�B�� of ���� The non�generic exception is when the product P TrF �P � in �	
�
or rF �P �P T in �	�� is symmetric at the limit point�

Proof� Along any solution �X�t�� Y �t�� the function

G�t� �� F �P �t�� �
�



fh	��X�t��� 	��X�t��i� h	��Y �t��� 	��Y �t��ig�
��

satis�es

�G�t� � hrF �P �t��� �P �t�i 	 ��

Furthermore� �G � � only when rF �P � � � or �P � �� The latter case generically implies
also rF �P � � �� Thus G�t� is monotonically decreasing until a stationary point of ���
is found�

�� Applications� Our di�erential system approach not only can be used as a
convenient algorithm for �nding a least squares solution� but also o�ers some theoretical
insights into the problem� In this section we explain more speci�cally how our approach
can be applied to solve the three problems described in x�� We discuss the applications
case by case� Further numerical experiment will be reported in x��

Application �� We point out earlier that there is no easy generalization of the
Wielandt	Ho�man theorem for Problem �� To demonstrate the complexity of Problem �
in general� we consider a very special case when both target matrices �A and �B are
diagonal� Our point by this overly simpli�ed problem is to illustrate how complicated
the stationary points for Problem � could be� Suppose that the di�erential equation
���� �which is based on the descent �ow ����� is used to solve the problem from the
initial values X��� � A � diagf��� � � � � �ng and Y ��� � B � I� Recall that the
critical points of the di�erential system are exactly the same as the stationary points of
the problem� By construction we know the solution �ow �X�t�� Y �t�� of ���� remains
diagonal� The di�erential system� being un	coupled into n pairs �xii� yii�� i � �� � � � n�

��



can be represented exactly by �
�� if all symbols there are interpreted as �diagonal�
matrices� Observe that the pairs �xii�t�� yii�t�� are independent of each other and may
converge to limit points of di�erent types �See �

��� In particular some of the pairs�
as pointed out earlier� may converge to an infeasible limit point ��� ��� This simple un	
coupled system highlights the potential di�culty for general �A and �B where these events
are intertwined together and hence make Problem � more complicated� Regardless of
this complexity� our di�erential equation o�ers an easy	to	use numerical method for
solving this type of problem�

Application �� Using the set	up described in Problem 
� i�e�� V� and V� are the
subspaces of all diagonal matrices� the �rst	order optimality condition rF �P � � � at
any stationary point P is equivalent to the equality

X�X � diag�X�� � Y �Y � diag�Y �� � ��
��

where X and Y are related to P by ����� It is easy to check that the diagonal elements
involved in �
�� are given by

X
k ��i

x�ik �
X
k ��i

y�ik � �� i � �� � � � � n��
��

That is� �X� Y � is a limit point of the descent �ow ���� if and only if both X and Y

are diagonal matrices� Our di�erential equation ���� not only re	establishes the fact
that any symmetric	de�nite pencil can be simultaneously diagonalized� but also o�ered
a numerical way to accomplish this�

Application �� We give a little bit more details below for Problem � since it is of
particular interest and importance� The geometry of Problem � is sketched in Figure 

where we use the �	D coordinate axes represent the triplet �o�	diag�X�� diag�X�� Y � for
any matrix pair �X� Y � � R

n�n � R
n�n � The desirable state� represented by the bold

horizontal line in Figure 
� means that Y � �B and o�	diag�X� � o�	diag� �A�� The
minimization in ��� is equivalent to minimizing the distance between the two points P

and Q in Figure 
 while P stays in M�A�B� �not drawn� and Q stays in the desirable
state�

The desirable state can be characterized by selecting V� to be the a�ne subspace
of �A plus all diagonal matrices and V� � �B� To maintain the eigenvalue information�
an obvious choice would be letting A � diagf��� � � � � �ng and B � I� The projections
corresponding to this set	up imply that 	��X� � o�	diag�X � �A� and 	��Y � � Y � �B�

While any of the di�erential equations we proposed� say ����� is ready for integration�
there is a setback in using some of these equations � The resulting solution �ow may
stop at a local minimizer that does not meet the criteria of the desirable state� i�e�� the
resulting Y �t� is likely to vary in t whereas the second matrix involved in Problem � is
expected to be constantly �B�

To remedy the above fault� we may consider using the di�erential system �
�� with
initial values

P ��� � ULT�
��

�




off-diag(X-A)
~

B
~

(X,0)

(A,0)
~

diag(X-A)
~

Desirable State

Q

P =(X,Y)

(0,0)

Fig� �� Geometry of Problem ��

where �B � LLT is the Cholesky decomposition of �B and U is an arbitrary orthogonal
matrix� Corollary ��� guarantees that Y �t� � �B and hence 	��Y �t�� � � for all t� The
di�erential equation �
�� becomes

�P �
h
P���P �P T � diagf��� � � � � �ng

i
P����

where ���P � � o�	diag�P Tdiagf��� � � � � �ngP � �A�� The Lie bracket operation in ����
is simple because the second operant is a diagonal matrix� The resulting P �t� implicitly
de�nes a �ow �X�t�� Y �t�� on the shaded region represented in Figure 
� The �ow
starts from �X���� Y ���� � �Ldiagf��� � � � � �ngL

T � �B� and approximates the set of the
desirable state� Once the limit point P ��� of ���� is found� the diagonal matrix

D �� diag�X���� �A��

where X��� � P ���Tdiagf��� � � � � �ngP ���� is an optimal solution for Problem � in
the sense of least squares�

�� Numerical Experiment� In this section we report some of our numerical ex	
periments with the proposed methods� At present we are more concerned with the
dynamics of the �ows than the e�ciency of the programs� Thus we only consider using
general	purposed initial value problem software as the integrator� We have experi	
mented with both the FORTRAN code ODE ���
 and the MATLAB code ODE SUITE
���
� The results are similar� We shall only report experiments from ODE SUITE since
it is easier to manipulate matrix operations and to present the results graphically by
MATLAB�

There are two types of solvers� ode��� and ode��s� in the MATLAB ODE SUITE�
The code ode��� is a PECE implementation of Adams	Bashforth	Moulton methods

��



for non	sti� systems� The code ode��s is a quasi	constant step size implementation
of the Klopfenstein	Shampine family of the numerical di�erential formulas for sti� sys	
tems� The statistics about the cost of integration can be obtained directly from the
odeset option built in the integrator� More details of these codes can be found in the
document ���
� Again we have experimented with both solvers� We discover that when
the prescribed eigenvalues do not vary wildly� these two codes perform comparably� But
when the ratio of the eigenvalue with the largest magnitude to the smallest gets larger�
the ode��s becomes faster in terms of CPU time� We think a largely varying spectrum
perhaps has resulted in a sti� initial value problem�

In our experiments the tolerance for both absolute error and relative error is set
at ������ This criterion is used to control the accuracy in following the solution path�
The high accuracy we required here has little to do with the dynamics of the underlying
vector �eld� and perhaps is not needed in practical application� We examine the output
values at time interval of � or ��� and assume that the path has reached an equilibrium
point whenever the di�erence of the Lyapunov�s functions �
�� at two consecutive output
points is less than ������ So as to �t the data comfortably in the running text� we report
only the case n � � and display all numbers with �ve digits�

Example �� In our �rst experiment we report one pathological example where the
�ow P �t� of parameters converges to the boundary of singular matrices� and hence the
corresponding least squares problem is solved in an unusual yet interesting way�

Suppose we want to solve the generalized eigenvalue problem� Problem 
� for this
pair of matrices

A �
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by using the steepest descent �ow ���� with initial value

P ��� �



�������

����
��� �������� ���
��� �����
� �������
�������� ����
��� �����
� �������� ��������
���
��
� ������� ����
�
� ������� ��������
���

��� ����
�
 ��
�
�� �����
�� �������
�������� �������� �����
�� �������� ��
����



�������
�

When our code terminates suggesting that a convergence has been reached� we discover

�




0 5 10 15 20 25 30 35 40 45
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

t

F
(P

(t
))

Fig� �� History of F �P �t�� Example � when P �t� becomes singular�
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The fourth column of P ��� is in fact as small as

h
���
���
���������������������� ������������������
������������������������

iT
�

indicating that P ��� is nearly singular� Note that this result of near singularity does
not contradict with the condition �
�� where we argue that �X� Y � is a stationary point
of ��� if and only if both X and Y are diagonal matrices� Indeed� we obtain that

X � P ���TAP ��� � diagf��������������� ����
�� ��������������g�

Y � P ���TBP ��� � diagf������� ����
�� 
������ ������� 
���
�g�

We can see also from Figure � that this limit point P ��� is reducing the objective
function ���� to zero� This limit point would be a global minimizer were it not becoming
singular� The signi�cant di�erence here is that since P ��� is singular� the corresponding
limit point �X� Y � is no longer congruently equivalent to �A�B�� In particular� Y is now
only positive semi	de�nite and hence the information of generalized eigenvalues is lost�

Results like this might be disappointing� but is still of some theoretic value� It illus	
trates how congruence transformation in reducing the o�	diagonal elements of matrices

��



can go wrong� Our method may be far away from being practical per se among the
many other ways to solve the generalized eigenvalue problem� But readers are reminded
that the above illustration of solving Problem 
 by ���� is just one application of our
general approach�

It is worthy to remark on three possible remedies along our notion above�
�� The QZ �ow ��
 is another di�erential equation approach that is analogous to

the steepest descent �ow described in this paper� The QZ �ow� using orthogonal
equivalence transformations instead� does not su�er from the fault of becoming
singularity� The symmetric	de�niteness� however� is not maintained�


� Even with the descent �ow approach� the singularity could be avoided by chang	
ing the initial value P ��� and hence taking another path �and there are indeed
in�nitely many such initial guesses�� One could also use �ows de�ned by �
��
or �
�� to carry out the computation� but we hasten to point out that be	
cause either P �t�P �t�T or P �t�TP �t� is constant for all t in these cases� not all
symmetric	de�nite pairs �A�B� can be simultaneously diagonalized in this way�

�� Finally� it is possible to avoid the singularity by imposing penalties for singu	
larity in the objective function ���� like those done in ��� �� ��� 
�
 to avoid the
semi	de�niteness� This approach will eventually lead to the so called interior
point methods that have been studied and developed extensively�

Example �� In general� an inverse eigenvalue problem like Problem � can hardly
have an exact solution at all� So an approximate solution in the sense of least squares is
sometimes desirable� In this case the globally convergent �ow de�ned by ���� becomes
particularly meaningful� The �ow approach guarantees convergence to a local solution�

To illustrate how the dynamical system ���� behaves� we �rst generate test data
by considering a randomly generated symmetric	de�nite pair � �A� �B��

�A �
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We use its generalized eigenvalues

�� �A� �B� � f������� �������������
����
�
�����
���g

as the target spectrum in our experiment� We use �A � �A� diag� �A� and �B as the test
data for Problem �� Apparently� diag� �A� is one global solution�
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Fig� �� History of F �P �t�� Example � reaching a global solution�

Using di�erential system ���� with initial value
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which comes from the Cholesky decomposition of �B �see �
���� we calculate the �ow
P �t�� At convergence we convert P ��� into X��� and obtain

X��� �
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We note that the o�	diagonal elements of X��� agree with those of �A up to the inte	
gration error� Therefore the local solution diag�X���� we have found is also a global
solution� It is interesting to note that diag�X���� �� diag� �A�� indicating that Problem �
may have multiple solutions� The history of convergence is in Figure ��

Theoretically� it should that P �t�TP �t� � �B for all t� Numerical calculation intro	
duces errors� For this reason� we closely watch for the the values of

��P �t�� �� kP �t�TP �t�� �Bk�����
��



The second graph in Figure � indicates that the discrepancy between theoretical expec	
tation and numerical computation is within our tolerance�

Example �� We want to stress that the optimization problem ��� is non	linear
and non	convex� Generally� we cannot expect from any method the luck of hitting the
global minimizer of any non	linear or non	convex optimization problem by one random
starting point� One nice feature of our approach� however� is that we are guaranteed
to �nd a local minimizer regardless where we start and that we have plenty choices
of starting points� While it would be nicer to be able to foretell which point region
would serve better as a starting value than the other� the success of such an exploration
perhaps is too much to expect for due to the non	linear and non	convex nature of the
problem� On the other hand� since we literally can start from anywhere �e�g�� any
orthogonal matrix in �
���� we �nd it is possible� though not the best way� to �sh for a
�better� starting point by trials and errors� We obtain the following results from such a
procedure� We have performed many other tests �for the case where a global solution is
known to exist� and are always able to �nd the appropriate starting points after several
trials� We have written our code with the convenience of repeated experiments in mind
and will make it available upon request�

We report below a case that we think is more challenging than most of the other
cases we have tested� Suppose we repeat the experiment in Example 
 with the test
data

�A �
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and the target eigenvalues �� �A� �B� � f
����
� ����
�����
��
����������
�������g�
This time the ratio of the eigenvalues of the largest magnitude to the smallest is rela	
tively large and we expect di�culty�

Suppose we start with the upper triangular matrix in the Cholesky decomposition
of �B� i�e� suppose we choose U � I in �
��� At convergence we obtain

X��� �



�������


����� ������� ������ ������ ��
���
������� �������� ������� ������ �
�����
������ ������� ���
��� 
����
 ���
���
������ ������ 
����
 ���
�� �������
��
��� �
����� ���
��� ������� �����




�������
�

Note that the o�	diagonal elements of X��� are close� but not within the expected
integration error� to those of �A� From Figure � we are convinced that we have reached

��
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Fig� �� History of F �P �t�� in Example � reaching a local solution�

only a local solution� although that solution is quite close to a global solution� We have
checked that ��X���� �B� agrees with �� �A� �B� up to the integration error�

This example illustrate another di�culty associated with Problem �� We know
that in Problem � only the diagonal elements of �A are allowed to vary� The o�	diagonal
elements of �A are not supposed to change� but we �nd that is not the case in our X����
Suppose we project X��� down to the a�ne subspace of �A plus all diagonal matrices
to maintain the o�	diagonal elements� The eigenvalues of the corresponding projected
pair are given by

��o�	diag� �A� � diag�X����� �B� � f
������ �����
����

������������
�������g�

These values again are close but not within the integration error to the desired tar	
get eigenvalues� In other words� this example demonstrates a case where the spectral
constraint and the structural constraint cannot be satis�ed simultaneously by a local
solution�

Suppose we change the starting value to

P ��� �
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which is obtained by multiplying a speci�c orthogonal matrix �acquired by random
trials� to the upper triangular matrix in the Cholesky decomposition of �B �see �
��� �

��
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Fig� �� History of F �P �t�� in Example � reaching a global solution�

It turns out that we are able to �nd a global solution

X��� �
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that satis�es both the spectral and the structural constraints� The history of integration
is plotted in Figure �� The much longer length of integration required for convergence
perhaps is due to the sti�ness�

�� Conclusion� We have proposed a general framework for the least squares ap	
proximation of symmetric	de�nite pencils subject to generalized eigenvalue constraints�
We have illustrated how this approach can be adapted to di�erent applications� in	
cluding the inverse generalized eigenvalue problems� Although Problem 
 has already
enjoyed e�cient and reliable numerical algorithms� There are few methods available
for Problem � and Problem �� Our approach uni�es these di�erent problems under the
same framework� The versatility of our method by specifying V� and V� seem quite
interesting�

We have experimented with several descent �ows proposed in this paper by us	
ing available ordinary di�erential equation solvers� Our methods guarantee the global
convergence to a local solution� By changing integral paths� a global solution some	
times can be reached� It remains to be studied whether a special	purpose integra	
tor implementation can be developed to make our approach more e�cient�
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