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Abstract. A general framework for the least squares approximation of symmetric-definite pencils
subject to generalized eigenvalues constraints is developed in this paper. This approach can be adapted
to different applications, including the inverse eigenvalue problem. The idea is based on the observation
that a natural parameterization for the set of symmetric-definite pencils with the same generalized
eigenvalues is readily available. In terms of these parameters, descent flows on the isospectral surface
aimed at reducing the distance to matrices of the desired structure can be derived. These flows can be
designed to carry certain other interesting properties and may be integrated numerically.
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1. Introduction. Let A and B be two square matrices of size n. A matrix pencil
of A and B is a family of matrices A — AB, parameterized by A € C. Elements in the
set o(A, B) defined by

(1) 0(A,B) :={z € C|det(A —2B) =0}

are called the generalized eigenvalues of the pencil. It is easy to see that there are
n generalized eigenvalues if and only if rank(B) = n. If B is rank deficient, then
o(A, B) may be finite, empty, or infinite. Generalized eigenvalues are preserved under
equivalence transformations, i.e., o(A4, B) = o(Y?AX, Y7 BX), provided X and Y are
nonsingular matrices and Y denotes the conjugate transpose of Y.

In this paper we shall limit our discussion to R**", the Euclidean space of all n x n
real-valued matrices equipped with the Frobenius inner product

For convenience, we also introduce the notation G(n) and s(n) representing, respec-
tively, the general linear group of all nonsingular matrices and the linear subspace of all
symmetric matrices in R"*™. It is frequently the case in practice, and will be assumed
henceforth, that A is symmetric and B is symmetric and positive definite. Pencils
of this variety are referred to as symmetric-definite pencils [7]. For convenience, the
corresponding pair of matrices are referred to a symmetric-definite pair.
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Obviously A—\B is symmetric-definite if and only if PT AP—\PT BP is symmetric-
definite for all P € G(n). This congruence transformation naturally delineates a “pa-
rameterization” for the set

(3) M(A, B) := {(PTAP, PTBP) € ™" x R"™"|P € G(n)}.

We shall show that M(A, B), consisting of all symmetric-definite pairs with the same
generalized eigenvalues o(A, B), is made of smooth submanifolds in R**™ x R"*™.

This paper concerns the construction of a symmetric-definite pencil satisfying si-
multaneously conditions on its structure and spectrum. We cast the problem as a task
of finding the shortest distance between the set of structured matrices and the isospec-
tral set M(A, B), where (A, B) is the prescribed spectrum. The approximation is
measured by the Frobenius norm over the product space s(n) x s(n), so a solution is
best in the sense of least squares.

More specifically, let V;, i = 1, 2, denote either a single matrix or an affine subspace
in s(n) whose elements, qualified by satisfying certain specified conditions on their
structure, are being approximated. Define P : s(n) x s(n) — V; x V4 by

(4) P(X,Y) := (Pi(X), Po(Y))

where P; and P, denote, respectively, the projections from s(n) onto V; and V5 with
respect to the inner product (2) . In case V; is a singleton, define P;(X) = V;. The
approximation is considered through the optimization problem:

(5) min

1
—I(X,Y) = P(X, V)|
(XaY)GM(A,B)QH( ) =PI

i.e., the part of (X,Y") that does not carry the desirable structure is being minimized.
We emphasize here that the desirable structure in V; can be defined independently of
that in V5.

One important point should be clarified before we move on to the discussion of
solving (5). We mention that there are two constraints, the spectrum and the structure,
imposed upon an ideal problem. In practice, it may occur that one of the two constraints
should be more critical than the other due to, for example, the physical realizability. On
the other hand, there are also situations where one constraint could be more relaxed
than the other due to, for example, the physical uncertainty. Structural constraint
usually is imposed due to the physical realizability. Spectral constraint often carry
some physical uncertainty. In reality, it is often difficult to maintain both the spectral
constraint and the structural constraint concurrently. When these constraints cannot
be satisfied simultaneously, a least squares solution becomes the next best thing we can
hope for. Depending upon which constraint is to be enforced explicitly, we would have
different ways of defining a least squares approximation. The situation in (5) is such
that while the pair of matrices (X,Y") vary among the isospectral surface M(A, B) and
hence keep the spectrum o(A, B), the discrepancy between (X,Y’) and the desirable
structure is minimized. Another situation, which is not addressed in this paper, is to
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seek for a symmetric-definite pair of matrices (X,Y’) in the space V; x V5 (and hence
the structure is maintained) so that the discrepancy between the two sets o(X,Y") and
o(A, B) is minimized. At the first glance, these two situations appear to be quite
different. In particular, a parameterization for symmetric-definite pairs of matrices
with structure specified by V; and V5 is difficult, if not impossible, to obtain. However,
it is remarkable that in certain special circumstances these two seemingly unrelated
problems can be shown to be equivalent. Omne such a case is the inverse ordinary
eigenvalue problem that has already been discussed in [2]. In this paper, we shall focus
on (5) only.

The choices of V; in the set-up make the problem (5) quite versatile in application.
We mention three immediate applications below. We shall come back in a later part
of this paper to explain more specifically how these problems can be solved by our
technique.

PROBLEM 1. Given a symmetric-definite pair of matrices (121, B) and real numbers
A,y A, find the least squares approzimation (X,Y) to (A, B) such that (X,Y) is
still symmetric-definite but o(X,Y) = {\,..., A}

A question that resembles Problem 1 but in the context of ordinary eigenvalue
problems, i.e., when Y = B = I, can be answered by the Wielandt-Hoffman theorem
[4, 10]. For generalized eigenvalue problems, however, the perturbation theory is much
more complicated. See, for example, [17, Chapter VI, Section 3]. Our approach, by
taking A = diag{\,...,\,} and B = I in the definition of the isospectral surface
M(A,B), and V} = A and Vi = B in the definition of the projection P, offers an
interesting and easy way to solve Problem 1.

PROBLEM 2. Given a symmetric-definite pencil A — AB, find all its generalized
eigenvalues.

Among the well-known numerical methods for the symmetric (ordinary) eigenvalue
problem, one idea of Jacobi is to systematically reduce the norm of off-diagonal elements.
A similar idea can be applied to Problem 2 if we take V; and V5 to be the subspace
of all diagonal matrices. In this way, the minimization in (5) amounts to reducing the
off-diagonal elements of both X and Y simultaneously by congruence transformation.
We shall see that a simple analysis on the stationary points of (5) re-establishes the
well-known fact that any symmetric-definite pair can be simultaneously diagonalized.

PROBLEM 3. Given a symmetric-definite pair (121, B) and values A1, ..., \,, find a
diagonal matriz D so that o(A+ D, B) = {\y,..., A\ }.

Generalized eigenvalue problems arise, for example, when a Sturm-Liouville prob-
lem is discretized by high-order implicit finite difference schemes [14]. An inverse prob-
lem, such as Problem 3, is then to reconstruct a certain physical parameter from the
natural frequencies. Research on inverse (ordinary) eigenvalue problems has been exten-
sive and fruitful. See, for example, [8] and the references contained therein. Obviously,
if B=LL" is the Cholesky decomposition of B, then Problem 3 can be reformulated
as finding D such that o(L~"(A+ D)L=",T) = {)y,..., A}, which becomes an inverse
ordinary eigenvalue problem. On the other hand, we may choose, among several op-
tions to be discussed in the sequel, V; to be the affine subspace of A plus all diagonal
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matrices, Vo = B, A = diag{\1,..., A}, and B = I. Our approach avoids the inversion
of any matrix and guarantees a least squares solution even if an exact solution does not
exist.

The multiplicative inverse eigenvalue problem is another important class of prob-
lem in applications. The question centers around finding a diagonal matrix D! so that
the “preconditioned” matrix D~ 'M possesses a specialized spectrum. A multiplicative
inverse eigenvalue problem can be formulated as an inverse generalized eigenvalue prob-
lem M — AD in a setting similar to Problem 3 except the first entry M is held constant
instead.

Solving (5) by standard techniques for constrained optimization problems is not
easy because of the matrix structure involved. The main point of this paper is to
cultivate descent flows on M (A, B) for solving (5) in general. Our approach offers a
new channel for tackling generalized spectrally constrained problems. The scheme of
following flows in the open set G(n) has a similar spirit of an interior-point method
[9, 19], an area that has attracted enormous attention in recent years. However, our
methods differ from the traditional interior-point methods in several aspects: Neither
our objective function nor our feasible set is convex [1, 13, 18], and for the most part
of our flows the dynamics is directed by the objective value rather than the penalty
function [20]. We shall comment on this connection again at the end of Example 1 in
§5.

This paper is organized as follows: We begin in §2 to study the geometry of the
isospectral set M(A, B). We shall show by the algebraic curve theory that M(A, B) is
a union of smooth manifolds. We even can count its dimension in the generic case. In §3
we outline a framework from which specific differential equations can be designed based
on needs or circumstances. The differential equations produce descent flows for (5).
Our approach is flexible, yet it offers some theoretical insights as well as ready-made
numerical algorithms. In an earlier paper [4], projected gradient flows were derived for
least squares approximations with ordinary spectral constraints. Our development here
is similar, except that no projection of the gradient is needed this time because G(n)
itself is an open set in R**™. On the other hand, it will become clear in our study that
in order for a flow to maintain a certain additional property, such as being defined on
M(A, B) without reference to its parameterization, the descent direction somehow has
to be a modification of the gradient. This point will become manifest in §3. We highlight
some specific applications in §4. Finally in §5 we report some numerical experiments.

2. Isospectral Surface. By flows we mean integral curves of a differential system.
To define flows on the set M(A, B), we have to be certain first of all that M(A, B) is
made of smooth entities. Toward this, we establish two results in this section concerning
the topology of M(A, B).

THEOREM 2.1. Given any symmetric-definite pair of matrices (A, B), the set
M(A, B) consists of all symmetric-definite pairs with generalized eigenvalues o(A, B).

Proof. Tt is clear that if (X,Y) € M(A, B), then X —\Y is symmetric-definite and
o(X,Y) = o(A, B). It is known that any symmetric-definite pencil can be simultane-
ously diagonalized by congruence transformations. Therefore, if a symmetric-definite
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pencil X — AY has the same generalized spectrum o(A, B), then X — AY is congruent
to diag(o(A, B)) — AI and hence to A — AB. This proves the assertion. 0

The definition (3) may be thought of as an algebraic way to parameterize the set
M(A, B). Note that the parameters come from G(n) which is an open set in R"*".
The parameterization implies, therefore, that M(A, B) can be a geometric entity of
dimension at most n%. More precisely, we have the following theorem.

THEOREM 2.2. For any given symmetric-definite pair (A, B), M(A, B) is a dis-
joint union of smooth manifolds, each of which has only finitely many components and
has dimension at most n? in R™™ x R"¥".

Proof. Consider the vector ¢(X,Y) :=[c1(X,Y),...,c,(X,Y)]T whose components
are defined by the coefficients in the polynomial

det(X —2Y) = (—1)"det(Y)2" + nz_:lcn,i(X, Y)z'

1=0

Clearly each ¢ (X,Y") is a polynomial in the entries of X and Y. Suppose o(A4, B) =
{A1,..., A\n}. Consider the algebraic variety

(6) VAL, ) ={(X,Y) € s(n) x s(n)|c(X,Y) = (=1)"det(Y)v}

where v := [y1, ..., )" with v, == (=1)* ;o i \iy - A, It follows from Whitney’s
stratification theorem [12, Theorem 2.3 and 2.4] that V(Ay,..., \,;) can be expressed
as a finite disjoint union of smooth manifolds, each of which has only finitely many
components. Observe that

M(A,B) = V(\, ..., \) N (s(n) x C(n))

where C(n) is the cone of symmetric and positive definite matrices in R**". Since C(n)
obviously is a submanifold in s(n), the assertion follows. 0O

The gauge n? of the dimension is not necessarily an overestimate. We can maintain
a little bit more precision on the dimensions of submanifolds involved in Theorem 2.2.
A somewhat related discussion can be found in [6]. Let

= m rank de
p= (X,Y)ev?ff ..... An) A X, Y) |~
Define
oc
(7) N, ) ={(X,Y) € V(A ..., \y)|rank la(X, V) < p}.

Whitney’s theorem affirms that V(A1,..., A,) = N (Aq,...,\,) is a smooth manifold of

dimension n(n+1)—p. Furthermore, because the rank deficient condition in (7) imposes

extra polynomial equations on (X,Y), the set N(A1,...,\,) itself, if not empty, is a

union of manifolds with lower dimensions. It follows that V(A1,..., A,) =N (A1, ..., A\y)

is the largest manifold component of V(\,...,\,) in the sense that N (Ay,..., \,) is
)



nowhere dense and has measure zero relative to V(Ay, ..., A,;). Observe that involved in
(6) are n(n+1) unknowns and n equations, so it must be that p < n. It follows that the
dimension of V(A1,...,A,) = N (A, ..., \,) is at least n?. Together with Theorem 2.2,
we conclude that if

(8) M(A,B)NN(Aq, ..., ) =0,

then M(A, B) is a smooth manifold of dimension exactly n? Sard’s theorem [11]
guarantees that for almost all choices of (A4, B), the condition (8) holds. In particular,
it can be shown that (8) holds if (A, B) has distinct generalized eigenvalues. The above
result on the parameterization and dimensionality for isospectral symmetric-definite
pairs of matrices seems to be known the first time. Though the result may not appear
too surprising, the way it is obtained by utilizing the Whitney’s theorem is of interest
in its own right.

We stress before we move on to describe flows on M (A, B) that for our application it
is not essential whether the set M (A, B) itself is a one-piece manifold. The differentiable
flows that will be defined later automatically stay on smooth components of M (A, B).

We conclude this section by one example showing that the inverse eigenvalue prob-
lems for matrix pencils could be quite intricate. We show that in special circumstances
M(A, B) may be a proper subset of N'(A\1,...,\,). Consider the case when n = 2,
A=0and B=1. Then M(4, B) = {(0, PTP)|P € G(n)}. Though G(2) has dimen-
sion 4, M(A, B) obviously has dimension 3. It is interesting to note that for a pair
X = (z45) and Y = (y;;) to be in V(0,0) a necessary condition is that the entries satisfy
the equations:

To1 = 12,
Y21 = Y12,
(T12)y12 £ /Yt —
SgN(x12)yY12 Yi2 — Y11Y22
T = |3U12| )
Y1
=y + 2T12y10
Too = ’

Y22

provided y;1y22 # 0. There are four free parameters in defining V(0,0). However, if YV’
is required to be positive definite, then X = 0 is the only possible solution.

3. Descent Flows. The parameterization (3) provides grounds for maneuver on
M(A, B) to reduce the objective value in (5). In this section, we discuss how to take
advantage of this parameterization to formulate descent flows.

We start with working within the parameter space G(n). For convenience, we
introduce the abbreviation:

() { ai1(P) = PTAP —P(P"AP)

ax(P) := PTBP — Py(PTBP) °



when the symmetric-definite pair (A, B) is fixed. The objective function in (5) is equiv-
alent to the function F': G(n) — R where

(10) F(P) = % ({(aa(P), a1 (P)) + (a2(P), a2(P))) -

The following result is critical in our development.
THEOREM 3.1. The gradient VF of F is given by

(11) VF(P)=2{APa;(P)+ BPay(P)}.

Proof. Observe that the Fréchet derivative of F' at P acting on H € R"*" can be
calculated as follows:

F'(P)H = {(a\(P),H"AP —P;(PTAP)H" AP + P"AH — P{(P"AP)P" AH)
+({az(P), H'BP — Py(P"BP)H"BP + P"BH — Py(P"BP)P"BH)
= 2{(a:(P), P"AH — P{(PTAP)P" AH)
+ (a2(P), P"BH — Py(P" BP)P"BH)}
= 2{(a:(P), P"AH) + (02(P), P" BH)}
(12) = 2(APo(P) + BPay(P), H).

In the above, the second equality is due to the symmetry of the matrices involved.

The third equality follows from the fact that the action of P! (at PTAP and P"BP,

respectively) on any point (PTAH and PTBH, specifically) resides in the tangent

space of V; whereas the range of «; is perpendicular to the tangent space of V;. The last

equality is obtained by utilizing the adjoint property of the Frobenius inner product. It

follows from (12) that the gradient VF of F' may be interpreted as asserted. O
Obviously, the differential equation

(13) P(t) := —VF(P(t)),

where P means the derivative of P with respect to a certain artificial parameter ¢, defines
the steepest descent flow P(t) on G(n) for F. It should be cautioned however that the
open set G(n) has boundary made of all nxn singular matrices. The differential equation
(13) alone cannot guarantee that the flow P(¢) will stay away from the boundary of
singular matrices. The first example in §5 clearly illustrates this occurrence.

Through the parameterization relationship

{X (t) = P(t)TAP(t)

(14) Y(t) = P(t)"BP(t),

each flow in the parameter space G(n) has a corresponding flow on M(A, B). Related
to the flow P(t) defined by (13), for example, is the flow X (¢) defined by :

X = —2{o(P)P"A’P + ay(P)P"BAP
7



(15) +P"A’Poy(P) + P" ABPay(P)}
= —2{B(X)X(P"P)'X + B,(Y)YV(P"P)'X
(16) +X(PTP) X B1(X) + X(PTP) 'Y By(Y)

where we have denoted

17) B(Y) = an(P)
to emphasize the dependence of the system on the variables X and Y. A similar flow
Y (t) can also be defined.

Neither (15) nor (16) is useful in that the differential system depends explicitly on
the parameterization variable P. That dependence means that to integrate (15) or (16)
one must also integrate (13). This is a waste since the parameter flow P(t) needs to be
integrated in any case. It perhaps would be more economical to obtain X (¢) and Y ()
directly from (14).

Note also that the system (13) defines the steepest descent flow. There are sit-
uations when one prefers to relinquish the steepest descent property in exchange for
maintaining other attributes. In the following we introduce several other descent flows
for this purpose.

We first illustrate a situation where the description of X (¢) and Y (¢) can be implicit
in the parameter P.

COROLLARY 3.2. The flow defined by

(18) P:= —%PPTVF(P).

{51(X) = o(P)

s a descent flow.
Proof. Observe that

(VF(P),-PP"VF(P)) = —(P"VF(P),P"VF(P)) <0

and that the equality holds only when VF(P) = 0. Thus, the differential system (18),
though not the steepest one, continues to define a descent flow for F. O

Upon substitution, the corresponding flow (X (¢),Y(¢)) on M(A, B) is defined by
the differential system:

" X = —((xm)T+xw)
(19) Vo= (W) +yw)
with

(20) W= X0(X) +YB(Y).

Note that the differential system (19) is autonomous in X and Y, and makes no reference
to the variable P. The computation of P(t) as well the troublesome matrix inversion
such as (PTP)~! in (16) are thus avoided.
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M(A, B)

All critical poiints

Two special critical points

FiG. 1. Geometry of a pseudo solution.

It is worth noting that the critical points of the differential system (18) are exactly
the same as the stationary points of the optimization problem (5), provided that crit-
ical point is nonsingular. The optimization problem (5), therefore, can be solved by
integrating (19) from a suitable starting point, say (X (0),Y(0)) = (4, B), until a limit
point is located.

The simplest case of (19) when n = 1 is rather illuminating. Corresponding to
a given pair of numbers (A, B) with B > 0, the set M(A4,B) = {(X,Y) € R*|X =
AP?)Y = BP? P # 0} is an half array that emanates from but does not include
the origin in the direction (A, B). In particular, M(A, B) is an unbounded open set.
Suppose we want to solve Problem 1 mentioned in §1. The corresponding differential
system of (19) becomes

1) {X‘:-zwnx—@+yw—§»
Y = 2¥(X(X-A)+Y(Y -B)).

All critical points of (21) are included in the set
{(X.Y)X(X - A) +Y(Y - B) =0},

which is the dotted circle represented in Figure 1. But relative to M(A, B) where the
flow starting from X (0) = A and Y (0) = B resides, only the two critical points,

C(CA+B) CA+B
(22) (mmam1< oo ’I+02>
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with C' := AB~', are most pertinent. Consider the case when the target point (A, B)
is located in the [ower half plane of the line that passes through the origin and is
perpendicular to the array M(A, B) (see the shaded region in Figure 1.) Obviously the
shortest distance from (A, B) to M(A, B) is attained only at the origin, but that point
does not belong to M(A, B). Thus, Problem 1 should have no true solution is this case.
Nonetheless, the flow defined by (21) stays on the half array and indeed moves toward
the origin. In this way, we end up with a pseudo solution in the sense that the solution
is still a least squares approximation but that point is not from within M(A, B). On
the other hand, the second critical point (22) in this case is away from the set M (A, B)
by a positive distance and hence can never be realized. We shall refer back to (21) in
§4 for further discussion of higher dimension case.

We next mention two more descent flows that possess some additional interesting
properties.

COROLLARY 3.3. The differential equation

(23) P= —%P {PTVF(P) - VF(P)"P}
defines a descent flow. Furthermore,

P(t)P(t)" = constant.

Proof. From the fact that
(VF(P),P{P"VF(P) - VF(P)'P}) = (P"VF(P),P"VF(P) - VF(P)"P)
and the equality that

(M, M = M") =3 (my; —myi)* >0
J#i
for any square matrix M = (m;;), it follows that the flow P(¢) enjoys the descent
property. Furthermore, because the quantity in the braces of (23) is skew-symmetric,
it is easy to see that PPT + PPT = 0. Thus P(t)P(t)" = P(0)P(0)" for all t. O
The corresponding flow on M(A, B) are integral curves of the double-bracket sys-
tem:

1) { X o= X [XP(X0)]+ [V P

Y = Y, [X, Pu(X)] + Y, Po(Y)]]

where [X,Y] := XY — Y X denotes the Lie bracket. Note that the system (24) is
autonomous. Note also that if P(0) = I from the beginning, then P(t) remains orthog-
onal for all £. Our notion here generalizes that of orthogonal similarity transformation
discussed in [5].

COROLLARY 3.4. The differential equation

(25) P .= —% {VF(@P)P" - PVF(P)"} P
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15 a descent flow. Furthermore,

P(t)'P(t) = constant.

Proof. The proof is similar to Corollary 3.3. 0O

Although it looks similar to (23), this new system (25) by no means is a trivial
alternation (say, by taking the transpose) of (23). In particular, it can be checked by
substitution that the corresponding differential equation for X (¢) and Y'(¢) depends
explicitly on the variable P in (25), a predicament that does not occur in (24). The
system (25) is especially useful for attacking problems where the corresponding flow
Y'(t) is expected to be constant. Problem 3 is one such instance. We shall be more
specific on its application in the next section.

We conclude this section with one remark on the asymptotic behavior of the flows.

THEOREM 3.5. For all the flows P(t) defined above, the corresponding (X (t), Y (t))
converges. Generically, the limit point is a stationary point, possibly on the boundary
of M(A, B), of (5). The non-generic exception is when the product PYV F(P) in (23)
or VF(P)PT in (25) is symmetric at the limit point.

Proof. Along any solution (X (¢),Y (¢)) the function

(26) G(t) = F(P(t)) = %{wl(X(t)),ﬂl(X(t)D + (B(Y'(2)), B2(Y ()}
satisfies
G(t) = (VF(P(t)), P(t)) < 0.

Furthermore, G = 0 only when VF(P) = 0 or P = 0. The latter case generically implies
also VF(P) = 0. Thus G(t) is monotonically decreasing until a stationary point of (5)
is found. O

4. Applications. Our differential system approach not only can be used as a
convenient algorithm for finding a least squares solution, but also offers some theoretical
insights into the problem. In this section we explain more specifically how our approach
can be applied to solve the three problems described in §1. We discuss the applications
case by case. Further numerical experiment will be reported in §5.

APPLICATION 1. We point out earlier that there is no easy generalization of the
Wielandt-Hoffman theorem for Problem 1. To demonstrate the complexity of Problem 1
in general, we consider a very special case when both target matrices A and B are
diagonal. Our point by this overly simplified problem is to illustrate how complicated
the stationary points for Problem 1 could be. Suppose that the differential equation
(19) (which is based on the descent flow (18)) is used to solve the problem from the
initial values X(0) = A = diag{A,...,\,} and Y(0) = B = I. Recall that the
critical points of the differential system are exactly the same as the stationary points of
the problem. By construction we know the solution flow (X (¢),Y(¢)) of (19) remains
diagonal. The differential system, being un-coupled into n pairs (x;;, i), i = 1,...n,
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can be represented exactly by (21) if all symbols there are interpreted as (diagonal)
matrices. Observe that the pairs (x;;(t),y;;(¢)) are independent of each other and may
converge to limit points of different types (See (22)). In particular some of the pairs,
as pointed out earlier, may converge to an infeasible limit point (0,0). This simple un-
coupled system highlights the potential difficulty for general A and B where these events
are intertwined together and hence make Problem 1 more complicated. Regardless of
this complexity, our differential equation offers an easy-to-use numerical method for
solving this type of problem.

APPLICATION 2. Using the set-up described in Problem 2, i.e., V7 and V5 are the
subspaces of all diagonal matrices, the first-order optimality condition VF(P) = 0 at
any stationary point P is equivalent to the equality

(27) X (X —diag(X)) + Y (Y —diag(Y)) =0

where X and Y are related to P by (14). It is easy to check that the diagonal elements
involved in (27) are given by

(28) Sa+> yh=0,i=1,...,n
k#i k#i

That is, (X,Y) is a limit point of the descent flow (19) if and only if both X and YV
are diagonal matrices. Our differential equation (19) not only re-establishes the fact
that any symmetric-definite pencil can be simultaneously diagonalized, but also offered
a numerical way to accomplish this.

APPLICATION 3. We give a little bit more details below for Problem 3 since it is of
particular interest and importance. The geometry of Problem 3 is sketched in Figure 2
where we use the 3-D coordinate axes represent the triplet (off-diag(.X), diag(X),Y) for
any matrix pair (X,Y) € R*™™ x R"*". The desirable state, represented by the bold
horizontal line in Figure 2, means that ¥ = B and off-diag(X) = off-diag(A). The
minimization in (5) is equivalent to minimizing the distance between the two points P
and Q in Figure 2 while P stays in M(A, B) (not drawn) and Q stays in the desirable
state.

The desirable state can be characterized by selecting V; to be the affine subspace
of A plus all diagonal matrices and V3 = B. To maintain the eigenvalue information,
an obvious choice would be letting A = diag{\;,..., A\,} and B = I. The projections
corresponding to this set-up imply that 3 (X) = off-diag(X — A) and 3,(Y) =Y — B.
While any of the differential equations we proposed, say (19), is ready for integration,
there is a setback in using some of these equations — The resulting solution flow may
stop at a local minimizer that does not meet the criteria of the desirable state, i.e., the
resulting Y (¢) is likely to vary in ¢ whereas the second matrix involved in Problem 3 is
expected to be constantly B.

To remedy the above fault, we may consider using the differential system (25) with
initial values

(29) P0)=UL"
12
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off-diag (X-A)

FiG. 2. Geometry of Problem 3.

where B = LL” is the Cholesky decomposition of B and U is an arbitrary orthogonal
matrix. Corollary 3.4 guarantees that Y (¢) = B and hence 35(Y(¢)) = 0 for all ¢. The
differential equation (25) becomes

(30) P = [Poy(P)P", diag{\1, ..., \}| P

where oy (P) = off-diag(P"diag{ )1, ..., A} P — A). The Lie bracket operation in (30)
is simple because the second operant is a diagonal matrix. The resulting P(t) implicitly
defines a flow (X (¢),Y(¢)) on the shaded region represented in Figure 2. The flow
starts from (X (0),Y(0)) = (Ldiag{\i,..., \,} LT, B) and approximates the set of the
desirable state. Once the limit point P(00) of (30) is found, the diagonal matrix

D := diag(X (c0) — A),

where X (00) = P(oo)Tdiag{)\,..., \,}P(00), is an optimal solution for Problem 3 in
the sense of least squares.

5. Numerical Experiment. In this section we report some of our numerical ex-
periments with the proposed methods. At present we are more concerned with the
dynamics of the flows than the efficiency of the programs. Thus we only consider using
general-purposed initial value problem software as the integrator. We have experi-
mented with both the FORTRAN code ODE [15] and the MATLAB code ODE SUITE
[16]. The results are similar. We shall only report experiments from ODE SUITE since
it is easier to manipulate matrix operations and to present the results graphically by
MATLAB.

There are two types of solvers, ode113 and odel5s, in the MATLAB ODE SUITE.
The code odel13 is a PECE implementation of Adams-Bashforth-Moulton methods
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for non-stiff systems. The code odel5s is a quasi-constant step size implementation
of the Klopfenstein-Shampine family of the numerical differential formulas for stiff sys-
tems. The statistics about the cost of integration can be obtained directly from the
odeset option built in the integrator. More details of these codes can be found in the
document [16]. Again we have experimented with both solvers. We discover that when
the prescribed eigenvalues do not vary wildly, these two codes perform comparably. But
when the ratio of the eigenvalue with the largest magnitude to the smallest gets larger,
the odel5s becomes faster in terms of CPU time. We think a largely varying spectrum
perhaps has resulted in a stiff initial value problem.

In our experiments the tolerance for both absolute error and relative error is set
at 107'2. This criterion is used to control the accuracy in following the solution path.
The high accuracy we required here has little to do with the dynamics of the underlying
vector field, and perhaps is not needed in practical application. We examine the output
values at time interval of 1 or 10, and assume that the path has reached an equilibrium
point whenever the difference of the Lyapunov’s functions (26) at two consecutive output
points is less than 1071, So as to fit the data comfortably in the running text, we report
only the case n = 5 and display all numbers with five digits.

Example 1. In our first experiment we report one pathological example where the
flow P(t) of parameters converges to the boundary of singular matrices, and hence the
corresponding least squares problem is solved in an unusual yet interesting way.

Suppose we want to solve the generalized eigenvalue problem, Problem 2, for this
pair of matrices

1.0004  0.1575  0.2394  2.5284 —0.4716 |
0.1575 0.2913 —1.0421  1.8527  0.4591
A = 0.2394 —1.0421 —-2.2831 —-0.0859 —-2.2171 |,
25284  1.8527 —0.0859 —2.5200 —1.1272

| —0.4716  0.4591 —-2.2171 —-1.1272  1.1959 |

6.8747 —1.6174 —1.3123  4.2938  0.5968 ]
—1.6174  6.8615 1.2753 —2.2454 —5.3684
B = —1.3123  1.2753  2.8018 1.2469  0.6560
4.2938 —2.2454  1.2469  5.1703  1.9403
0.5968 —5.3684  0.6560  1.9403 10.6641 |

by using the steepest descent flow (13) with initial value

—0.62735 —0.04006  0.42746  0.63529  0.13607
—0.41918 —0.12833  0.34523 —0.51495 —0.65074
P(0) = | —0.23520  0.77311 —0.42324  0.18008 —0.36799
—0.22678  0.49212  0.28205 —0.51204  0.60387
—0.56918 —0.37689 —0.66288 —0.19137  0.24073

When our code terminates suggesting that a convergence has been reached, we discover

14
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Fia. 3. History of F(P(t)) Example 1 when P(t) becomes singular.

that

—0.0243 —-0.1109  0.2316 —0.0000  0.1459
—0.1314  0.0106  0.1922 —0.0000 —0.3265
P(o0) = 0.0860  0.2712  0.0432  0.0000 —0.2058
-0.0279  0.2026  0.3343 —0.0000  0.2038
—0.0979  0.0565 —0.2861 —0.0000  0.0261

The fourth column of P(oc0) is in fact as small as

T
[—0.20072><10_13, —0.13475x107'2,0.94951x107'3, —0.32969x10~'3, —0.97683x10713 | ',

indicating that P(c0) is nearly singular. Note that this result of near singularity does
not contradict with the condition (28) where we argue that (X,Y") is a stationary point
of (5) if and only if both X and Y are diagonal matrices. Indeed, we obtain that

X = P(c0)TAP(0) = diag{0.0800, —0.4773,0.7925,0.0000, —0.4043},
Y = P(c0)"BP(c0) = diag{0.0635,0.6128, 2.4657,0.0000, 2.1823}.

We can see also from Figure 3 that this limit point P(co) is reducing the objective
function (10) to zero. This limit point would be a global minimizer were it not becoming
singular. The significant difference here is that since P(00) is singular, the corresponding
limit point (X,Y") is no longer congruently equivalent to (A, B). In particular, Y is now
only positive semi-definite and hence the information of generalized eigenvalues is lost.

Results like this might be disappointing, but is still of some theoretic value. It illus-
trates how congruence transformation in reducing the off-diagonal elements of matrices
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can go wrong. Our method may be far away from being practical per se among the
many other ways to solve the generalized eigenvalue problem. But readers are reminded
that the above illustration of solving Problem 2 by (13) is just one application of our
general approach.

It is worthy to remark on three possible remedies along our notion above:

1. The QZ flow [3] is another differential equation approach that is analogous to
the steepest descent flow described in this paper. The QZ flow, using orthogonal
equivalence transformations instead, does not suffer from the fault of becoming
singularity. The symmetric-definiteness, however, is not maintained.

2. Even with the descent flow approach, the singularity could be avoided by chang-
ing the initial value P(0) and hence taking another path (and there are indeed
infinitely many such initial guesses.) One could also use flows defined by (23)
or (25) to carry out the computation, but we hasten to point out that be-
cause either P(t)P(t)T or P(t)TP(t) is constant for all ¢ in these cases, not all
symmetric-definite pairs (A, B) can be simultaneously diagonalized in this way.

3. Finally, it is possible to avoid the singularity by imposing penalties for singu-
larity in the objective function (10) like those done in [1, 9, 19, 20] to avoid the
semi-definiteness. This approach will eventually lead to the so called interior
point methods that have been studied and developed extensively.

Example 2. In general, an inverse eigenvalue problem like Problem 3 can hardly
have an exact solution at all. So an approximate solution in the sense of least squares is
sometimes desirable. In this case the globally convergent flow defined by (30) becomes
particularly meaningful. The flow approach guarantees convergence to a local solution.

To illustrate how the dynamical system (30) behaves, we first generate test data
by considering a randomly generated symmetric-definite pair (A, B):

[ —2.8645 1.8576 —2.1532  0.6710  0.5092 ]
1.8576 —0.1855  0.5149  2.1096 —1.3318
A = —2.1532  0.5149  1.3880 —0.4591  0.3603 |,
0.6710  2.1096 —0.4591 —4.3183 —1.2334
0.5092 —1.3318 0.3603 —1.2334 —1.8954 |

6.0810 —2.6691  0.6390 —0.5509 —1.0124 ]
—2.6691  5.5185  1.1005 0.8248  0.8014
0.6390  1.1005  2.4625 1.9543 —0.4839
—0.5509  0.8248  1.9543  4.2586 —0.0535

| —1.0124  0.8014 -0.4839 -0.0535  0.8230 |

o
I

We use its generalized eigenvalues
O’(A, B) = {3.9955,0.3093, —0.6662, —1.2920, —3.2878}

as the target spectrum in our experiment. We use A = A — diag(fl) and B as the test

~

data for Problem 3. Apparently, diag(A) is one global solution.
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Fi1G. 4. History of F(P(t)) Example 2 reaching a global solution.

Using differential system (30) with initial value

2.4660 —1.0824 0.2591 —-0.2234 —-0.4106
0 2.0849 0.6624 0.2796  0.1713

P(0) = 0 0 1.3988  1.3061 —0.3510
0 0 0 1.5571 0.1704
0 0 0 0 0.6877

which comes from the Cholesky decomposition of B (see (29)), we calculate the flow
P(t). At convergence we convert P(co) into X (0co) and obtain

7.1728  1.8576 —2.1532  0.6710  0.5092
1.8576 —0.0080  0.5149  2.1096 —1.3318
X(o00) m | —2.1532  0.5149 —0.9992 —0.4591  0.3602
0.6710  2.1096 —0.4591 —3.9520 —1.2334
0.5092 —-1.3318  0.3603 —1.2334 —2.0060

We note that the off-diagonal elements of X (co) agree with those of A up to the inte-
gration error. Therefore the local solution diag(X (00)) we have found is also a global
solution. Tt is interesting to note that diag(X (c0)) # diag(A), indicating that Problem 3
may have multiple solutions. The history of convergence is in Figure 4.

Theoretically, it should that P(t)TP(t) = B for all . Numerical calculation intro-
duces errors. For this reason, we closely watch for the the values of

(31) w(P(t)) = | P()" P(t) - BI|.
17



The second graph in Figure 4 indicates that the discrepancy between theoretical expec-
tation and numerical computation is within our tolerance.

Example 3. We want to stress that the optimization problem (5) is non-linear
and non-convex. Generally, we cannot expect from any method the luck of hitting the
global minimizer of any non-linear or non-convex optimization problem by one random
starting point. One nice feature of our approach, however, is that we are guaranteed
to find a local minimizer regardless where we start and that we have plenty choices
of starting points. While it would be nicer to be able to foretell which point/region
would serve better as a starting value than the other, the success of such an exploration
perhaps is too much to expect for due to the non-linear and non-convex nature of the
problem. On the other hand, since we literally can start from anywhere (e.g., any
orthogonal matrix in (29)), we find it is possible, though not the best way, to fish for a
“better” starting point by trials and errors. We obtain the following results from such a
procedure. We have performed many other tests (for the case where a global solution is
known to exist) and are always able to find the appropriate starting points after several
trials. We have written our code with the convenience of repeated experiments in mind
and will make it available upon request.

We report below a case that we think is more challenging than most of the other
cases we have tested. Suppose we repeat the experiment in Example 2 with the test
data

1.4637 —0.3440 0.6314  0.3603  1.2990 |
—0.3440 —4.1759 —-0.0370  0.8424 —-2.5164
0.6314 —0.0370 —-0.5261  3.1094 —-0.2112
0.3603  0.8424  3.1094  2.6428 —0.9722
1.2990 —-2.5164 —0.2112 —-0.9722 —2.0921 |

2.1437  1.7880 —0.1595  0.7567 —0.0391 ]
1.7880  7.3264 —2.8274 —0.0856 —0.0528
B = —0.1595 —2.8274  3.8262 —1.8245 —1.7653
0.7567 —0.0856 —1.8245  5.0857  0.4600
| —0.0391 —0.0528 —1.7653  0.4600  1.5725 |

N
I

and the target eigenvalues o(A, B) = {2.4562,1.3627, —0.2342, —0.4489, —250.9816}.
This time the ratio of the eigenvalues of the largest magnitude to the smallest is rela-
tively large and we expect difficulty.

Suppose we start with the upper triangular matrix in the Cholesky decomposition
of B, i.e, suppose we choose U = I in (29). At convergence we obtain

29383 —0.3450  0.6401  0.3600  1.2989

—0.3450 —13.6834 —0.0605  0.8413 —2.5144

X (00) ~ 0.6401 —0.0605 —0.2814  2.9862 —0.2303
0.3600 0.8413  2.9862  0.3243 —0.9734

1.2989 —2.5144 —-0.2303 —-0.9734  0.1012

Note that the off-diagonal elements of X (oo) are close, but not within the expected
integration error, to those of A. From Figure 5 we are convinced that we have reached
18
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only a local solution, although that solution is quite close to a global solution. We have
checked that (X (c0), B) agrees with o(A, B) up to the integration error.

This example illustrate another difficulty associated with Problem 3. We know
that in Problem 3 only the diagonal elements of A are allowed to vary. The off-diagonal
elements of A are not supposed to change, but we find that is not the case in our X (00).
Suppose we project X (0o) down to the affine subspace of A plus all diagonal matrices
to maintain the off-diagonal elements. The eigenvalues of the corresponding projected
pair are given by

o (off-diag(A) + diag(X (c0)), B) = {2.4535,1.4392, —0.2210, —0.4673, —245.6114}.

These values again are close but not within the integration error to the desired tar-
get eigenvalues. In other words, this example demonstrates a case where the spectral
constraint and the structural constraint cannot be satisfied simultaneously by a local
solution.

Suppose we change the starting value to

—0.4186  0.4414 —0.7581  1.3847 —0.1868

0.3510  0.1044  0.8450 —0.8140 —0.5692

P(0)=| —0.6032 —2.4090  0.3297  0.3488  0.4427
—1.1340 —-0.7609  0.9793 —1.2783 —0.6188

0.4421 -0.8593  1.2123  0.8660 —0.7967

which is obtained by multiplying a specific orthogonal matrix (acquired by random
trials) to the upper triangular matrix in the Cholesky decomposition of B (see (29)) .
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It turns out that we are able to find a global solution

1.4238 —0.3440  0.6315  0.3603  1.2990

—0.3440 —4.1785 —0.0370  0.8424 —2.5164

X (00) = 0.6315 —0.0370 —0.8734  3.1093 —0.2113
0.3603  0.8424  3.1093  3.0295 —-0.9722

1.2990 —-2.5164 —-0.2113 —-0.9722 —-1.8037

that satisfies both the spectral and the structural constraints. The history of integration
is plotted in Figure 6. The much longer length of integration required for convergence
perhaps is due to the stiffness.

6. Conclusion. We have proposed a general framework for the least squares ap-
proximation of symmetric-definite pencils subject to generalized eigenvalue constraints.
We have illustrated how this approach can be adapted to different applications, in-
cluding the inverse generalized eigenvalue problems. Although Problem 2 has already
enjoyed efficient and reliable numerical algorithms. There are few methods available
for Problem 1 and Problem 3. Our approach unifies these different problems under the
same framework. The versatility of our method by specifying V; and V5 seem quite
interesting.

We have experimented with several descent flows proposed in this paper by us-
ing available ordinary differential equation solvers. Our methods guarantee the global
convergence to a local solution. By changing integral paths, a global solution some-
times can be reached. It remains to be studied whether a special-purpose integra-
tor/implementation can be developed to make our approach more efficient.
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