
IMA Journal of Numerical Analysis (2014) Page 1 of 21
doi:10.1093/imanum/dru001

On the finite rank and finite-dimensional representation of bounded
semi-infinite Hankel operators

Moody T. Chu

Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA
chu@math.ncsu.edu

and

Matthew M. Lin∗

Department of Mathematics, National Chung Cheng University, Chia-Yi 621, Taiwan
∗Corresponding author: mhlin@ccu.edu.tw

[Received on 20 September 2012; revised on 3 January 2014; accepted on 5 January 2014]

Bounded, semi-infinite Hankel matrices of finite rank over the space �2 of square-summable sequences
occur frequently in classical analysis and engineering applications. The notion of finite rank often appears
under different contexts and the literature is diverse. The first part of this paper reviews some elegant,
classical criteria and establishes connections among the various characterizations of finite rank in terms
of rational functions, recursion, matrix factorizations and sinusoidal signals. All criteria require 2d para-
meters, though with different meanings, for a matrix of rank d . The Vandermonde factorization, in partic-
ular, permits immediately a singular-value preserving, finite-dimensional representation of the original
semi-infinite Hankel matrix and, hence, makes it possible to retrieve the nonzero singular values of
the semi-infinite Hankel matrix. The second part of this paper proposes using the LDL∗ decomposition
of a specially constructed sample matrix to find the unitarily equivalent finite-dimensional representa-
tion. This approach enjoys several advantages, including the ease of computation by avoiding infinite-
dimensional vectors, the ability to reveal rank deficiency and the established pivoting strategy for stability.
No error analysis is given, but several computational issues are discussed.

Keywords: Hankel operator; semi-infinite matrix; finite rank; Vandermonde factorization; orthogonaliza-
tion; generating function; LDL∗ decomposition.

1. Introduction

The notion of Hankel operators has played an important role in relating many disparate parts of classical
mathematics together (Adamjan et al., 1968; Iohvidov, 1982; Peller, 1998, 2003), among which we
mention the notable moment problems (Akhiezer, 1965). In recent years, Hankel operators have also
found important applications in a wide range of disciplines outside mathematics. See the monographs
(Iohvidov, 1982; Partington, 1988; Peller, 2003) for some general discussions. One such instance is the
H∞ techniques in control theory and systems theory where Hankel operators are employed to synthesize
controllers that minimize sensitivity or achieve stabilization (Glover, 1984; Francis, 1987).

Hankel operators may appear in different forms. In many applications, it is common to cast the
Hankel operators in matrix notation, finite or infinite,
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H =

⎡
⎢⎢⎢⎢⎢⎣

h0 h1 h2 . . .

h1 h2 h3

h2 h3

h3
...

⎤
⎥⎥⎥⎥⎥⎦ , (1.1)

with respect to some preselected bases. That is, a Hankel matrix is characterized by the property that its
entries depend only on the sum of the indices. We often identify H with the sequence {hn}n�0 of its first
column (and first row). When the underlying matrix is of finite dimension and of the Hankel structure,
many numerical algorithms can be implemented more efficiently. For instance, it is well known that
solving a linear system Hx = b, where H is an n × n Hankel (or Toeplitz) matrix requires only O(n2)

arithmetic operations (Heinig, 2001; Pan, 2001). Similarly, the singular value decomposition can be
accomplished with O(n2 log n) operations (Gragg & Reichel, 1989; Luk & Qiao, 2003). For semi-infinite
Hankel matrices, however, numerical computation remains challenging. One example is that, despite
our theoretical understanding on spectral properties of semi-infinite Hankel matrices (Widom, 1966),
it requires serious effort to retrieve information analogous to the notion of finite-dimensional singular
value decomposition (Kung, 1978; Young, 1983).

Indeed, a concern already arises when dealing with matrix-to-vector multiplication involving a semi-
infinite matrix H . This inevitably involves infinite series. For the series to converge, we must impose the
condition that H be a bounded linear operator. In most of the literature, H is considered as an operator
over the space �2 of square summable (semi-infinite) sequences. It is known that a Hankel matrix H
represents a bounded operator over �2 if and only if there exists a function ψ ∈ L∞ on the unit circle
such that (Peller, 1998, Theorem 2.1)

hn = 1

2π

∫ 2π

0
ψ(θ) e−ιnθ dθ , n = 0, 1, . . . . (1.2)

In other words, whether the sequence {hn}n�0 for H determines a bounded operator on �2 is equivalent
to whether the sequence itself represents the Fourier coefficients of an essentially bounded function
over the unit disk (Nehari, 1957). Since L∞ is dense in L2 over the compact set [0, 2π ], we may assume
without loss of generality that all rows and columns of H are sequences in �2 themselves (Bowden,
1968; Power, 1982).

In this paper, we are particularly interested in the case when a semi-infinite H is known a priori to
have finite rank. This class of matrices arises in many fields and the literature on this subject is diverse,
often under different names. A partial list of its applications includes signal processing (Golyandina
et al., 2001), system identification (Glover, 1984; Francis, 1987), model reduction (Kung & Lin, 1981;
Markovsky et al., 2005), speech and audio processing (Lemmerling & Van Huffel, 2001), modal and
spectral analysis (Markovsky, 2012) and image processing (Gonzalez & Woods, 2008). Hankel matrices
are also related to topics such as the Lanczos algorithm (Boley et al., 1992), the recursive solution of the
Yule–Walker equation (Steele, 2012) and the equivalent recursive computation of Padé approximants
(Heinig & Rost, 1984; Tyrtyshnikov, 2010; Gonnet et al., 2013; Ibryaeva & Adukov, 2013), and orthog-
onal polynomials (Akhiezer, 1965; Bultheel & Van Barel, 1997). This paper focuses only on the char-
acterization of such a semi-infinite Hankel matrix H in terms of its nonzero singular values and singular
vectors. Our main contribution is to provide a theoretical groundwork for the required computational
endeavour.
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We intend to bring forth two discussions. In Section 2, we review various characterizations of
finite rank scattered in the literature with the aim of establishing connections in terms of rational
functions, recursion, matrix factorizations and sinusoidal signals. In Section 3, we propose to form a
finite-dimensional matrix that is unitarily equivalent to the original semi-infinite Hankel matrix via the
rank-revealing LDL∗ algorithm. Numerical challenges are pointed out in the course of discussion.

2. Finite rank

As the phrase ‘finite rank’ plays a key role in many applications, in the first part of this paper we explain
the cause and effect of such a notion. The following brief review highlights some, but not all, classical
results.

2.1 Rational functions

We begin with perhaps the earliest theoretical consideration. By a generating function associated with a
sequence {an}n�0 of complex numbers, we mean the formal power series defined by

G(z; {an}) :=
∞∑

n=0

anzn. (2.1)

It was Kronecker who first proposed an intriguing way to check the finiteness of the rank of a Hankel
matrix by examining the convergence of the associated generating function. More precisely, we state
the following theorem which, in fact, also asserts explicitly the corresponding rank (Peller, 1998,
Theorem 4.1).

Theorem 2.1 The Hankel matrix H has finite rank if and only if the power series (2.1) determines a
rational function. In this case,

rank(H)= deg(zG(z; {hn})), (2.2)

where the degree of a rational function is the maximum of the degrees of its minimal constituent
polynomials.

Unfortunately, determining the convergence of an infinite series usually is easier than finding the
limit of its partial sums. To find the limit analytically of the generating function G(z; {hn}) so as to
calculate the rank of a given Hankel matrix as indicated above, therefore, is posed as a challenging task.

2.2 Recursive formula

An equivalent but more direct observation of finite rank is through the following recursive relationship
among elements of H (Gantmacher, 1959, Chapter XV, Theorem 7).

Theorem 2.2 The Hankel matrix H is of finite rank d if and only if there exist constants γ0, . . . , γd−1

such that
hi = γd−1hi−1 + γd−2hi−2 + · · · + γohi−d , i = d, d + 1, . . . (2.3)

and d is the least integer having this property.

Assuming that the semi-infinite Hankel matrix H in Theorem 2.2 is of rank d, it can be argued that
the d × d leading principal submatrix Ĥ , called the trajectory matrix of the segment h0, . . . , h2d−2, is
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necessarily nonsingular. Rewrite finite difference equation (2.3) in the form of a linear system

⎡
⎢⎢⎢⎢⎢⎣

h0 h1 h2 . . . hd−1

h1 h2 h3 hd

h2 h3 hd+1
...

hd−1 hd h2d−2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
γ0

γ1
...

γd−1

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

hd

hd+1
...

h2d−1

⎤
⎥⎥⎥⎦ , (2.4)

known as the Yule–Walker equations in signal processing, for the coefficients γ0, γ1, . . . , γd−1. It follows
that the parameters γ0, . . . , γd−1 and, consequently, the entire semi-infinite time series, are uniquely
determined by the first 2d elements h0, h1, . . . , h2d−1. In this sense, we may say that a semi-infinite
Hankel matrix of finite rank d has a 2d-dimensional representation {h0, h1, . . . , h2d−1}. The Yule–Walker
equations are ubiquitous in science, finance and technology. It is said that ‘every cell phone solves the
Yule–Walker equations every 10 microseconds’ (Dutoit, 2004) and, needless to say, many discussions
and effective algorithms are available. We mention an interesting website (Steele, 2012) where further
references can be found.

In theory, for a given Hankel matrix H , we could repeatedly try out a sequence of nested linear
systems in the form of (2.4) by gradually decreasing the value of d from a large initial guess until the
trajectory matrix becomes nonsingular for the first time, whence the linear system is solved and the
rank is determined. Nonetheless, issues of numerical rank do arise in reality. Even though the Courant–
Fischer theorem guarantees the interlacing of singular values between two nested trajectory matrices, it
does not guarantee how far a nonsingular matrix is away from the nearest singular matrix. Even without
the presence of noise, a nearly singular matrix may have to be treated as singular. Rank revealing
algorithms developed thus far in the literature cannot resolve this problem perfectly (Lee et al., 2009;
Foster & Liu, 2012).

2.3 Sinusoidal signals

In the field of signal processing, there is another popular way to parameterize Hankel matrices of finite
rank by means of sinusoidal signals. The forward connection of associating a damped signal of finite
component with a Hankel matrix of finite rank is quite straightforward. Consider a noiseless time-
domain signal comprising d components of exponentially decaying sinusoids,

s(t)=
d∑
�=1

a� e−ζ�t eι(2πν�t+φ�), (2.5)

where a�, ζ�, ν� and φ� are real numbers denoting the magnitude, the decay rate, the frequency and the
phase angle of the �th sinusoid, respectively. Starting with t0 = 0 and sampling this signal at uniformly
spaced nodes t0, t1, . . . with fixed interval length Δt (so 1/Δt is the so-called sampling rate), we obtain
an infinite sequence

sk := s(tk)=
d∑
�=1

a� e−ζ�kΔt eι(2πν�kΔt+φ�) =
d∑
�=1

a� eιφ�
(
e(−ζ�+ι2πν�)Δt

)k
.
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For simplicity, denote

β� := a� eιφ� , (2.6)

λ� := e(−ζ�+ι2πν�)Δt. (2.7)

Obviously, the time series {s0, s1, . . .} enjoys the relationship

sk =
d∑
�=1

β�λ
k
�. (2.8)

Such a relationship implies a decomposition of the corresponding trajectory matrix

S :=

⎡
⎢⎢⎢⎣

s0 s1 s2 · · ·
s1 s2

s2
...

⎤
⎥⎥⎥⎦=

d∑
�=1

β�

⎡
⎢⎢⎢⎣
λ0
� λ1

� λ2
� . . .

λ1
� λ2

�

λ2
�

...

⎤
⎥⎥⎥⎦

into the form

S =

⎡
⎢⎢⎢⎣
λ0

1 λ0
2 . . . λ0

d
λ1

1 λ1
2 λ1

d
λ2

1
...

...

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
β1 0 . . . 0
0 β2
...

. . .
0 βd

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
λ0

1 λ1
1 λ2

1 . . .

λ0
2 λ1

2
...
λ0

d λ1
d . . .

⎤
⎥⎥⎥⎦ , (2.9)

which is known as the Vandermonde factorization of S. Under the generic assumption that all λ1, . . . , λd

are distinct, it is seen immediately from (2.9) that the Hankel matrix S is necessarily of rank d. Note
also that for strictly decaying signals, we should have ζ� > 0 and, hence, |λ�|< 1, implying that S is a
bounded operator.

It turns out that the backward connection of associating a Hankel matrix of finite rank to a damped
signal of finite component also holds. The reason is based on the fact that any given Hankel matrix of
finite rank d enjoys a Vandermonde factorization of which (2.9) is a special case. We shall establish the
details in Section 2.4. When this factorization is in hand, then by (2.6) the polar form of the complex
number β� determines the magnitude a� and phase angle φ�. In the meantime, by (2.7) the polar form of
the quantity λ� determines, up to a scaling by Δt, the decay rate ζ� and the frequency ν�. That there is a
dependence onΔt makes sense because the measurement of decay rate and frequency should be relative
to the meaning of a unit time that must be defined somewhere. Thus, once Δt is specified, a composite
signal is completely determined from a given Vandermonde decomposition. In short, we can go back
and forth interchangeably between a bounded low rank Hankel matrix and a sinusoidal signal through
the relationship (2.8). Ultimately, the term ‘singular values’ of a signal s can be understood from those
of the corresponding trajectory matrix S.

The role of the sampling rate is significant and is worth additional discussion. Out of the very same
composite signal s(t), a large Δt, that is, a low sampling rate, will make the numbers λ� cluster around
the origin, making the sequence {sk} quickly decay to zero. The corresponding Hankel matrix S would
then contain many anti-diagonals whose entries are nearly machine zero. In theory, as we have described
above, the Hankel matrix S should still be of rank d. When we calculate its numerical rank, however,
the number of calculated singular values that are greater than a specified threshold could be far less
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than d (see Example 2 in Section 4). Such a mismatch then causes confusion on how the original signal
should be represented.

More difficulties arise when noise is present in a signal. Even with a slight perturbation, the above
connection usually is lost, that is, the trajectory matrix of the contaminated time series usually is of full
rank and the true value of d is smudged. Reconstructing a Hankel low rank approximation to the con-
taminated trajectory matrix is a problem of practical importance and has been extensively studied in the
literature. Far from being complete, we mention only a few references (Park et al., 1999; Lemmerling &
Van Huffel, 2001; Chu et al., 2003; Markovsky et al., 2005; Gillard & Zhigljavsky, 2011; Markovsky,
2012). See also (Auvergne, 1988; Vautard et al., 1992; Allen & Smith, 1996; Mineva & Popivanov,
1996; Danilov, 1997; Ghil & Taricco, 1997; Yiou et al., 2000) for the popular singular-value spectrum
analysis (SSA) techniques. In all, it is imperative to first determine an appropriate rank before any filter-
ing technique can be applied to get rid of the noise. Such a task of rank detection remains a challenging
question to this date (Golub & Van Loan, 2013).

2.4 Vandermonde factorization

In this section, we fill in the details that associate a semi-infinite Hankel matrix of finite rank with a
sinusoidal signal. We approach this backward connection by exploiting finite difference equation (2.3)
and the corresponding characteristic polynomial

p(λ) := λd − γd−1λ
d−1 − · · · − γ1λ− γ0. (2.10)

To fix the ideas, let λ�, �= 1, . . . , r, denote the distinct roots of p(λ), each of which has multiplicity ρ�.
So
∑r

�=1 ρ� = d. A general solution to difference equation (2.3) can be formulated via the superposition
principle as follows. Let [β(0)1 , . . . ,β(ρ1−1)

1 ,β(0)2 , . . . ,β(ρ2−1)
2 , . . . β(0)r , . . . β(ρr−1)

r ]T ∈ C
d be the solution

to the confluent Vandermonde system (Kalman, 1984)

Vp(λ)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β
(0)
1
...

β
(ρ1−1)
1

...
β(0)r

...
β(ρr−1)

r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

h0

h1

h2
...

hd−1

⎤
⎥⎥⎥⎥⎥⎦ , (2.11)

where Vp(λ) ∈ C
d×d is composed of r blocks of submatrices

Vp(λ) = [V (1), . . . , V (r)]
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with the block V (�) ∈ C
d×ρ� , �= 1, . . . , r, defined by

V (�) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
λ� 1 0 . . .

λ2
� 2λ� 1 . . .

λ3
� 3λ2

� 3λ�
...

. . .

λ
ρ�−1
� 1
λ
ρ�
� ρ�λ�
...

...
...

λd−1
� (d − 1)λd−2

�

(d − 1)(d − 2)

2
λd−3
� . . .

(
d − 1
ρ� − 1

)
λ

d−ρ�
�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

For notational simplicity, entries of the matrix V (�) = [v(�)ij ] can be expressed as

v(�)ij = cijλ
i−j
� , i = 0, 1, . . . , d − 1, j = 0, 1, . . . , ρ� − 1, (2.12)

where cij = 0 if i< j; and cij = i!/(i − j)!j! otherwise. Note also that for convenience, the indices of
the entries start from (0, 0). The purpose of imposing system (2.11) is to enforce the initial values
h0, . . . , hd−1 in the solution to finite difference equation (2.3). Trivially, the equations in (2.11) are
equivalent to

hi =
r∑
�=1

ρ�−1∑
j=0

β
( j)
� cijλ

i−j
� , i = 0, 1, . . . , d − 1,

from which we can verify recursively that

hi =
d−1∑
s=0

γshi−d+s

=
d−1∑
s=0

γs

⎛
⎝ r∑
�=1

ρ�−1∑
j=0

β
( j)
� ci−d+s,jλ

i−d+s−j
�

⎞
⎠=

r∑
�=1

ρ�−1∑
j=0

β
( j)
�

(
d−1∑
s=0

(
ci−d+s,jγsλ

i−d+s−j
�

))

=
r∑
�=1

ρ�−1∑
j=0

β
( j)
� cijλ

i−j
� , i = d, d + 1, . . . , (2.13)

where the last equality is obtained by using the identity

dj(λi−d
� p(λ�))

dλj
= 0, �= 1, . . . , r, j = 0, 1, . . . , ρ� − 1 (2.14)

for all i � d. Let V∞ denote the confluent Vandermonde matrix of size ∞ × d obtained by extending
the matrix Vp(λ) defined in (2.12) downward to infinite length. Then the following result, known as the
Vandermonde factorization for a semi-infinite Hankel matrix H , is but a rearrangement of expression
(2.13) in a matrix form (Boley et al., 1997).
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Theorem 2.3 Suppose H is a semi-infinite Hankel matrix of rank d. Then there exists a d × d block
diagonal matrix D∞ whose �th block is of size ρ� × ρ� and is Hankel and upper anti-triangular such that

H = V∞D∞V T
∞. (2.15)

It is important to point out that the Vandermonde factorization described above is valid for any semi-
infinite Hankel matrix of rank d. If H is further required to be bounded (as an operator), then the root
conditions must be satisfied, that is, all roots λ� of the polynomial (2.10) must have modulus less than
or equal to one and those of modulus one must be simple.

Consider the generic case, as we shall assume henceforth, in which all roots of p(λ) are distinct. The
general solution (2.13) can be easily reduced to

hi =
d−1∑
s=0

γshi−d+s =
d−1∑
s=0

γs

(
d∑
�=1

β
(0)
� λ

i−d+s
�

)
=

d∑
�=1

β
(0)
�

(
d−1∑
s=0

γsλ
i−d+s
�

)

=
d∑
�=1

β
(0)
� λ

i−d
�

(
d−1∑
s=0

γsλ
s
�

)
=

d∑
�=1

β
(0)
� λ

i
�, i = d, d + 1, . . . , (2.16)

which now formally agrees with (2.8). In this way, we may now associate the Hankel matrix with a
corresponding sinusoidal signal.

The ideas of truncation and the extension are worth mentioning. Given a semi-infinite Hankel matrix
H with rank d, any of its m × k submatrix with min{m, k} � d is of rank at most d. However, not all
low rank finite Hankel matrices can be embedded as a submatrix of a semi-infinite Hankel matrix with
equal rank. It seems intuitive that one could trivially expand a given m × k Hankel matrix into a semi-
infinite Hankel matrix by padding with innocuous zeros along the anti-diagonals, but such an extension
usually results in a semi-infinite matrix with higher rank. Such a study actually is in the area of singular
extension theory (Iohvidov, 1982, II.9) and has applications such as Gaussian quadrature (Golub &
Welsch, 1969). In the course of our discussion, we have already suggested an alternative method of
extension by embedding a given d × d nonsingular Hankel matrix as the leading principal submatrix
of a nontrivial semi-infinite Hankel matrix H with a specified value for one additional element h2d−1.
After solving corresponding equation (2.4), we will have created the recursive relationship (2.13) which
results in a matrix H of rank d. In this way, any finite-dimensional nonsingular Hankel matrix also
admits a Vandermonde factorization (Boley et al., 1997).

Finally, we mention in passing that our discussion thus far has been about scalar Hankel matrices.
Similar representation can be extended to nonsingular block Hankel matrices (Kung & Lin, 1981;
Feldmann & Heinig, 1996). For the purpose of conveying our basic ideas, we shall concentrate on
the scalar Hankel matrices only in this paper. The generalization to block Hankel matrices deserves
further investigation.

3. Finite-dimensional representation

Given a bounded Hankel operator H of finite rank d, we see immediately from the Vandermonde fac-
torization (2.15) that

R(H)= R(V∞), (3.1)

R(H∗)= R(V̄∞), (3.2)
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Fig. 1. Commutative diagram relating the semi-infinite Hankel operator H of finite rank and its corresponding reduced map
H |R(V̄∞).

where V̄∞ denotes the complex conjugate of V∞ and R(H) stands for the range space of H . By the
Fredholm alternative theorem, we see that H and H∗ have effects only on the finite-dimensional spaces
R(V̄∞) and R(V∞), respectively. Thus, it is natural to expect that H should have a finite-dimensional
representation. We stress that we are interested in rendering the ‘action’ H as a map, which is more
than just a passive characterization of H by finitely many parameters, such as the first 2d elements
{h0, h1, . . . , h2d−1} or the corresponding Vandermonde parameters {β1, . . . ,βd , λ1, . . . , λd}. In particu-
lar, we are interested in finding a singular value decomposition of H and representing H via a finite-
dimensional matrix of size d × d.

For the singular value computation, an interesting approach employing the generating function (2.1)
of the infinite sequence {h0, h1, . . .} in �2 has already been proposed in Young (1983). That development
was based on the fact asserted by Theorem 2.1 that the associated generating function of H is neces-
sarily a rational function, whence the range space R(H) of H as well as that of its adjoint H∗ can be
fully characterized in terms of some specially selected finite bases of rational functions. Our approach
in this note is similar in spirit, but different from Young (1983), in that we utilize the Vandermonde
factorization (2.15) of H to build the representation.

The connections described in the preceding section can be implemented as a numerical procedure
to achieve the Vandermonde factorization of a given Hankel matrix H . We caution, however, that many
computational issues remain to be thoroughly investigated, including the stability of the algorithm itself
that leads to the Vandermonde factorization and the conditioning of the roots of the characteristic poly-
nomial (2.10). These are important and legitimate questions that, to our knowledge, have only been
partially studied in the literature (Kibangou & Favier, 2007; Bezerra, 2012). In order to stay focused on
the singular value decomposition, we shall not discuss these issues in this note either, but assume that
the factorization is already in hand. We hope that the following discussion serves at least as a theoretic
framework of interest.

To characterize the action of H , it suffices to find a matrix representation of the restricted map

H |R(V̄∞) : R(V̄∞)→ R(V∞)

with respect to some orthonormal bases for the two range spaces. The reason is that, by the Fredholm
alternative theorem, the action of H on the orthogonal complement of R(V̄∞) is zero. We summarize
the relationship through the commutative diagram in Fig. 1. It is important to point out that while the
images of the restricted map H |R(V̄∞) are identical to those of H as an operator on nontrivial elements,
it no longer has the Hankel structure in general.

Since the restricted map is over finite-dimensional subspaces, we now describe how its finite-
dimensional matrix representation H̃ can be found.
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Lemma 3.1 Suppose that the matrix V∞ has a QR decomposition

V∞ = QR, (3.3)

where the columns of Q ∈ C
∞×d are mutually orthonormal and R ∈ C

d×d is upper triangular. Then the
nonzero singular values of H are the same as those of the d × d matrix

H̃ := Q∗HQ̄ = RD∞RT. (3.4)

Proof. The two subspaces R(V∞) and R(V̄∞) have columns of Q and Q̄ as orthonormal bases, respec-
tively. The first equality follows from the standard formula for change of basis, i.e., HQ̄ = QH̃ . The
second equality follows from (2.15) to (3.3), which yield H = QRD∞RTQT and from the fact that
Q∗Q = QTQ̄ = I. �

Both equalities in (3.4) have important meanings. The first equality ensures that H̃ and H are uni-
tarily equivalent and, hence, the singular values of both systems are preserved. That is, the nonzero
singular values of the semi-infinite matrix H can now be calculated from the finite matrix H̃ . To generate
H̃ by using Q, however, is cumbersome because the multiplication involves infinite series formed from
the columns of Q and H . For computation, the second equality becomes handy because both matrices R
and D∞ are of size d × d only.

We now explain how an orthonormal basis can be found for V∞. Our ultimate goal is to compute
the finite-dimensional matrix R without explicitly forming Q so that together with D∞ we can compute
the nonzero singular values of H via H̃ . We divide our approach into three steps.

3.1 Modified Gram–Schmidt orthogonalization

The challenge in computing the QR decomposition for V∞ is that we have to deal with infinite-
dimensional vectors. We first propose using the Gram–Schmidt process to carry out the task. One
attractive feature of this approach is that, with the Vandermonde structure, applying the Gram–Schmidt
orthogonalization process to columns of V∞ is equivalent to applying the process to the corresponding
generating functions over �2. All inner products of infinite-dimensional vectors can be handled effec-
tively via rational arithmetic operations on generating functions.

We point out two useful facts before we proceed. Firstly, observe that the generating function f�
corresponding to the �th column of V∞, �= 1, . . . , d, is given by

f�(z) := G(z; {λn
�})=

∞∑
n=0

λn
�z

n = 1

1 − λ�z
. (3.5)

Secondly, a natural way to define an inner product between two generating functions is by

〈G(z; {an}), G(z; {bn}〉 :=
∞∑

n=0

anb̄n, (3.6)

where b̄n denotes the complex conjugate of bn. The relationship

〈G(z; {sn}), G(z; {bn})〉 =
〈

1

1 − sz
, G(z; {bn})

〉
=

∞∑
n=0

snb̄n = G(s, {b̄n})= G(s̄, {bn}) (3.7)
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Algorithm 1 Modified Gram–Schmidt process on the generating functions.
Require: complex numbers λ1, . . . , λd {from the Vandermonde decomposition of a Hankel matrix

H of rank d}
Ensure: QR decomposition of V∞ {in the form (3.9)}

for �= 1, · · · , d do
w� := f�

end for
for �= 1, · · · , d do

r�� := ‖w�‖ {or simply evaluate r�� :=
√

w�(λ�)}
w� := w�

r��
for k = �+ 1, · · · , d do

r�k := 〈wk , w�〉 {or simply evaluate r�k := w�(λk)}
wk := wk − r�kw�

end for
end for

then holds whenever the evaluation G(s̄, {bn}) makes sense.
Summarized in Algorithm 1 is the usual modified Gram–Schmidt scheme. There is nothing new

at first glance. However, what is the important point is that the needed inner products and norms can
all be computed in terms of the generating functions. Because the infinite vectors w� are represented by
functions of the variable z, most calculations can be accomplished by function evaluations. We illustrate
a few steps below.

It is obvious by (3.7) that

r11 =√〈G(z; {λn
1}), G(z; {λn

1})〉 =
√

f1(λ̄1)= 1√
1 − λ1λ̄1

,

which is guaranteed to be a positive number. After obtaining the normalized w1(z), we see by (3.7) again
that the first row of R is attainable via

r1k = 〈wk , w1〉 = w1(λ̄k), k = 2, . . . , d.

According to the algorithm, we temporarily should have

wk(z)= fk(z)− r1kw1(z), k = 2, . . . , d,

each of which is orthogonal to w1(z) and, hence,

r22 = ‖w2‖ =
√

〈w2, w2〉 =
√

〈f2 − r12w1, w2〉 =
√

w2(λ̄2).

The conjugation in the above actually is not needed because in exact arithmetic the quantity w2(λ̄2)

is guaranteed to be real and non-negative. We keep the conjugation for consistency with the general
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12 of 21 M. T. CHU AND M. M. LIN

expression that, after normalizing w2(z), we can generate the second row of R via

r2k = 〈wk , w2〉 = 〈fk − r1kw1, w2〉 = 〈fk , w2〉 = w2(λ̄k), k = 2, . . . , d.

By recursion, we are ready to generate the �th row of R via the expression

r�k = 〈wk , w�〉 = w�(λ̄k), k = �, . . . , d, (3.8)

where w�(z) is the normalized generating function as specified in the algorithm. In this way, the QR
factorization for the semi-infinite matrix V∞ can be represented in terms of a decomposition of functions
f1, . . . , fd in the form

[f1, f2, . . . , fd ] = [w1, w2, . . . , wd ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

r11 r12 r13 r14 . . . r1d

0 r22 r23 r24 r2d

0 0 r33 r34
...

. . .
0 . . . rdd

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.9)

whereas w1, . . . , wd themselves are mutually orthonormal functions (infinite sequences) with respect to
the inner product (3.6) and the d × d upper triangular matrix R = [r�k] is really the one needed in the
finite-dimensional representation (3.4).

It is interesting to make the following observation about the roots of the function w�(z).

Lemma 3.2 Let w� denote the generating function corresponding to the �th column of the orthogonal
matrix in the QR decomposition of V∞. Then the function w�(z) has at least �− 1 roots at λ̄1, . . . , λ̄�−1.

Proof. In the same way as (3.8), for each j = 1, . . . , �− 1 we can calculate the inner product 〈wj, w�〉 =
w�(λ̄j) as simply the conjugation of the function evaluation at λ̄j. By construction, w�(z) is orthogonal
to all wj. �

The implication of Lemma 3.2 is that if λ̄� is near to any of these roots, then the value of r�� will
be small, causing numerical instability even for the modified Gram–Schmidt process. We shall offer an
alternative way to circumvent this difficulty.

3.2 Implicit calculation

In Algorithm 1, we compute each function w�(z) in its entirety. Such a function is needed only if the
corresponding column in Q is needed. Symbolic calculation of the rational function w�(z) is theoretically
possible, but lengthy and tedious.

On the other hand, a close examination of Algorithm 1 indicates that all we need is the evaluation
of w�(z) at discrete points λ̄�, . . . , λ̄d for each �= 1, . . . , d. These are the entries for the upper triangular
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Algorithm 2 Reorganized Modified Gram–Schmidt Process (Implicit Q).
Require: complex numbers λ1, . . . , λd {from the Vandermonde decomposition of a Hankel matrix

H of rank d}
Ensure: Hermitian matrix F, lower triangular matrix Ω , and upper triangular matrix R {all finite-

dimensional and satisfying (3.12)}

Λ := [λ1, . . . , λd ]
F := 1./(1 −Λ′ ∗Λ) {sample matrix}
for �= 1, · · · , d do

r(�, �) := √
F(�, �)− ω(�, 1 : �− 1) ∗ r(1 : �− 1, �)

ω(� : d, �) := (F(� : d, �)− ω(� : d, 1 : �− 1) ∗ r(1 : �− 1, �))/r(�, �)
r(�, � : d) := (ω(� : d, �))′

end for

matrix R. Clearly, we have

w1(λ̄k)= f1(λ̄k)√
f1(λ̄1)

, k = 1, . . . , d, (3.10)

to begin with. The remaining function evaluations can be written recursively as

w�(λ̄k)=
f�(λ̄k)−∑�−1

j=1 rj�wj(λ̄k)√
f�(λ̄�)−∑�−1

j=1 rj�wj(λ̄�)

, �= 2, . . . , d, k = �, . . . , d. (3.11)

Reorganized in Algorithm 2 is the very same Gram–Schmidt process, except that the generating func-
tions w�(z) and, thus, the corresponding orthogonal matrix Q are now implicit. We write the code in
the Matlab syntax for the convenience of vector processing. The algorithm generates internally one
Hermitian matrix F, referred to as the sample matrix, and one lower triangular matrix Ω . The (k, �)
entries of F and Ω are f�(λ̄k) and w�(λ̄k), denoting the evaluation of the generating functions f�(z) and
w�(z) at λ̄1, . . . , λ̄d (and recall Lemma 3.2), respectively. The upper triangular matrix R :=Ω∗ returned
by the algorithm is precisely the matrix needed in (3.9). By construction, the three matrices satisfy the
relationship

F =ΩR. (3.12)

The expressions (3.9) and (3.12) look similar, but there is an important difference. In (3.9), columns
of the matrices [f1, . . . fd ] and [w1, . . . , wd ] are supposedly infinite sequences or, in our representation,
generating functions. In (3.12), columns of the matrices F and Ω are d-dimensional vectors, repre-
senting the evaluations of respective functions at finitely many points λ̄1, . . . , λ̄d . Also, columns of the
matrix [w1, . . . , wd ] in (3.9) are mutually orthogonal, but it is not the case for columns of the matrix Ω .

Algorithm 2 is modified from Algorithm 1 with the desire to avoid the computation of Q. But now
it can be realized as the following trivial fact which, nonetheless, fundamentally changes the tactics of
computation for the finite representation (3.4), as we shall describe in Section 3.3.

Theorem 3.3 The sample matrix F is Hermitian and positive definite and relationship (3.12) is the
unique Cholesky decomposition of F with positive diagonal entries in R.
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Algorithm 3 LDL∗ approach.
Require: complex numbers λ1, . . . , λd {from the Vandermonde decomposition of Hankel matrix H of

rank d}
Ensure: Hermitian matrix F, unit lower triangular matrix L, diagonal matrix D, and permutation

vector P

Λ := [λ1, . . . , λd ]
F := 1./(1 −Λ′ ∗Λ)
[L,D,P] = ldl(F,’vector’)
{The following has not been implemented in this work}
if D has extremely small entries then

Reduce d
Recalculate λ1, . . . , λd

end if

Proof. Given the Vandermonde matrix V∞, it is easy to see that F = V ∗
∞V∞. With the QR factorization

V∞ = QR, we also have F = R∗R, which gives rise to the Cholesky decomposition. Since R has positive
diagonal entries, the uniqueness follows. �

3.3 LDL∗ decomposition

As indicated in (3.4), we only need R in order to compute the finite-dimensional representation H̃ . The
observation made in the preceding section suggests that we may achieve this goal by computing the
Cholesky decomposition of F, which can easily be formed as seen in Algorithm 2. However, we notice
that when any two roots of λ1, . . . , λd approach each other (see Example 2 in Section 4), then the matrix
F becomes ill-conditioned and indefinite numerically. When this happens, the floating-point errors can
easily cause the Cholesky decomposition to break down.

To avoid taking square roots in the intermediate steps of computing the Cholesky decomposition
and, more particularly, to exploit its ability in handling indefinite matrices, we suggest the so-called
LDL∗ decomposition as an alternative way of computing R. See Algorithm 3 for the demonstration
of LDL∗ approach. The general theory of LDL∗ decomposition can be found in (Golub & Van Loan,
2013). When used on indefinite matrices, the LDL∗ factorization is known to be unstable without careful
pivoting. Specifically, similar to the classical LU decomposition, the theoretical upper bound of the
so-called growth factor for elements in L can be attained for a small class of matrices. A possible
improvement is to perform the factorization on block submatrices with special Bunch pivoting. It has
been shown that the block LDLT factorization in inexact arithmetic is guaranteed to preserve the inertia
(Higham, 1999; Fang, 2011). An efficient and high precision implementation is discussed in (Ashcraft
et al., 1999) and is available in Matlab. In particular, a pivoting strategy to improve stability has been
employed in the algorithm for the LDL∗ decomposition. Such a pivoting corresponds to a rearrangement
of the values λ1, . . . , λd in our application.

Theorem 3.4 There exist a permutation σ of the integers 1, . . . , d, a unit lower triangular matrix L, and
a real diagonal matrix D such that

PTFP = LDL∗, (3.13)

where P is the permutation matrix corresponding to σ and the (k, �) entry of the matrix PTFP is precisely
fσ(�)(λ̄σ (k)).
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Once the LDL∗ decomposition of F is achieved, we may use the information provided by D to decide
whether some extremely small diagonal entries should be discarded, thus modifying the prescribed rank
d to a smaller value. This seems to be a reasonable way of estimating the rank. Numerical experiments
seem to support this approach.

4. Numerical experiments

In this section, we carry out some numerical experiments with the purpose of demonstrating the theory
discussed above. We have already pointed out a few unsettled issues concerning the step from a given
Hankel matrix to its Vandermonde factorization. Assuming that hurdle is cleared, our work here is
to furnish the finite-dimensional representation when a Vandermonde factorization and the rank d are
known. A slightly perturbed low rank matrix is easily of full rank. Thus, in reality, we have to deal
with the low rank approximation with Hankel structure only. That is, even though we have a substantial
understanding about Hankel operators of finite rank in theory, one prevailing problem is the uncertainty
of numerical rank, which is a fairly difficult subject itself in practice. We wish to use examples to bring
forth some of the concerns.

Example 4.1 We fix d = 6 and randomly generate the vibration parameters

[a, ζ , ν, φ] =

⎡
⎢⎢⎢⎢⎢⎢⎣

3.8566 0.7923 0.3948 5.7665
0.1038 3.0421 51.2192 4.4898
3.1682 0.6764 81.2621 3.4089
3.7440 0.3534 61.2526 0.8933
2.4925 2.7414 72.1755 2.3458
1.1240 3.8136 29.1876 4.2357

⎤
⎥⎥⎥⎥⎥⎥⎦

whose columns represent the magnitudes a�, the decay rates ζ�, the frequencies ν� and the phase angles
φ�, �= 1, . . . , 6, for six sinusoids, respectively. For simplicity, we set Δt = 1. We use the resulting
infinite-dimensional Hankel matrix H from the combined signal as our test data. The corresponding
Vandermonde factorization (2.9) is readily known. The corresponding numbers λ� arranged in ascending
order of their moduli are

0.0084 + 0.0204i, 0.0092 + 0.0468i, 0.0291 + 0.0575i, −0.3575 + 0.2779i,

− 0.0386 + 0.5070i, −0.0115 + 0.7022i.

We know that the infinite matrix H should be of rank 6, but we want to compute its finite-dimensional
representation H̃ and its singular values.

This problem is small enough that Algorithm 1 is applicable. For curiosity, we plot in Fig. 2 the six
orthonormal functions w�(z). These plots of complex-valued functions are to be interpreted as follows.
Over the domain of the unit disc (displayed underneath the surface in polar coordinates), the real part
�(w�(z)) of w�(z) is represented by the height of the surface, while the colour of the surface, varying
the hue according to the HSV colour model, denotes the imaginary part 
(w�(z)).

We can also use the Matlab command ldl to calculate the LDL∗ decomposition of the 6 × 6
sample matrix F to obtain the upper triangular matrix R needed in (3.4). Built in the routine ldl is
a pivoting strategy which returns that the permutation σ = [1, 6, 4, 5, 3, 2]. Rearranging the numbers
λ� in accordance with the suggested permutation σ , we regenerate the orthonormal functions w�(z)
by Algorithm 1 and the results are plotted in Fig. 3. It is interesting to note that the ‘shapes’ of these
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Fig. 2. Sketch of orthonormal functions w�(z) over the unit disc. The height of the surface is the real part, and the colour of the
surface is the imaginary part, varying the hue in the HSV colour model.
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Fig. 3. Sketch of orthonormal functions w�(z) over the unit disc with λ� rearranged according to LDL∗ pivoting.
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Fig. 4. Comparisons of singular values and diagonal entries of the SVD and the LDL∗ of the sample matrix F.

orthonormal functions are changed, though their practical meaning is not clear at present. In all cases,
the six nonzero singular values of H are found to be

4.5999e+00, 1.8109e+00, 2.1203e−01, 1.3692e−02, 1.2352e−04, 7.4630e−10.

Even though this test is but a small, arbitrary example, the effect of clustering the numbers λ� is
evident in the smallest singular value. Had we not known that the original signal is composed of six
sinusoids beforehand, it would be a close call whether or not to regard the smallest singular value in the
above list as nonzero.

Example 4.2 The real strength of the LDL∗ approach is at its efficiency and reliability. First, it is
possible to use the Symbolic Math Toolbox in Matlab to calculate w�(z) via rational arithmetic. But
the process is extremely slow. In contrast, the floating-point arithmetic of the Matlab routine ldl
applied to the d × d matrix F is significantly faster. Second, when the rank d is relatively high, we
have observed that the value of r�� obtained by either Algorithms 1 or 2 decreases to nearly zero as �
increases, strongly signifying that the modified Gram–Schmidt process is becoming unstable. In con-
trast, the LDL∗ calculation handles this stability issue more smoothly.

To demonstrate the advantage of the LDL∗, we create a sample matrix F from 500 randomly
generated values λ� over the unit disk. See the left graph in Fig. 4. In theory, F should be of rank
500, and likewise the corresponding Hankel matrix. However, when we plot in the graph of Fig. 4 the
singular values of F and the absolute values of the diagonal elements of the matrix D from the LDL∗ of
F, two observations deserve our attention from this experiment. The most noticeable one is that there is
a considerable agreement between these two sets of values. The other equally noteworthy observation
is that a significant portion of the singular values of F or diagonal elements of D are nearly machine
zero. Indeed, numerical experiments indicate that the analogy between singular values of F and the
absolute values of diagonal entries of D remains even for low rank d, strongly suggesting that the LDL∗

handles the nearly singular matrix F almost as well as the singular value decomposition does. These
observations are not totally surprising because it is known that the LU algorithms, of which the LDL∗

is a special case, with suitable pivoting strategies, can reveal ranks properly (Hansen & Yalamov, 2001;
Miranian & Gu, 2003; Kawabata et al., 2004; Lee et al., 2009; Foster & Liu, 2012).
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With this fact in mind, the detection of nearness to zero by diagonal entries of D suggests that
maybe the initial rank d should be reduced. The implication of this rank reduction is significant because
it will cause a chain of events to happen. For instance, equation (2.4) will have to be solved for a
smaller system, which redefines the coefficients γ0, . . . , γd−1 for the characteristic polynomial (2.10)
and, consequently, a new Vandermonde factorization (2.15). Equivalently, a new sample matrix F will
be generated of which the LDL∗ is called again to check the rank condition and the process may be
repeated. In terms of the sinusoidal signal (or equivalently its trajectory matrix), rank reduction means
that maybe the more complicated initial signal could be approximated with smaller number of compo-
nents (or a much lower rank Hankel matrix). This rank estimation for Hankel operators, partially related
to the subject on SSA, will be reported in a separate paper.

5. Conclusion

Semi-infinite-bounded Hankel matrices of finite rank form an important class of matrices because they
occur in applications across multiple fields. This paper makes two contributions. First, on the theo-
retical side, we revisit existing results and establish connection among the various characterizations of
finite rank in terms of rational functions, recursion, sinusoidal signals and Vandermonde factorization.
Second, on the computational side, we propose to compute the nonzero singular values of the infinite
matrix by means of the LDL∗ decomposition of a specific finite-dimensional sample matrix.

In all characterizations, though different parameters are used, a semi-infinite-bounded Hankel matrix
of rank d depends on 2d parameters. The Vandermonde factorization enables us to characterize the
action of the original infinite-dimensional H as an operator via a singular-value preserving transforma-
tion to a finite-dimensional matrix from which singular values can be calculated.

It is observed that, even though a Hankel matrix is of rank d in exact arithmetic, its numerical
rank goes wild as soon as the parameters are replaced by floating-point numbers. The usual modified
Gram–Schmidt orthogonalization applied to the generating functions, therefore, becomes increasingly
unstable in numerical computation. Under such circumstances, we propose to calculate the upper tri-
angular matrix R needed in the finite-dimensional representation, fast and effectively without any ortho-
gonalization, from the LDL∗ decomposition of a d × d sample matrix which is readily available from
the Vandermonde factorization. Additionally, the diagonal entries of D might be indicative of rank
reduction.

A partial list of future work includes the impact on the singular values when the rank d is wrongly
assumed, the effect of multiple or coalescent roots, the sensitivity of the computed roots λ� subject
to perturbations, complexity analysis of the proposed method for singular value computation and the
effectiveness of the rank reduction procedure suggested by the LDL∗ algorithm.

Funding

This research was supported in part by the National Science Foundation under grants DMS-1014166
and DMS-1316779 (M.T.C.). This research was supported in part by the National Science Council of
Taiwan under grant NSC 101-2115-M-194-007-MY3 (M.M.L.).

References

Adamjan, V. M., Arov, D. Z. & Kreı̆n, M. G. (1968) Infinite Hankel matrices and generalized Carathéodory–Fejér
and I. Schur problems. Funkcional. Anal. i Priložen., 2, 1–17.

 by guest on July 4, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


FINITE-DIMENSIONAL REPRESENTATION OF HANKEL OPERATORS 19 of 21

Akhiezer, N. I. (1965) The Classical Moment Problem and Some Related Questions in Analysis. New York: Hafner
Publishing Co. Translated by N. Kemmer.

Allen, M. R. & Smith, L. A. (1996) Monte Carlo SSA: detecting irregular oscillations in the presence of coloured
noise. J. Climate, 9, 3372–3404.

Ashcraft, C., Grimes, R. G. & Lewis, J. G. (1999) Accurate symmetric indefinite linear equation solvers. SIAM
J. Matrix Anal. Appl., 20, 513–561 (electronic).

Auvergne, M. (1988) Singular value analysis applied to phase space reconstruction of pulsating stars. Astronom.
Astrophys., 204, 341–348.

Bezerra, L. (2012) Vandermonde factorizations of a regular Hankel matrix and their application to the computation
of bézier curves. SIAM J. Matrix Anal. Appl., 33, 411–432.

Boley, D. L., Lee, T. J. & Luk, F. T. (1992) The Lanczos algorithm and Hankel matrix factorization. Linear
Algebra Appl., 172, 109–133. Second NIU Conference on Linear Algebra, Numerical Linear Algebra and
Applications (DeKalb, IL, 1991).

Boley, D. L., Luk, F. T. & Vandevoorde, D. (1997) Vandermonde Factorization of a Hankel Matrix. Scientific
Computing (Hong Kong, 1997). Singapore: Springer, pp. 27–39.

Bowden, C. M. (1968) Boundedness of linear operators in the space �2. Int. J. Quantum Chem., 2, 363–371.
Bultheel, A. & Van Barel, M. (1997) Linear Algebra, Rational Approximation and Orthogonal Polynomials.

Studies in Computational Mathematics, vol. 6. Amsterdam: North-Holland Publishing Co.
Chu, M. T., Funderlic, R. E. & Plemmons, R. J. (2003) Structured low rank approximation. Linear Algebra

Appl., 366, 157–172. Special issue on Structured Matrices: Analysis, Algorithms and Applications (Cortona,
2000).

Danilov, D. L. (1997) Principal components in time series forecast. J. Comput. Graph. Statist., 6, 112–121.
Dutoit, T. (2004) Unusual teaching short-cuts to the Levinson and lattice algorithms. Proceedings of the 2004

IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2004), vol. 5. Quebec:
IEEE, pp. V–1029–32.

Fang, H.-R. (2011) Stability analysis of block ldlT factorization for symmetric indefinite matrices. IMA J. Numer.
Anal., 31, 528–555.

Feldmann, S. & Heinig, G. (1996) Vandermonde factorization and canonical representations of block Hankel
matrices. Proceedings of the Fourth Conference of The International Linear Algebra Society, vol. 241/243.
Rotterdam: Elsevier, pp. 247–278.

Foster, L. V. & Liu, X. (2012) Comparison of rank revealing algorithms applied to matrices with well defined
numerical rank. Technical Report. San Jose: San Jose State University. Notes and Matlab codes available at
http://www.math.sjsu.edu/ foster/rankrevealingcode.html.

Francis, B. A. (1987) A Course in H∞ Control Theory. Berlin: Springer.
Gantmacher, F. R. (1959) The Theory of Matrices. Vols. 1, 2. New York: Chelsea Publishing Co. Translated by

K. A. Hirsch.
Ghil, M. & Taricco, C. (1997) Advanced spectral analysis methods. Past and Present Variability of the Solar-

Terrestrial System: Measurement, Data Analysis and Theoretical Models (G. C. Castagnoli & A. Provenzale
eds). Bologna, Italy: Soc. Ital. di Fis., pp. 137–159.

Gillard, J. & Zhigljavsky, A. (2011) Analysis of structured low rank approximation as an optimization problem.
Informatica (Vilnius), 22, 489–505.

Glover, K. (1984) All optimal Hankel-norm approximations of linear multivariable systems and their L∞-error
bounds. Internat. J. Control, 39, 1115–1193.

Golub, G. H. & Van Loan, C. F. (2013) Matrix Computations, 4th edn. Baltimore: Johns Hopkins University
Press.

Golub, G. H. & Welsch, J. H. (1969) Calculation of Gauss quadrature rules. Math. Comp., 23, 221–230.
Golyandina, N., Nekrutkin, V. & Zhigljavsky, A. (2001) Analysis of Time Series Structure: SSA and Related

Techniques. Boca Raton: Chapman & Hall/CRC.
Gonnet, P., Güttel, S. & Trefethen, L. (2013) Robust Padé approximation via SVD. SIAM Review, 55,

101–117.

 by guest on July 4, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


20 of 21 M. T. CHU AND M. M. LIN

Gonzalez, R. C. & Woods, R. E. (2008) Digital Image Processing, 3rd edn. New Jersey: Prentice Hall.
Gragg, W. B. & Reichel, L. (1989) On singular values of Hankel operators of finite rank. Linear Algebra Appl.,

121, 53–70.
Hansen, P. C. & Yalamov, P. Y. (2001) Computing symmetric rank-revealing decompositions via triangular

factorization. SIAM J. Matrix Anal. Appl., 23, 443–458 (electronic).
Heinig, G. (2001) Fast and superfast algorithms for Hankel-like matrices related to orthogonal polynomials.

Numerical Analysis and Its Applications (Rousse, 2000). Lecture Notes in Computer Science, vol. 1988.
Berlin: Springer, pp. 385–392.

Heinig, G. & Rost, K. (1984) Algebraic Methods for Toeplitz-Like Matrices and Operators. Mathematical
Research, vol. 19. Berlin: Akademie-Verlag.

Higham, N. J. (1999) Stability of block LDLT factorization of a symmetric tridiagonal matrix. Linear Algebra
Appl., 287, 181–189. Special issue celebrating the 60th birthday of Ludwig Elsner.

Ibryaeva, O. L. & Adukov, V. M. (2013) An algorithm for computing a Padé approximant with minimal degree
denominator. J. Comput. Appl. Math., 237, 529–541.

Iohvidov, I. S. (1982) Hankel and Toeplitz Matrices and Forms. Boston, MA: Birkhäuser. Translated by G. Philip
A. Thijsse.

Kalman, D. (1984) The generalized Vandermonde matrix. Math. Mag., 57, 15–21.
Kawabata, Y., Matsubara, M. & Sugimoto, S. (2004) System order determination by using LDLT decomposi-

tion and information criteria. Proceedings of the 35th ISCIE International Symposium on Stochastic Systems
Theory and its Applications. Ube, Japan: Inst. Syst. Control Inform. Engrs. (ISCIE), Kyoto, pp. 158–163.

Kibangou, A. Y. & Favier, G. (2007) Toeplitz-Vandermonde matrix factorization with application to parameter
estimation of Wiener-Hammerstein systems. Signal Process. Lett., IEEE, 14, 141–144.

Kung, S. Y. (1978) A new identification and model reduction algorithm via singular value decomposition.
Proceedings of the 12th Asilomar Conference on Circuits, Systems and Computers. Pacific Grove: IEEE,
pp. 705–714.

Kung, S. Y. & Lin, D. W. (1981) Recent progress in linear system model-reduction via Hankel matrix approxima-
tion. Circuit Theory and Design (The Hague, 1981) (R. Boite & P. Dewilde eds). Amsterdam: North-Holland,
pp. 222–233.

Lee, T.-L., Li, T.-Y. & Zeng, Z. (2009) A rank-revealing method with updating, downdating, and applications. II.
SIAM J. Matrix Anal. Appl., 31, 503–525.

Lemmerling, P. & Van Huffel, S. (2001) Analysis of the structured total least squares problem for
Hankel/Toeplitz matrices. Numer. Algorithms, 27, 89–114.

Luk, F. T. & Qiao, S. (2003) A fast singular value algorithm for Hankel matrices. Fast Algorithms for Structured
Matrices: Theory and Applications, vol. 323. Providence: Amer. Math. Soc., pp. 169–177.

Markovsky, I. (2012) Low Rank Approximation: Algorithms, Implementation, Applications. London: Springer.
Markovsky, I., Willems, J. C., Van Huffel, S., De Moor, B. & Pintelon, R. (2005) Application of struc-

tured total least squares for system identification and model reduction. IEEE Trans. Automat. Control, 50,
1490–1500.

Mineva, A. & Popivanov, D. (1996) Method for single-trial readiness potential identification, based on singular
spectrum analysis. J. Neurosci. Methods, 68, 91–99.

Miranian, L. & Gu, M. (2003) Strong rank revealing LU factorizations. Linear Algebra Appl., 367, 1–16.
Nehari, Z. (1957) On bounded bilinear forms. Ann. Math. (2), 65, 153–162.
Pan, V. Y. (2001) Structured Matrices and Polynomials: Unified Superfast Algorithms. Boston: Birkhäuser.
Park, H., Zhang, L. & Rosen, J. B. (1999) Low rank approximation of a Hankel matrix by structured total least

norm. BIT, 39, 757–779.
Partington, J. R. (1988) An Introduction to Hankel Operators. Cambridge: Cambridge University Press.
Peller, V. V. (1998) An excursion into the theory of Hankel operators. Holomorphic Spaces (Berkeley, 1995) (S.

Axler, J. E. McCarthy, & D. Sarason eds). Cambridge: Cambridge Univ. Press, pp. 65–120.
Peller, V. V. (2003) Hankel Operators and their Applications. New York: Springer.
Power, S. C. (1982) Hankel Operators on Hilbert Space. Boston: Pitman (Advanced Publishing Program).

 by guest on July 4, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


FINITE-DIMENSIONAL REPRESENTATION OF HANKEL OPERATORS 21 of 21

Steele, J. M. (2012) The Yule–Walker equations and algorithms for their solution. Notes and references available
at http://www-stat.wharton.upenn.edu/ steele/Courses/956/ResourceDetails/Yul eWalkerAndMore.htm,.

Tyrtyshnikov, E. (2010) Hankel minors and Pade approximations. Numerical Methods for Struc-
tured Matrices and Applications. Operator Theory: Advances and Applications (D. A. Bini, V.
Mehrmann, V. Olshevsky, E. Tyrtsyhnikov & M. Van Barel eds), vol. 199. Basel: Birkhäuser Verlag,
pp. 431–439.

Vautard, R., Yiou, P. & Ghil, M. (1992) Singular-spectrum analysis: a toolkit for short, noisy chaotic signals.
Phys. D, 58, 95–126.

Widom, H. (1966) Hankel matrices. Trans. Amer. Math. Soc., 121, 1–35.
Yiou, P., Sornette, D. & Ghil, M. (2000) Data-adaptive wavelets and multi-scale singular-spectrum analysis.

Phys. D, 142, 254–290.
Young, N. J. (1983) The singular-value decomposition of an infinite Hankel matrix. Linear Algebra Appl., 50,

639–656.

 by guest on July 4, 2014
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/

	Introduction
	Finite rank
	Rational functions
	Recursive formula
	Sinusoidal signals
	Vandermonde factorization

	Finite-dimensional representation
	Modified Gram--Schmidt orthogonalization
	Implicit calculation
	LDL* decomposition

	Numerical experiments
	Conclusion

