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A numerical approach iterating on the position of interface points is suggested for solving interface 
problems arising in two-point boundary value problems. Given an interface problem, it is decomposed 
into several standard local boundary Yalue problems which are coupled at the interface points. 
Meanwhile, a nonlinear equation involving the interface points are formulated from the interface 
conditions. The advantages of this approach are that the boundary conditions for each local problem 
can easily be selected by considering the natural physical requirements, and that each of the local 
problems can be solved independently by standard numerical BVP techniques. 

1. Introduction 

In many physical systems modeled by differential equations, the parameters of the system 
may not be continuous functions of time and space. Often these discontinuities are reflected in 
interface conditions for the differential system whereas the location of the interfaces may or 
may not be known a priori. This paper deals especially with interface problems arising in 
two-point boundary value problems. Such a problem typically can be described in the 
following form: 

Given an ODE for a function y together with separated boundary conditions at fixed points 
x = a and x -  b (a < b), trigger conditions 

f(c, y(c-),  y'(c-),  y(c÷), y'(c÷)) = 0 (1) 
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and interface conditions 

g(c, y(c-), y'(c-), y(c*), y'(c÷)) = o, (2) 

find the unknown function y satisfying the ODE and BCs, and such that the interface 
conditions hold at any point at which the trigger conditions hold. (Such a point x = c is 
called an interface point.) 

In recent years the development of numerical techniques for solving standard BVPs has 
reached some level of sophistication. Extensive references in this aspect may be found in 
[1-5]. All these various approaches are generally applicable to fixed interface problems as 
well. For instance, in the shooting method one-sided limits at the interface are known so that 
the solution can be continued past the interface by computing new initial values from the 
interface condition. In finite difference techniques the algebraic equation at the interface mesh 
point is derived from the interface condition rather than the differential equations [6]. We 
find, however, that free interface problems where the location of the interface has to be 
determined as part of the problem, generally are not amenable to the standard solution 
techniques mentioned above. The breakdown could be caused by several reasons depending 
upon the nature of the underlying problem. This observatio~ will be better demonstrated 
when we discuss our examples in the later part of this paper, i 

If the number of interface points is known ahead of time, then a procedure [7] that 
transforms the intervals into ones with known endpoints and introduces trivial ODEs to 
determine the unknown point values, may be employed. While this procedure would result in 
a standard BVP and hence many standard codes could be used from then on, the penalty is a 
significant increase in the size of the system. Alternatively, the invariant imbedding method [8] 
seems to be a more flexible and mechanically applicable approach for solving free interface 
problems. The basic idea of this method is to interpret the ordinary differential equations of 
the boundary value problem as the characteristic equations of an associated partial differential 
equation of an initial value problem. As a consequence, numerical PDE techniques are then 
required to solve the corresponding initial value problem. 

In this paper we propose a direct approach to solving interface problems for two-point 
BVPs. T'~e idea is to utilize the natural structure in the interface condition to construct what 
we call the target function of the interface points. We then apply the Newton method to 
iterate on the position of interface points. Since the derivative of the target function with 
respect to the interface points is generally not available, we use the secant method as a matter 
of course. Although the mathematical facts of interface problems could be very complicated 
and difficult, the algorithm we propose herein is quite straightforward and is explained in the 
next section. The main purpose of this paper is to demonstrate how the idea works. Towards 
this end, we apply the method to four different types of interface problems. We show how the 
target function could be formed and how the algorithm performs. 

2. Algorithm 

One powerful technique used for solving standard two-point BVPs is the parallel shooting 
method. Our idea is analogous to that method. See also [9]. The main difference is that in the 
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parallel shooting method one attempts to satisfy the continuity and boundary conditions by 
adjusting the solution values at certain prescribed and fixed nodal points whereas in our 
method we attempt to solve certain target equations by adjusting the location of interface 
points. In the parallel shooting method the interface conditions remain to cause difficulty in 
the computation, but in our method the interface conditions are converted into standard 
boundary conditions. 

To illustrate the idea, let us consider the following example. Let the BVP be defined by 

y”=f(x,y,y’,c), O-<L (3) 

with boundary conditions 

where the solution y is also required to satisfy the interface condition 

dY’(C39 Y’(c+)) = 0, (5) 

whenever the trigger condition 

Y(c) = 0 (6) 

holds. For simplicity of exposition, we shall assume further that somehow we know there is 
only one interface point. Then solving the above problem is equivalent to finding the scalar c 
and two functions y1 and yz, such that 

P2:y;=f(x,y,,y;), c-cl, Y2W = 0 = 3 y,(l) 0 9 (8) 
and that 

g(yXc)9 YXC)) = 0 9 (9 

where y;(c) and y;(c) are understood in the sense of a one-sided limit. By using the Green’s 
functions 

(1-Elc)x OSx<J, @~(x’~;c~l{(l-x,c)~: @sxcc, 

@Ax, Cc)= 1 Cl- 6)(x -c)/(l-c), cSxd& 
(l-x)(6-c)/(l-c), @xSl, 

W) 

(11) 

for problems PI and P2, respectively, we can see the sensitivity dependence of y;(c) and y;(c) 
upon the change of c: 
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aye(x; c) 1 f '  oc ---- ( 1 _  C)2 (1- (13) 

Thus the location of the interface point c may be approximated iteratively by applying the 
secant method to the target equation (9) in which functions Y l and Y2 corresponding to 
problems P1 and/ '2 with c equal to the current approximate value of the interface point are 
obtained by using any standard numerical BVP technique. 

The above idea obviously can be extended to the multi-interface case. Suppose it is 
conjectured that there are n interface points. Let 0 = c o < c I < . . .  < c,, < c,+1 = 1. Then the 
target equation becomes 

c.)= [ g(y~(cl)"Y2(Cl)) ] 
• ~ 0  9 ), g(y'(c. " ' c 

(14) 

where for i = 1 , . . . ,  n + 1, the function Yi is the solution to the BVP 

, ' , y ~ ( c , )  = 0  y';=f(x, y~ y , ) ,  c~_~ <x<c~ y~(c,_~)=O, (15) 

It is easy to see that the Jacobian of the target function has a tridiagonal stucture. One should 
note, however, that there is no guarantee that the target equation will always have a solution. 
One should also note that in certain cases the target equation may have more than one 
solution. Some examples are observed in the next section. For the time being, we do not know 
of any general theory that can predict the number of interface points before actually solving 
the problem. Such a theory certainly would be advantageous. In practice, the underlying 
physical backgrouad sometimes can provide information in estimating the number of interface 
points. 

For general BVPs the continuous dependence of the solution on the location of interface 
points may not be addressed as easily as before [10]. In fact, even the theoretical existing 
question of a solution itself is difficult to answer in general [11]. Nevertheless, this mathemati- 
cal difficulty should not deter us from seeking a numerical solution. A numerical algorithm 
based upon the above idea can still be formulated, provided each of the local problems with 
the trigger conditions as its boundary conditions at any two consecutive interface points is 
solvable. 

3. Applications 

The idea explained in the preceding section is now applied to four nontrivial free interface 
problems. We demonstrate how the target equation could be constructed and we present some 
empirical results. From case to case, we analyze the theoretical solution to a certain extent just 
to expose some intrinsically important properties. Readers should not mistake that all 
problems can be analyzed in a similar way. In fact, even if one of the problem parameters is 
changed a little bit, the analytic solution may become too complicated to be tracked. 

All the local boundary value problems hereinafter are solved by a standard finite element 
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method with linear elements [12]. Other numerical BVP techniques certainly can be used as 
well. In calculating the finite difference for the secant method, the perturbation e on the 
values of interface points is chosen to be e = O(hP+l), if the ODE discretization is O(hP). 
With this choice of e, the computation of the perturbed problem can be obtained inexpensive- 
ly by applying an iterative refinement technique to the solution of the unperturbed problem. 
Indeed, the solution obtained for the unperturbed problem is used as the initial guess for the 
perturbed problem. 

We note also that all the local problems are totally uncoupled. Therefore, it is feasible to 
carry out the computation concurrently on a parallel computer. The following results are done 
on an IBM 4361 machine. 

EXAMPLE 1. A one-dimensional scattering problem. 
Consider the motion of a particle under the influence of a known force depending on its 

speed and position. Suppose that whenever this particle collides with a known barrier it is 
scattered back with a fraction of its momentum. Assume that the particle starts from the origin 
and that at a known future time T it passes again through the origin. We are interested in its 
initial momentum. The corresponding free interface problem is described as: 

u"ffi O(t, u, u'), 

u(O) =o, u(T) •O, (16) 

u'(L + ) ffi - a u'(L - ), whenever u(L) -/3, 

where u is the displacement, u' the speed of the particle,/3 the location of the barrier and 
0 < a < 1. The above information in general is not adequate in determining a unique solution 
because corresponding to different initial momentum values the particle could have been 
scattered more than once during the time interval [0, T] and still satisfy the boundary 
condi'tions. So the number of scatterings should also be specified as an additional condition for 
this problem. 

For illustration purpose, let us consider a ratber simple but interesting bouncing ball 
problem. We shall assume G(t, u, u ' ) - - g  where g is the gravitational constant. The 
parameters are chosen to be u (0)=  u0, T =  1 and /3 =0.  The solution to this particular 
problem can be derived explicitly, which is done below to show some theoretical facts. 

Suppose we are looking for the solution which has n bounces in the interval (0, 1). Let the 
time of the bounces (the interface points) be denoted as t l , . .  •, t,. By requiring the analytical 
solutions of the BVP (16) to satisfy the interface conditions at every interface points, we 
obtain the following system: 

( t 1 -- t 2 -- --Or t 1 + gtl/, 

tk -- tk+1 ffi --a(tk- tk-1) , 

t . - l = - a ( t . - t . _ l ) .  

k f f i 2 , . . . , n - 1 ,  (17) 

(18) 



104 M.T.  Chu, G.H. Guirguis, A numerical method for  solving interface problems 

It is easy to see that the solution of (17) satisfies the recurrence relation: 

t n -- 
1 + atn_  1 

l + a  ' 
n - k  

1+ a(1 + a + " "  + a )tn_ k 
tk = 1 Jr" a "~" " " "  Jr" a n - k + 1  ' (19) 

gt2(1 + a + - - .  + a n ) - g t l  + 2 a ( 1 +  a + . . .  + an-~)u o = 0 .  (20) 

Thus, given a and n, the necessary condition for having a solution of (16) is that the initial 
height of the ball does not go beyond the upper bound 

g (21) Uo <~ 8 a ( 1  + a + . . .  + a n - ~ ) ( 1  + a + " "  + a n) " 

In the strict inequality case, it is interesting to note that there should always be two sets of 
bounces {tk} corresponding to two different values of initial momentum values. 

We now solve the problem numerically without referring to any of the theoretical facts 
mentioned above. Let to = 0 and tn+l = 1. It seems nature to use the jump conditions of the 
first derivatives at the interfaces of the solution as the target equation. That is, we want to find 
t ~ , . . . ,  tn, so that 

[u+(t,) + +ut(t,) ] 
G(t,, . . . , t+) = , i =0, (22) 

u++,(t.) + +u'(t.)J 
where uk(t ) is the solution to the BVP u"+ g •0 over the interval [tk_l, tk] with boundary 
conditions Uk(tk-1) ---- Uk(tk) =0 for k ffi 2,..., n, and u1(tl) •O, u1(to) ffi u o and u,,+1 •0. 

We test our algorithm for the case where n = 3, a = I. The mesh size in the finite element 
method for each local problem is chosen to be h = 10 -2 The perturbation value used in the 
sec.ant method is set to be 6 - I0 -+. We count that convergence occurs whenever the 2-norm of 
updates on the location of interface points is less than I0-. Table I shows the approximate 
locations of the three interface points. 

Figure I contains the graphs of the coupled solutions corresponding to the first and final 
iterates. 

Table 1 
Iterates of three interface points for the bouncing ball problem 

Number of iterations t ! t2 t3 

0 0.4OOOOOOO 0.6OOOOOOO 0.7OOOOOOO 
1 0.41143894 0.50884664 0.60625434 
2 0.40837241 0.50011439 0.59185637 
3 0.40833756 0.50000002 0.59166247 
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Fig. 1. Bouncing ball problem. 

EXAMPLE 2. An  undamped vibration with constant restoring force: 
Another important class of BVP's in application are those with discontinuous nonlinearities. 

Quite often this kind of problem has multiple solutions. Here we consider a simple vibration 
problem subject to the signum nonlinearity of the restoring force: 

u" = -sgn(u), u(O) = u(1) = o. (23) 

This problem is different from Example 1 in that a solution to (23) is required to be in C1[0, 1] 
and to have piecewise continuous second derivative only. The interface condition, therefore, is 
the continuity of the first derivative u' at the interface point where u vanishes. 

Again, problem (23) can be solved explicitly. Indeed, it is not difficult to *see that the 
totality of solutions of (23) is composed of piecewise parabolas denoted by +--~,, n ffi 



106 M. I". C~u, G.H. Guirguis, A numerical method for solving interface problems 

0, 1, 2 , . . . ,  where 

q~,(t) = g ( -1 )  k t -  n (24) 

for k i n  <~ t < . ( k  + 1)In ,  k =0,  1 , . . . ,  n -  1. Note that for each n there are n -  1 interface 
points uniformly distributed throughout the interval (0, 1). 

Suppose now that we want to solve ('23) numerically. We may choose the target equation 
for q , . . . ,  tn_~ to be 

G ( q ,  . . . , t , ) =  
u ~ ( t l ) -  U~(tl) 

u'(t ._~)- u'_~(t._~) 
= 0 .  (25) 

where uk(t ) solves the trivial problem u~ = (--1) k+l over the interval [tk_~, tk] with boundary 
conditions Uk( tk_~)=Uk( tk )=O for k =  1 , . . . , n  (Here t0=0 and t, =1) .  We test our 
algorithm for the ease n = 3. All the control parameters in the numerical computation are set 
to be the same as those in Example 1. Table 2 shows the effective convergence of our scheme 
on locating the interface points. The coupled solutions corresponding to the initial and the 
final locations of the interface points are sketched in Fig. 2. 

REMARKS• When reviewing this work, we have found several other approaches suggested in 
the literature. Since the results are interesting, we mention them below for comparison. 

(1) It has been conjectured [13] that the Picard iteration, 

" = - s g n ( u . _  ) ,  u. ~ u.(O) = u. (1)  = o .  (26) 

even starting close to nonextreme solutions, would always converge in a finite number of steps 
to the extreme solutions __ ~'1. 

(2) It also has been suggested to solve the weak formulation, 

F(u; O)ffi (u', ~ ' )  - ( sgn (u ) ,  4 , ) - 0  V O e  Co(O, 1), (27) 

of (23) by the Newton method in which the derivative of F is understood in the weak sense 

OF(u; 4,) ~, s(x,),/,(x,) 
ou s = (s', ~> - 2 ~ (28) 

• lu'(x,)l ' 

Table 2 
Iterates of three interface points for the constant restoring force vibra- 
tion problem 

Number of iterations t I t2 t3 

0 0.40000000 0.60000000 0.70000000 
1 0.24999999 0.49999999 0.75000000 
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Fig. 2. Vibration problem with a constant restoring force. 

where x~ are the interface points, and the value of F is obtained from a finite element method. 
In using this scheme, we have observed some interesting phenomena: 

(a) Depending upon the number of elements used in computing the values of F, the above 
scheme may converge to different solutions of (23) even if all the other computing parameters 
are set up exactly the same. For example, with initial guesses of the interface points at (0.00, 
0.21, 0.33, 0.76, 1.00}, the scheme converges to q'2 if 80 elements are used, and converges to 
-q~3 if 160 elements are used. 

(b) Depending upon the location of initial guesses, some of the interface points may 
coalesce eventually even if all the other computing parameters are the same and the initial 
guesses are well separated. We demonstrate one example of two interface points in Table 3. 
The first column on the left contains the initial guesses for the first interface point and the first 
row on the top contains the initial guesses for the second interface point. The integer n in the 
table indicates that the scheme with the corresponding initial guesses returns a solution which 
has n -  1 interface points. We do not ,see this coalescence happen in our algorithm. 
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Table 3 
Effect of initial guesses on the convergence 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 1 1 2 2 2 2 1 1 
0.2 1 1 1 3 2 1 1 
0.3 2 1 3 3 2 2 
0.4 3 3 3 3 2 
0.5 3 2 1 2 
0.6 2 1 2 
0.7 1 1 
0.8 1 

E X A M P L E  3. A damped free vibration problem with constant damping force. 
We now consider another type of a nonlinear differential equation 

mu" + csgn(u') + ku = O, (29) 

where m, c and k are all positive. The second term in (29) simply expresses that the friction 
opposes the motion but is independent of the speed. Multiplying both sides of (3.12) by u', we 
obtain d(m(u')2/2 + ku2)/dt  = -c lu ' [  <.0. So the motion dies out with increasing time. The 
dynamics of (29) is similar to that of the well understood linear damped differential equation 

mu" + cu' + ku = O. (30) 

After posing Dirichlet boundary conditions, however, the solutions to these two BVPs behave 
very differently. 

As an example, suppose the boundary conditions are u(0) = u(1) = 0. For the BVP defined 
by (30), either there are infinitely many nonisolated solutions of the form u( t )= 
Re -c'/(2m) sin(/~t) with R arbitrary, if the value tt = (4k in -  c2)1~2/(2m) is an integer multiple 
of R, or there is no solution at all, otherwise. The locations of the interface points, if there are 
any, depend upon the values of m, c and k only and, in particular, are independent of the 
initial momentum. 

In contrast, we claim that the BVP defined by (29) either has isolated solutions or has no 
solution, and that the value of the initial momentum affects the location of the interface 
points. To see this analytically, we break the solution of (29) into two phases denoted by 
u+ and u_, respectively, depending upon whether u' is positive or negative. Let u = (k /m)  ~2. 
Then the general solutions u+ and u_ are of the forms 

and 

¢ 
u÷(O- R÷ cos(vt-8÷)- (31) 

¢ 
u_(t) = R _ c o s ( u t -  8_) + ~ ,  (32) 

respectively, where R+, 8+, R_ and 8_ are determined from the boundary conditions and/or 
the interface conditions. For instance, suppose we start with positive momentum, then the 
initial value u+(0) -  0 implies that 
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C 
R+ cos 8+ ffi ~ ,  (33) 

whereas 8+ is related to the initml momentum by the relation 

/pc 
+(0) = -~- tan 8+. (34) 

The initial momentum is to be determined so that the other boundary condition is satisfied. 
The solution u+ (t) can be continued until 

8+ 
t = tl = - - ,  ( 3 5 )  

17 

which is the first time that u+(t)=O. If t~ ~<1, it could be the location of the first interface 
point for our proble m. Then the solution u_(t) with initial values ( u _ ( 0 ) , u ' ( 0 ) ) =  
(0, c(sec k -  1)/k) takes place and is continued for a time interval of length ~r/u. If 

8+ + ' t r  
t---- t 2 ---- ( 36 )  

17 

is still less than 1, then it could be the location of the second interface point. This procedure 
continues to alternate between u+ and u_. It is now clear that the initial momentum continues 
to affect the location of the successive interface points. For instance, in the one interface point 
case, we see that the exact 8+ (which determines the initial momentum) should satisfy the 
nonlinear equation 

(sec B+ - 2) cos(u - 8+ ) + I = O. (37) 

In spite of the above theoretical analysis, let us now resort to the idea discussed in Section 2 
to solve the BVP (29) with boundary conditions u(0)= a, a > 0  and u(1) = 0  numerically. 
Obviously one choice for the target equation comes from the (implicit) requirement of 
continuity of the solution at the interface points. Therefore, we are looking for the point t~ so 
that 

6(t,) = u,(t~)- u,(t,)= o, ( 3 8 )  

where u I and u2 solve the BVPs 

and 
mu'~ + c + ku I =0, u1(O) = a (a >0), u~(t~) =0, (39) 

mu'~ - c + ku2 =0, u20)= u~(t,) = O, (40) 

respectively. 
Listed in Table 4 are the iterates of t I for the test case a = 0.5, m = 1, c = 0.25 and k = 9 by 

our method. The solution segments for the initial guess as well as those for the final solution 
are sketched in Fig. 3. We remind the readers that the two BVPs (39) and (40) are solved 
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Table 4 
Iterates of one interface point for 
the constant damping force vibra- 
tion problem 

Number of iterations t, 

0 0.50000O00 
1 0.47433970 
2 0.47420496 
3 0.47419442 
4 0.47419432 
5 0.47419432 

Table 5 
Iterates of the interface between 
two liquids 

Number of iterations t, 

0 0.90000 
1 0.79771 
2 0.63659 
3 0.50612 
4 0.46919 
5 0.46703 

,. 

it% 

c~ 
°. 

u') 

,-q 

3.00 01 0' ' 15 .30 0 45 

LEGEND 
o - IN!TIRL 6UESS 

" F!NRL SOLUTION 

, z ~ 4 ~ ~  ~ , ~  , 

Fig. 3. Vibration problem with a constant damping force. 
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independently by a finite element method. Although the initial segments are highly apart from 
each other, finally the solution segments are patched together. 

EXAMPLE 4. An overspecilied boundary condition problem. 
Consider the motion of a particle through a two-layered liquid column. We assume the 

particle begins to fall from position u ffi 1 at time t ffi 0 under the influence of gravity while its 
motion is retarded through viscous drag which is proportional to its velocity. At time t ffi 1, it 
reaches the bottom of the column u ffi O. The problem is to locate the interface between the 
two layers of fluid. The equation of motion is described by 

II k"f-g- OlkUk; uI(O) fUO ' uI(O)=O, U2([)=O (41) 

This problem is different from all the above examples in that u 1 is completely determined as 
an initial value problem. Physically we expect the transition of the motion at the interface to 

=l 

LESEND 
o - IN IT IBL 8UES5 
a - FINBL SOLUTION 

0 

.4,.. 

0 

3.00 
0 
i,,.t" 

I 

0 ,~- 

0 

0 

01 ,s 0:30 o:,ls 0.60 • ° 0 

Fig. 4. Problem of interface between two liquids. 
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be smooth. So the target equation can be chosen to be either 

G(tl) = U l ( t l ) -  u 2 ( t l ) =  O, (42) 

w h e r e  u 2 satisfies the boundary conditions u~(tl)= u~(tl) and U2(1 ) ----O, or 

G( t l ) - "  U~ ( t l ) -  u ~ ( t l ) -  O, (43) 

where u2 satisfies the boundary conditions U2(tl)----Ul(tl) and u2(1 ) - -0 .  
We have experimented with (43) by using linear elements for the BVP of u 2 and RKF45 for 

the IVP of ut. With parameters a~ =0.5,  a 2 ---4.0 and u o - 1 0 ,  we obtain iterates of the 
interface t 1 as in Table 5. The initial and the final solutions are sketched in Fig. 4. 

4. Conclusion 

A numerical approach utilizing the secant method to iterate on the position of the interface 
points is suggested for solving interface problems for two-point boundary value problems. The 
advantages are that the interface conditions usually can be treated as the boundary conditions 
for the local problems, and that each of the local problems can be solved independently by 
standard numerical BVP techniques. We have applied the proposed method successfully to 
four different types of interface problems. In most cases, the target equation that characterizes 
the location of the interface points can be formulated easily from the natural structure in the 
interface problem. The mathematical theory of interface problems still needs to be 
strengthened. Meanwhile, we hope our approach provides a straightforward but feasible way 
to obtain the numerical solution. 
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