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Abstract� A collection of inverse eigenvalue problems are identi�ed and classi�ed according to their
characteristics� Current developments in both the theoretic and the algorithmic aspects are summarized
and reviewed in this paper� This exposition also reveals many open questions that deserves further
study� An extensive bibliography of pertinent literature is attached�
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�� Introduction�

���� Objective� An inverse eigenvalue problem concerns the reconstruction of a
matrix from prescribed spectral data� The spectral data involved may consist of the
complete or only partial information of eigenvalues or eigenvectors� The objective of

an inverse eigenvalue problem is to construct a matrix that maintains a certain speci�c
structure as well as that given spectral property��

Associated with any inverse eigenvalue problem are two fundamental questions �
the theoretic issue on solvability and the practical issue on computability� A major e�ort

in solvability has been to determine a necessary or a su�cient condition under which an
inverse eigenvalue problem has a solution� The main concern in computability� on the
other hand� has been to develop a procedure by which� knowing a priori that the given

spectral data are feasible� a matrix can be constructed numerically� Both questions are
di�cult and challenging�

Studies on inverse eigenvalue problems have been intensive� ranging from engineer�
ing application to algebraic theorization� Yet the results are scattered even within the

same �eld of discipline� Despite the many e�orts found in the literature� only a handful
of the problems discussed in this paper have been completely understood or solved�
Our goal in this work is to gather together a collection of inverse eigenvalue problems�
to identify and classify their characteristics� and to summarize current developments

in both the theoretic and the algorithmic aspects� We hope this presentation will help
to better de�ne the regimen of inverse eigenvalue problems as a whole and hence to
stimulate further research�

���� Application� Inverse eigenvalue problems arise in a remarkable variety of ap�
plications� The list includes but is not limited to control design� system identi�cation�
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seismic tomography� principal component analysis� exploration and remote sensing� an�

tenna array processing� geophysics� molecular spectroscopy� particle physics� structure
analysis� circuit theory� mechanical system simulation and so on�

To mention a few examples� we note that the state feedback as well as the output
feedback pole assignment problems have been of major interest in system identi�cation

and control theory� There is a vast literature of research on this subject alone� An
excellent recount of recent activities in this area can be found in the survey paper by
Byrnes ��	
� We shall see that pole assignment problems are a special case of what we
call parameterized inverse eigenvalue problems in this article�

Also� one of the basic problems in classical vibration theory is to determine the
natural frequencies and normal modes of the vibrating body� But inverse problems are
concerned with the construction of a model of a given type� e�g�� a mass�spring system�

a string� and so on� with prescribed spectral data� Thus inverse problems have practical
value to applied mechanics and structure design ��� �� ��� �� ��� ��� 	�� 	�� �
�
Discussion for higher dimensional problems can be found in ��� ��� ��� ��� ��� ���
�

Applications to other types of engineering problems can be found in the books by

Gladwell ���
� Helmke and Moore �
� and articles such as ��	� ��� �� ��
� Exam�
ples of geophysics applications can be found in �	�
� Examples of physics applications
can be found in ��� �� 	�� ��� ��� ��
� Even within the �eld of numerical analysis
where a speci�c algorithm is to be designed an inverse eigenvalue problem may arise�

See� for example� ��	
�
Much of the discussion for inverse problems in the literature has been due to an

interest in the inverse Sturm�Liouville problem �	� ��� ��� 	�� 	�� ���
� See also
�	�� 	�� ��� 	
 for a comprehensive study of the connection between the continuous

problem and the matrix problem�
A signi�cant common phenomenon in all these applications is that the physical

parameters of a certain system are to be reconstructed from knowledge of its dynamical

behavior� in particular its natural frequencies and�or normal modes� If the physical
parameters can be �and often they are� described mathematically in the form of a
matrix� then we have an inverse eigenvalue problem� In order to make the resulting
model physically realizable� it should be noted that sometimes additional stipulations

must be imposed upon the matrix�

���� Diversity� Depending on the application� inverse eigenvalue problemsmay be
described in several di�erent forms� Translated into mathematics� it is often necessary

in order that the inverse eigenvalue problem be meaningful to restrict the construction
to special classes of matrices� especially to those with speci�ed structures� A problem
without any restriction on the matrix generally is of little interest� The solution to

an inverse eigenvalue problem therefore should satisfy two constraints � the spectral
constraint referring to the prescribed spectral data and the structural constraint referring
to the desirable structure� These constraints de�ne a variety of inverse eigenvalue
problems that will be surveyed in this paper�

In practice� it may occur that one of the two constraints of the problem should be
enforced more critically than the other due to� for example� the physical realizability�
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Without the realizability� the physical system simply cannot be built� There are also

situations when one constraint could be more relaxed than the other due to� for example�
the physical uncertainty� The uncertainty arises when there is simply no accurate
ways to measure the spectrum or there is no reasonable means to obtain the entire
information� When the two constraints cannot be satis�ed simultaneously� sometimes

we are interested in a least squares solution�
Gladwell suggests from the standpoint of engineering application that there should

also be a distinction between determination and estimation in the nature of an inverse
problem� He calls it an essentially mathematical problem when the given data is ex�

act and complete so that the system can be precisely determined� and an essentially
engineering problem when the the data is only approximate and often incomplete� and
when only an estimation of the parameters of the system is sought so that the resulting

behavior agrees approximately with the prescribed data ���� ��
� It is important to for�
mulate the right question since research based on inappropriate or ill�chosen questions
leads to unsatisfying and unnecessarily complicated answers�

���� Literature Overview� Classical approaches to determining the solvability
of an inverse eigenvalue problems involve techniques developed from algebraic curves�
degree theory or algebraic geometry� See� for example� ��� �� ��� ��� �� ��� ��
�
Although in most cases the algebraic theory is still incomplete or missing� there are

also numerical algorithms developed for computation purpose� A partial list includes�
for example� ��� ��� ��� 	�� ��� ��� 	� ��� ��� ��� ��� ��� ��
�

A review of recent literature on inverse eigenvalue problems related exclusively to

small vibrations of mechanical system can be found in ���
 that is then updated in
���
� An early survey of direct methods for solving certain symmetric inverse eigenvalue
problems was given by Boley and Golub ���
� Algorithms of iterative nature for more
general problems were considered by Friedland et al ��	
� This paper covers an even

larger scope of inverse eigenvalue problems�
An earlier attempt similar to the objective of this paper was made by Zhou and Dai

in their book ����
 that greatly motivates this author to continue the current extension�
We build our presentation upon that in ����
 by bringing in the latest results known to

this date� In particular� an extensive bibliography of pertinent literature is compiled�
Regretfully� many Chinese references in ����
 are not included because of di�culties in
translation and availability� Other excellent resources for references� particularly those
related to mechanical systems� can be found in ���� ��� ��� ��
� and those to inverse

Sturm�Liouville problems in �	
�
We mention that entries of the matrix to be constructed usually represent physical

parameters to be determined� So an inverse eigenvalue problem can generally be re�

garded as a parameter estimation problem� Each inverse eigenvalue problem� however�
also carries it own characteristic� In the literature� the study usually is focused on one
characteristic a time� Following the practice in the literature� we categorize inverse
eigenvalue problems according to characteristics such as additive� multiplicative� pa�

rameterized� structured� partially described or least squares� This classi�cation along
with review articles by Gladwell ���� ��
 who di�erentiates problems according to the
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Fig� �� Classi�cation of inverse eigenvalue problems�

type of the mechanical system� i�e�� continuous or discrete� damped or undamped� and
the type of the prescribed data� i�e�� spectral� modal� or nodal� complete or incomplete�

should complement each other to o�er a fairly broad view of research activities in this
area�

���� Outline and Notation� This paper discusses explicitly thirty�seven inverse

eigenvalue problems� not counting the many other implied variations� The forms and
algorithms di�er noticeably from problem to problem� Thus it is almost impossible to
bring any unity into this collection� Also� an inverse eigenvalue problem often carries

overlapping characteristics� It is sometimes di�cult to determine which characteristic
is the most prominent�

In an attempt to provide a better grasp of the scenarios� we shall adopt the name
scheme �IEP� to identify a problem throughout the paper� Letter or letters � � � in

front of IEP indicate the type of the problem� The number ��� following IEP indicates
the sequence of variation within type ��IEP�� We �rst introduce the following acronyms�

MVIEP � Multi�Variate Inverse Eigenvalue Problem

LSIEP � Least Square Inverse Eigenvalue Problem
PIEP � Parameterized Inverse Eigenvalue Problem
SIEP � Structured Inverse Eigenvalue Problem

PDIEP � Partially Described Inverse Eigenvalue Problem

AIEP � Additive Inverse Eigenvalue Problem
MIEP � Multiplicative Inverse Eigenvalue Problem

The precise de�nition for each type of problems will be described in the sequel� We

suggest using Figure  to lay down a possible inclusion relationship between the di�erent
problems� We hope readers will agree after perusing through our argument that this
diagram� though not precise� provides a reasonable connection between the problems�

We intend to imply several points from Figure  that a�ect our presentation�
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� The MVIEP basically is an unexplored territory because most of the studies

in the literature have been for the single variate only� We shall touch upon its
general setting in x�� but concentrate on the single variate problem for the rest
of this paper� There should be plenty of new research topics in this area alone�

� All problems have a natural generalization to the least squares formulation�

� The AIEP and the MIEP are two extensively studied special cases of the PIEP�
� The relationship depicted in Figure  is not necessarily de�nite because many

characteristics may overlap� We should not be surprised if there are other types
of characterization overlooked in this classi�cation�

In this survey� we choose to call attention to three major types of problems� In x�
we describe the PIEP where the emphasis is on the way that these parameters modulate
the problem� In x� we discuss the SIEP where the emphasis is on the structure that a

solution matrix is supposed to maintain� In x� we discuss the LSIEP where the best
solution exists only in the sense of least squares approximation� We shall consider these
three problems slightly more in breadth and depth with regard to the motivation� main
results� and algorithmic issues�

In addition� we shall brie�y discuss the PDIEP in x	 because it is di�cult to place
properly in Figure � The PDIEP arises when there are simply no reasonable tools
available to evaluate the entire spectral information due to� for instance� the complexity
or the size of the physical system� Often only partial data are readily obtainable and

the engineers have to build the system based on that partial information�
To emphasize the modular representative in each category� we begin each section

with a paradigmatic description of the problem� We then discuss variations by being
more speci�c on conditions of the underlying matrices� It quickly becomes clear that we

will not be able to give a full account on each of the problems in this presentation� We
can only try to provide the readers with a few references whenever some kind of theory
or algorithms have been derived� Despite our e�orts� it is obvious that we will have

left out some interesting problems from our collection� Yet we shall see that there are
already more questions than answers in this exposition � the reason why this treatise
is originally motivated�

Being tossed between the vast diversity of problems� theories� algorithms� and open

questions� we �nd it very di�cult to achieve any uniformity in this presentation� By
presenting the discussion as a synthesis of subsections entitled Generic Form� Variations�
Solvability Issues� and Numerical Methods� we hope we have provided a grasp of the
di�erent aspects of inverse eigenvalue problems�

Because of the scope of problems covered in this paper� we inevitably have to call
upon lot of jargon in this presentation� We shall explain some of the unusual terms�
but for most of the technical linear algebra terms we suggest that readers refer to the
classical book by Horn and Johnson ��
� To facilitate the discussion� we shall adopt

the following notation hereinafter�
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F represents the scalar �eld of either real R or complex C �

A�B� � � � denote matrices�
b���� q

���
i � vi� � � � denote vectors�

��A� denotes the spectrum of A�
k�k denotes either the ��norm of a vector or the Frobenius norm of a matrix�

M�N � � � � denote certain subsets of square matrices of which the size is clear
from the context� In particular� we have�

R�n� �� R
n�n�

S�n� �� fAll symmetric matrices in R�n�g�
O�n� �� fAll orthogonal matrices in R�n�g�
DR�n� �� fAll diagonal matrices in R�n�g�
C�n� �� C

n�n �

H�n� �� fAll Hermitian matrices in C�n�g�
DC�n� �� fAll diagonal matrices in C�n�g�

�� Parameterized Inverse Eigenvalue Problem�

���� Generic Form� Although almost every inverse eigenvalue problems can be
regarded as an parameter estimation problem� the emphasis in this section is on the
meticulous way that these parameters regulate the problem� A generic PIEP can be
described as follows�

�PIEP	 Given a family of matrices A�c� � M with c � �c�� � � � � cm
 � Fm and
scalars f��� � � � � �ng � F� �nd a parameter c such that ��A�c�� � f��� � � � � �ng�

Note that the number m of parameters in c may be di�erent from n� Depending
upon how the family of matrices A�c� is speci�cally de�ned in terms of c� the PIEP can

appear and be solved very di�erently� Inverse eigenvalue problems in the above PIEP
format arise frequently in discrete modeling ���� ��� 	
 and factor analysis ��
� We
shall illustrate several di�erent aspects by examples in the following� but a common
feature in all variations of the PIEP is that the parameter c is used as a �control� that

modulates to the underlying problem in a certain speci�c� predestined way�

���� Variations� The inclusion of PIEP is quite broad� We mention a few inter�

esting variations below�
The case when A�c� is a�ne in c has attracted considerable attention recently�
�PIEP� A�c� � A� �

Pn
i�� ciAi where Ai � R�n�� F � R�

�PIEP�� A�c� � A� �
Pn

i�� ciAi where Ai � S�n�� F � R ��	
�

Also� the following two problems have been under extensive investigation in the
literature�

�AIEP	 Given a matrix A � M� scalars f��� � � � � �ng � F� and a class of matrices
N � �nd a matrix X � N such that ��A�X� � f��� � � � � �ng�

�MIEP	 Given a matrix A � M� scalars f��� � � � � �ng � F� and a class of matrices
N � �nd a matrix X � N such that ��XA� � f��� � � � � �ng�






It is clear that the AIEP is a special case of the PIEP with A�X� � A�X and X

playing the role of c� and that the MIEP corresponds to the case where A�X� � XA�
By being more speci�c on the class N of matrices� the problems themselves can be
divided into further subclasses� Since both AIEP and MIEP have been of long and
independent interest in various applications� we name them as separate types and shall

examine them more carefully later�
The following example is yet another more complicated PIEP arising in descriptor

systems�
�PIEP�� Given matrices A � C�n�� Bi � C

n�mi � Ci � C
li�n� i � � � � � � q� and

scalars f��� � � � � �ng � C � �nd matrices Ki � C
mi�li such that ��A �

Pq
i��BiKiCi� �

f��� � � � � �ng ���
�
When q � � the PIEP� includes as special cases the state feedback as well the

output feedback pole assignment problems� This problem stands alone as an important
issue for decades� It has been studied extensively by di�erent approaches ranging from
linear system theory� combinatorics� complex function theory to algebraic geometry�
See� for example� ���� �	� 
 and the references contained therein� Yet the results are

still incomplete�

������ Additive Inverse Eigenvalue Problem� As indicated above� the emblem
of an AIEP is that a given matrixA is perturbed by the addition of a specially structured

matrix X in order to match the eigenvalues� The eigenvalue information can provide
at most n equations� so sometimes it may be desirable to limit the number of free
parameters in X� Other than this� the set N can be taken quite liberally� We may

therefore use the set N to impose a certain structural constraint on the solution matrix
X� For example� it may be that matrices in N are required to introduce no more
non�zero entries ��ll�in� than what are already in A� or that only certain positions of
the matrix A are allowed to be added to� Structure on N sometimes arises naturally

because of engineers� design constraints� When the number of unknown parameters in
X and the number of equations provided through the eigenvalue information are not
consistent� an AIEP may be considered in the context of least squares� See x� for more
details�

Thus far� most of the attention has been paid to the case where N contains only
diagonal matrices� Even so� di�erences among the following special cases should be
carefully distinguished�

�AIEP� M � R�n�� F � R� N � DR�n��

�AIEP�� M � S�n�� F � R� N � DR�n��
�AIEP�� M � C�n�� F � C � N � DC�n� ��
�
�AIEP�� M � H�n�� F � R� N � DR�n� ���
�

The AIEP� was �rst posed by Downing and Householder ���
� Its special case
AIEP� with A being a Jacobi matrix is of particular interest because the discretization
of the boundary value problem� for example�

�u��

�x� � p�x�u�x� � �u�x����

u��� � u��� � ��
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by the central di�erence formula with uniform mesh h � �
n��

naturally leads to the

eigenvalue problem in tridiagonal structure�

�
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where X is a diagonal matrix representing the discretization of p�x�� Thus an AIEP�
may be interpreted as a discrete analog of the inverse Strum�Liouville problem� a clas�
sical subject where the potential p�x� is to be found so that the system possesses a
prescribed spectrum�

Another interesting variant of the AIEP arises in� e�g�� control or algorithm design�
where the stability is at issue� In such a problem it is more practically critical to have
eigenvalues located in a certain region than at a certain points� One such problem can
be stated as follows�

�AIEP	� Given A � R�n�� �nd X � N with ��A�X� lies in a certain �xed region�
say the right�half� of the complex plane�

Related to the AIEP	� for example� is the nearest unstable matrix problem ���
�
The problem concerns the distance from a given matrix� stable in the sense that all

its eigenvalues have negative real part� to the nearest matrix with one eigenvalue on
the imaginary axis� Also related is the communality problem in factor analysis ��

and the educational testing problem �	�� ��
� The former concerns �nding a diagonal

matrix D so that the sum A � D in which A is a given real symmetric matrix with
zero diagonal entries has as many zero eigenvalues as possible� The latter concerns
�nding a positive diagonal matrix D so that the di�erence A�D in which A is a given
real symmetric positive de�nite matrix remains positive semi�de�nite while the trace

trace�D� is maximized�

������ Multiplicative Inverse Eigenvalue Problem� In contrast to the AIEP�
a MIEP stands out when the task is to pre�multiply a given matrix A by a specially

structured matrix X to reposition or to precondition the distribution of its eigenvalues�
This is very similar to but more general than the idea of preconditioning the matrix A
where it is desired to �nd an e�cient preconditionerM for A so that the product M��A

approximates the identity� It is known that preconditioning plays a very important role
in many computational issues� Although the sense in which M��A should approximate
the identity di�ers according to the underlying method to be used� the general setting
in the MIEP can be applied to the optimal preconditioning of a given matrixA� The set

N can be used particularly to exploit a certain sparsity pattern of the preconditioner
��� ��
�

Similar to the AIEP� perhaps the simplest possible preconditioners are the diagonal
scalings�
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Fig� �� Vibration of particles on a string�

�MIEP� M � R�n�� F � R�N � DR�n��
�MIEP�� M � S�n�� F � R� N � DR�n�
�MIEP�� M � C�n�� F � C � N � DC�n� ���
�
We illustrate one example of MIEP� arising from engineering application� Consider

the vibration of particles on a string sketched in Figure �� Suppose four particles� each
with mass mi� are uniformly spaced with distance h and are vibrating vertically subject
to the horizontal tension F � Then the equation of motion is given by ����
�

m�
d�x�
dt�

� �F x�
h

� F
x� � x�

h

m�
d�x�
dt�

� �F x� � x�
h

� F
x� � x�

h

m�
d�x�
dt�

� �F x� � x�
h

� F
x� � x�

h

m�
d�x�
dt�

� �F x� � x�
h

� F
x�
h

which can be summarized as the system

d�x

dt�
� �DAx���

where x � �x�� x�� x�� x�
T � A �

�
�����

� � � �
� � � �
� � � �

� � � �

�
������ and D � diag�d�� d�� d�� d��

with di �
F

mih
� To solve ���� we typically consider the eigenvalue problem

DAx � �x

where � is the square of the so called natural frequency of the system� The inverse
problem then amounts to calculating the mass mi� i � � � � � � �� so that the resulting
system vibrates at a prescribed natural frequency�

Similarly� a discretization of the boundary value problem

�u��

�x� � ���x�u�x����

yields the eigenvalue problem

Au � �Xu�	�
�



where X is a positive diagonal matrix representing ��x�� Thus an MIEP is to determine

the density function ��x� � � from the prescribed spectrum�
A conservative� n degrees of freedom mass�spring system with mass matrix X and

sti�ness matrix A also ends with the formulation �	�� Since the physical realizability
of the sti�ness matrix A usually is more complex than the mass matrix X� a practical

way of ensuring the overall physical realizability in engineering design is to determine
A from static constraints and then to �nd a positive diagonal matrix X so that some
desired natural frequencies are achieved�

There are other types of multiplicative inverse eigenvalue problems�

�MIEP�� Given a matrix A � Hn and scalars f��� � � � � �ng � R� �nd a matrix
X � DR�n� such that ��X��AX��� � f��� � � � � �ng ���
�

�MIEP	� Given A � R�n�� �nd X � DR�n� with positive entries such that ��XA�

lies in the right�half complex plane�

���� Solvability Issues� It would be nice to be able to address the solvability
issue of the PIEP by one major theorem� But such a result simply does not� and

probably will never� exist because the description of PIEP is too general� Searching
through the literatures� on the other hand� reveals that scattered around are pieces of
understanding of its individual variations� The information in fact is so diverse and
massive that we �nd it extremely di�cult to condense the results here� We can only

summarize some of the major developments problem by problem�
It is easy to construct examples� even in R���� that the PIEP and the PIEP� may

have no solution at all� In this case� a least squares formulation becomes more desirable�

We shall discuss this issue in x��
Considerable advances toward the understanding of the AIEP have been made over

the years� There is a rich literature on both the theoretic and the numerical aspects
for this type of problems� To see a few necessary and some su�cient conditions on the

solvability� we refer to results in articles ���� ��� ��� ��� ��� ��� �� ��� ��� ���
��� ��� ��� ��� ��� ��� ��
� Notably we have the following main result addressing
the existence question for the AIEP� by Friedland ��� �
�

Theorem ���� For any speci�ed f��� � � � � �ng� the AIEP� is solvable� The number

of solutions is �nite and does not exceed n�� Moreover� for almost all f��� � � � � �ng� there
are exactly n� solutions�

We hasten to point out that the existence question when F � R� including the
AIEP or the AIEP�� has yet to be settled� It would be an interesting research topic to

study the theoretical and the algorithmic aspects of the more general AIEP when the
constraint set N imposes a structure other than the diagonal� We are not aware of any
discussion in this regard�

By using degree theory� Friedland has also proved the following theorem for the
MIEP��

Theorem ���� If all principal minors of A are distinct from zero� then the MIEP�
is solvable for arbitrary f��� � � � � �ng and there exist at most n� distinct solutions�

Although in practice one does not need a preconditioner that exactly repositions
the eigenvalues� an understanding of the MIEP might shed some insights into the design
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of a good preconditioner� Friedland�s result suggests that in the complex context the

matrix A can be perfectly conditioned by a diagonal matrix� Despite its elegance in
mathematical theory� one should not overlook the practicality of Theorem ���� What
is missing is an e�cient algorithm for implementing Theorem ���� Indeed� we are not
even aware of any numerical procedure to do so� In fact� we are more interested in only

the real arithmetic and thus the MIEP or MIEP	� Unfortunately� despite the many
preconditioners that have been proposed or used in practice� there are not as many
theoretic results known for these types of problems� General discussions on the MIEP
can be found in ���� �	� ��� ��� �
� In the context of minimizing the condition

number ��M��A�� one classical result due to Forsythe and Strauss ���� �
 is worth
mentioning�

Theorem ���� Assume A is symmetric� positive de�nite� and has property�A�

i�e�� A can be symmetrically permuted into the form

	
D� B

BT D�



where D� and D� are

diagonal matrices� Let D denote the diagonal of A� Then

��D����AD����� � ��  DA  D����

for any other positive de�nite diagonal matrix  D� In other words� D is the optimal

diagonal preconditioner for the matrix A�
The following theorem is a standard result addressing the solvability issue of PIEP�

when q �  ���� ��
�
Theorem ���� Given A � R�n�� B � R

n�m� and a set of n complex numbers

f��� � � � � �ng� closed under complex conjugation� then there exist a matrix K � R
m�n

such that ��A�BK� � f��� � � � � �ng if and only if the pair �A�B� is controllable� that
is� if and only if the following condition holds�

fyTA � �yT and yTB � �g �� yT � ��

Moreover� in the single�input case� i�e�� m � � if a solution exists� then it is unique�

We shall refer readers to a recent survey paper by Byrnes ��	
 for pole assignment
problems and not give any more reviews here�

���� Sensitivity Analysis� Associated with any PIEP� and indeed any inverse
eigenvalue problem� is the important issue of sensitivity analysis� That is� we need to
determine how a solution matrix is subject to change with respect to the perturba�
tion of the prescribed eigenvalues� This is the inverse problem of the classical matrix

perturbation theory ��� ��
�
The di�culty of this inverse sensitivity analysis even for symmetric matrices can

be illustrated from the generalized Wielandt�Ho�man theorem ��� Theorem ��	
 that�

for any two Hermitian matrices A and B� we have

kEig��A�� Eig��B�k� � kA�Bk� � kEig��A�� Eig��B�k����

where Eig��A� �and similarly Eig��A�� means the diagonal matrix with eigenvalues of A
arranged in descending �ascending� order� The classical theory concerns the sensitivity

��



of the eigenpairs to random perturbation� The �rst inequality in ��� provides an upper

bound on the variation of eigenvalues� The inverse problem� however� concerns the
structural modi�cation� say� of a physical system due to spectral adjustment� Even if
the adjustment is relatively minor� the second inequality in ��� does not necessarily
provide a good bound on the variation of solution matrices� In fact� it is fundamental

that eigenvalues are continuous functions in the entries of a matrix ���
� But the
converse sometimes even does not make any sense because the inverse problem may
have no solution at all if the data are changed� This important yet di�cult question so
far as we know has not been addressed thoroughly in the literature�

Some recent work on the validation of a numerical solution to an AIEP can be found
in �� ��� �	
 and the thesis ��
� Some immediate application and related discussion
can be found in� for example� ���� ��� ��
 for robust pole assignment problems� and

�	� ��� 		
 for incomplete modal analysis� For other situations� the analysis perhaps
needs to be carried out individually� Any advance in this direction certainly is welcomed�

���� Numerical Methods� Even though the existence theory or a sensitivity

analysis for a PIEP may still be incomplete or missing� it does not necessarily imply
that the problem is untouchable by some numerical means� In this section we review
some of the methods for the PIEP�

Numerical algorithms for solving the AIEP� and the AIEP� can be found� for

example� in ��� ��� ��� ��� �	� ��� ��� ��� ��
� Most methods for symmetric or
Hermitian problems depend heavily on the fact that the eigenvalues are real valued
and� hence� can be totally ordered� In this case� the ith eigenvalue �i�X� of A�X for

each �xed i is continuous and piecewise di�erentiable in X� Standard techniques for
solving nonlinear algebraic systems may be used� We shall illustrate one such iterative
method for the AIEP under the context of PIEP in a later part of this section�

When eigenvalues are complex valued� including the case F � C or even the AIEP

in general� it becomes more di�cult to track the evolution of eigenvalues because com�
plex numbers do not form an ordered �eld and one cannot explicitly identify which value
in the spectrum is the ith eigenvalue� An existence proof for the AIEP� by the homo�
topy method which� in return� gives rise to a numerical method for �nding all solutions

of the AIEP� can be found in ���
� See also ���
� Except for the homotopy method
that tracks each individual eigenvalue by a homotopy curve determined by its initial
value� it seems that other methods for solving a complex�valued AIEP will inevitably
involve some kind of matching mechanism ���� �� �
�

The MIEP may be written in the form of the PIEP by� for example� selecting
A� � � and Ak � eka

T
k for k � � � � � � n where aTk is the kth row of A and ek denotes the

kth standard basis in Rn� The matrices Ak in this setting� of course� are not symmetric�

If A is symmetric and positive de�nite� then the matrix XA is similar to LTXL where
L is the Cholesky factor of A � LLT � We may then convert an MIEP� to a PIEP� by
using symmetric matrices A� � � and Ak � LTEkL with Ek �� diag�ek��

Assuming the existence of a solution� several numerical methods for the PIEP� have

been studied in ��	
� The geometric interpretation of one of these method� Method III
in ��	
� as a variant of the Newton method is particularly useful and interesting ���
�

��
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Fig� �� Geometry of PIEP�

since many inverse eigenvalue problems can be written in the PIEP� form� We discuss
the basic idea in a little bit more detail below�

For illustration� we shall consider the case that all eigenvalues ��� � � � � �n are dis�
tinct� Let

! �� diagf��� � � � � �ng���

and let A denote the a�ne subspace

A �� fA�c�jc � R
ng���

where A�c� is de�ned in PIEP�� It can be proved that the set

Me�!� �� fQ!QT jQ � O�n�g����

where O�n� denotes the group of all n 	 n orthogonal matrices� is a smooth manifold

of dimension n�n���
�

� Any tangent vector T �X� to Me�!� at a point X � Me�!� must
be of the form

T �X� � XK �KX��

for some skew�symmetric matrixK � R
n�n ��	� ��
 � We recall the elementary fact that

the new iterate x����� of a classical Newton step

x����� � x��� � �f ��x�������f�x�������

for a function f � R �
 R is precisely the x�intercept of the line which is tangent to
the graph of f at �x���� f�x������ If we think of the surface Me�!� as playing the role
of the graph of f and the a�ne subspace A as playing the role of the x�axis� then an
iterative process analogous to the Newton method can be developed for the PIEP��

The geometry is illustrated in Figure ��
Given X��� � Me�!�� there exist a Q��� � O�n� such that

Q���TX���Q��� � !����
��



From ��� we knowX����X���K�KX��� with any skew�symmetricmatrixK represents
a tangent vector toMe�!� emanating fromX���� We thus seek an A�interceptA�c������
of such a vector with the a�ne subspace A� That is� we want to �nd a skew�symmetric

matrix K��� and a vector c����� such that

X��� �X���K��� �K���X��� � A�c����������

The unknowns K��� and c����� in equation ��� can be solved separately as follows�
Using ���� we transform ��� into the system

! � ! "K��� � "K���! � Q���TA�c������Q����	�

where

"K��� �� Q���TK���Q������

is still skew�symmetric� Because "K��� has zero diagonal� the scaling by ! does not
e�ect a change of the diagonal entries on the left�hand side of �	�� This observation

e�ectively separates c����� from K���� More precisely� a comparison of the diagonals on
both sides of �	� gives rise to the linear system of n equations�

J ���c����� � �� � b������

where

J
���
ij �� q

���
i

T
Ajq

���
i � for i� j � � � � � � n���

�� �� ���� � � � � �n�
T���

b
���
i �� q

���
i

T
A�q

���
i � for i � � � � � � n����

and q���i is the i�th column of the matrixQ���� The vector c������ therefore� can be solved

from ���� Note that K��� is not involved in ��� at all� Note also that in the setup of

��� we have used the fact that A�c� is linear in c� i�e�� A�c������ � A� �
Pn

j�� c
�����
j Aj�

Once c����� is obtained� the skew�symmetric matrix "K��� �and� hence� the matrix K����
can be determined from the o��diagonal equations of �	�� In fact�

"K
���
ij �

q
���
i

T
A�c������q

���
j

�i � �j
����

for  � i 	 j � n� In this way� the equation ��� is completely solved�
In the classical Newton method the new iterate x����� is �lifted up� naturally along

the y�axis to the the point �x������ f�x������� from which the next tangent line will
begin� We note that �x������ f�x������� is a point on the graph of f � Analogously� we
now need a way to �lift up� the point A�c������ � A to a point X����� � Me�!�� The

di�culty here is that there is no obvious coordinate axis to follow� One possible way of
this lifting can be motivated as follows� It is clear that solving the PIEP� is equivalent

��



to �nding an intersection of the two sets Me�!� and A� Suppose all the iterations are

taking place near a point of intersection� Then we should have

X����� � A�c�����������

But from ���� we also should have

A�c������ � e�K
���
X���eK

���
�����

High accuracy calculation of the exponential matrix eK
���

in ���� is expensive and is
not needed� So� instead� we de�ne the Cayley transform

R��� �� �I �
K���

�
��I � K���

�
�������

which happens to be the �� � Pad#e approximation of the matrix eK
���
� It is well known

that R��� � O�n�� and that

R��� � eK
���

��	�

if kK���k is small� Motivated by ���� and ����� we now de�ne

X����� �� R���TX���R��� � Me�!�����

and the next iteration is ready to begin� It is interesting to note that

X����� � R���T eK
���
A�c������e�K

���
R��� � A�c����������

represents what we mean by a lifting of the matrix A�c������ from the a�ne subspace
A to the surface Me�!��

In summary� we realize that ��� is the equation for �nding the A�intercept of a
tangent line passing X��� and that ���� is the equation for lifting the A�intercept to a
point on Me�!�� The above process is identical to Method III proposed in ��	
� but the

geometric meaning should be clearer now� We may thus say that Method III is precisely
equivalent to the Newton method applied to f�x� � �� for some speci�ed f�x�� In ��	

Method III is proved to converge quadratically�

The lift can also be done by using the Wielandt�Ho�man theorem �See Theorem ���

and ���
�� More speci�cally� we may take the lift to be the nearest point on Me�!� to
A�c������� It can be shown that X����� must be given by

X����� ��  Q�����"!�����  Q�����T �����

provided that

A�c������ �  Q�����$�����  Q�����T

is the spectral decomposition of A�c������ and that "!����� is the diagonal matrix whose
elements are a rearrangement of those of ! in the same ordering as those in $������ It

��



can be shown that the rate of convergence for this case is still quadratic ���� Theorem

���
�
The above tangent�and�lift idea can further be explored to re�ne other types of

parameterized inverse eigenvalue problems� Once such success is in the re�nement for
the inverse Toeplitz eigenvalue problem �	�
� The idea leads to the introduction of three

coordinate�free lifting schemes that can handle multiple eigenvalue cases in a way that
methods in ��	
 cannot� See the SIEP in x�� The same idea can also be applied to the
inverse singular value problem ���
� See also the PISVP in x�� It is worth pursuing to
generalize this idea to other types of inverse eigenvalue problem� especially to the much

more complicated case when A�c� is not linear in c�

�� Structured Inverse Eigenvalue Problem�

���� Generic Form� Perhaps the most focused inverse eigenvalue problems are
the structured problem where a matrix with a speci�ed structure as well as a designated
spectrum is sought after� A generic structured inverse eigenvalue problemmay be stated

as follows�
�SIEP	 Given scalars f��� � � � � �ng � F� �nd X � N which consists of specially

structured matrices such that ��X� � f��� � � � � �ng�
By demanding X to belong to N � where a structure is de�ned� the SIEP is required

to meet both the spectral constraint and the structural constraint� The structural
constraint usually is imposed due to the realizability of the underlying physical system�

���� Variations� Many types of structures have been considered for the SIEP�
among which the following problems are most interesting�

�SIEP� F � R and N � fAll Toeplitz matrices in S�n�g ���� ��� ��� ��
�
�SIEP�� F � R and N � fAll per�symmetric Jacobi matrices in S�n�g ���� ���

�
�
�SIEP�� F � R and N � fAll nonnegative matrices in S�n�g ��	
�
�SIEP�� F � R and N � fAll nonnegative matrices in R�n�g�
�SIEP	� F � C and N � fAll row�stochastic matrices in R�n�g �	�
�

The spectra of structured matrices may also be structured� So sometimes additional
spectral information is given� For example� the following problems have been discussed
extensively in the literature�

�SIEP�a� Given scalars f��� � � � � �ng and f��� � � � � �n��g � R that satisfy the in�
terlacing property �i � �i � �i�� for i � � � � � � n � � �nd a Jacobi matrix J so that
��J� � f��� � � � � �ng and �� "J� � f��� � � � � �n��g where "J is the leading �n� �	 �n� �
principal submatrix of J ���� ��� ��� ��� ��� �� �
�

The SIEP�a enjoys an interesting physical interpretation in vibrations� It may
be regarded as identifying the spring con�gurations of an undamped system from its
spectrum and the spectrum of the constrained system where the last mass is restricted
to have no motion ���
� When the damper comes into the system� the question becomes

an inverse eigenvalue problem for symmetric quadratic pencil�
�SIEP�b� Given scalars f��� � � � � ��ng and f��� � � � � ��n��g � C � �nd tridiagonal

symmetric matrices C and K such that the determinant det�Q���� of the ��matrix

�




Q��� � ��I��C�K has zeros precisely f��� � � � � ��ng and det� "Q���� has zeros precisely

f��� � � � � ��n��g where "Q��� is obtained by deleting the last row and the last column of
Q��� ��
�

Generalizations and variations of SIEP�a include the following problems� Algo�

rithms developed for the SIEP�a can easily be adopted to solve these problems�
�SIEP�� Given scalars f��� � � � � �ng and f��� � � � � �n��g � R satisfying �i � �i �

�i�� for i � � � � � � n � � and a positive number 
� �nd a periodic Jacobi matrix J of
the form

J �

�
����������

a� b� bn
b� a� b� �
� b� a� �
���

� � �

an�� bn��

bn bn�� an

�
����������

so that ��J� � f��� � � � � �ng and �� "J� � f��� � � � � �n��g where "J is the leading �n��	
�n� � principal submatrix of J � and

Qn
� bi � 
 ���� ��� ��
�

�SIEP�� Given scalars f��� � � � � �ng and f��� � � � � �ng � R satisfying �i � �i � �i��

for i � � � � � � n and �n�� � �� construct Jacobi matrices J and J so that ��J� �

f��� � � � � �ng and ��J� � f��� � � � � �ng where J and J di�er only in the �n� n� position
���
�

�SIEP�� Given a Jacobi matrix Jn � R�n� and distinct scalars f��� � � � � ��ng � R�
construct a Jacobi matrix J�n � R��n� so that ��J�n� � f��� � � � � ��ng and that the

leading n	 n principal submatrix of J�n is exactly Jn ��
�
Obviously� banded matrices are another important structure that frequently arises

from applications� A symmetric banded matrix with bandwidth �r� contains
Pn

k�n�r k

entries� Thus one type of inverse eigenvalue problem for banded matrices is as follows�
�SIEP�� Given scalars f��k�� � � � � � �

�k�
k g� k � n � r� � � � � n satisfying the interlacing

property �
�k�
i � �

�k���
i � �

�k�
i�� for i � � � � � � k �  and k � n � r � � � � � � n� construct

a symmetric banded matrix A with bandwidth �r �  such that each leading k 	 k

principal submatrix of A has spectrum precisely f��k�� � � � � � �
�k�
k g ��� �	� ��� ��� ��
�

Many di�erent types of structural constraints can be imposed upon an inverse
eigenvalue problem� For instance� the structure could be an unitary Hessenberg matrix
��
� a block Jacobi matrix ����
� or others �		� ��� ��� ��� ��
� Readers are referred to
the literature for the cause of why these special structures are of interest�

Similar to the PIEP� there is also the parameterized inverse singular value problem�
�PISVP� Given a family of matrices A�c� � R

m�n� with c � �c�� � � � � cn
 � R
n�

m  n and a set of nonnegative real values f��� � � � � �ng� �nd a parameter c such that

the singular values of A�c� are precisely f��� � � � � �ng�
Note that the signi�cant di�erence between the PIEP and the PISVP is that the

matrices involved in the PISVP can be rectangular� Since eigenvalues of the symmetric

matrix

	
� A�c�

A�c�T �



are plus and minus of singular values of the matrix A�c�� the

��



PISVP can be solved by conversion to a special parameterized SIEP� In fact� each of

the inverse problems discussed in this paper for eigenvalues have a counterpart problem
for singular values� Just like many of the inverse eigenvalue problems� the existence
question for the inverse singular value problem remains open� Indeed� to our knowledge�
this interesting research topic has never been thoroughly explored before� The �rst work

seems to be in the paper ���
 where two numerical methods for the case when A�c� is
linear in c are proposed�

Some of the entries in a SIEP could also be speci�ed beforehand� Sometimes a
certain submatrix is speci�ed ��	� �
� Sometimes the characteristic polynomial is

prescribed ���
 Here is an example that plays an important role under the notion of
majorization ��� �	
�

�SHIEP� Given two sets of real values fa�� � � � � ang and f��� � � � � �ng� construct a

Hermitian matrix H with diagonal fa�� � � � � ang such that ��H� � f��� � � � � �ng�
���� Solvability Issues� The SIEP is the well�known inverse Toeplitz eigenvalue

problem� This seemingly easy problem has intrigued researchers for years ���� ��
� We

�rst note that eigenstructure of Toeplitz �and� in fact� centro�symmetric� matrices is
quite special ���� �
� In particular� there are exactly bn

�
c skew�symmetric eigenvectors

and dn�e symmetric eigenvectors where we say a vector v is symmetric if Jv � v� and
skew�symmetric if Jv � �v� and J is the �backward identity� ��
� The corresponding

eigenvalues are said� respectively� to have odd and even parity� Only very recently
Landau ���
 reported that the solvability issue was �nally completely settled� More
speci�cally� let T �c�� � � � � cn� denote the symmetric Toeplitz matrix whose �rst row is

�c�� � � � � cn�� Consider the mapping � � Rn�� �
 R
n�� de�ned by

��t�� � � � � tn� � �y�� � � � � yn�������

with

yi � ��i
��
� i � �� � � � � n� �����

where �� � � � � � �n are the eigenvalues of the Toeplitz matrix T ��� � t�� � � � � tn�� Note

that
Pn

i�� �i � �� Hence �� 	 �� else all eigenvalues vanish� and �n � �Pn��
i�� �i� It

follows that the range of � resides in the simplex

% �� f�y�� � � � � yn���j �  � y� � � � � � yn��� y� � � � �� yn�� � �yn�� � g����

A matrix T �c�� � � � � cn� is said to be regular provided that every principal submatrix
T �c�� � � � � ck��  � k � n� has the property that its eigenvalues are distinct and alternate

parity with the largest one having even parity� Landau argues that the set

F �� fM � T ��� � t�� � � � � tn�jt�� � � � � tn � R� and M is regularg
is not empty and proves the following theorem�

Theorem ���� The restriction of � �See de�nition ���		 to values �t�� � � � � tn� �
R
n�� such that T ��� � t�� � � � � tn� � F � a special subclass of Toeplitz matrices� is a sur�

jective map onto %�
��



Any given arbitrary y� � y� � � � � � yn corresponds after shifting and scaling to

a unique point on %� It follows from Theorem �� that the SIEP is always solvable�
The argument� using the topological degree theory� unfortunately was not constructive�
The search for an e�cient way of constructing a Toeplitz matrix is still not completely
satisfactory�

There is a wealth of applications involving nonnegative or positive matrices� Many
references concerning properties of nonnegative or positive matrices are available� See�
for example� ��� �� ��
� In the understanding of nonnegative matrices� perhaps one
of the most signi�cant results is the Perron�Frobenius theory� For reference� we only

state the �rst part of the Perron�Frobenius theorem for irreducible matrices ��� �
�
Theorem ���� Suppose the matrix A � R

n�n is nonnegative and irreducible� Then

� The spectral radius ��A� of A is a positive eigenvalue� called the Perron value�

of A�
�� There is positive vector� call the Perron vector� such that Ax � ��A�x�
�� ��A� has algebraic multiplicity �

Since the Perron�Frobenius theorem concerns the spectrum of nonnegative matrices�

there has been great interest in studying the inverse problems� i�e�� the SIEP�� the
SIEP� and the SIEP	 ��� �� ��� �	� ��� ��� ��� ��� 	�� �	
� Thus far� most of
the discussion in the literature for the SIEP� or the SIEP� have been centered around
the establishment of a su�cient or a necessary condition to qualify whether a given set

of values is the spectrum of a non�negative matrix ��� �	� ��
� For example� let sk
denote the k�th moment

sk �
nX
i��

�ki �

The following necessary condition is due to Loewy and London ���
�

Theorem ���� If ��� � � � � �n are eigenvalues of an n	 n nonnegative matrix� then

smk � nm��skm

for all k�m � � �� � � ��
A nonnegative matrix M such that Mm is positive for some nonnegative integer

m is called a primitive matrix� A fundamental result due to Boyle and Handelman

concerns the inverse eigenvalue problem for primitive matrices ���
�
Theorem ���� Let S be a subring of R containing the unity 
� If f��� � � � � �ng

forms the nonzero spectrum of a primitive matrix �whose size could be larger than n	
over S� then the following conditions necessarily hold�


� One of ��� � � � � �n is the Perron value� i�e�� there exists i such that "� �� �i � j�jj
for j �� i�

�� Coe�cients of
Qn

i���t� �i� are in S�
�� If S � Z the ring of all integers� then

X
kjm

��
m

k
�sk  �

��



for all m � � �� � � �� where � is the Mobius function for natural numbers de�ned

by

��d� �

��
��

 if d � �

� if d is not square free�
���t if d is a product of t distinct primes�

�� If S �� Z� then for all k�m � � �� � � ��

sk  �

sk � � � skm � ��

Conversely� if f��� � � � � �ng satis�es the above conditions and if one of its subsets con�

taining "� is the nonzero spectrum of a primitive matrix over S� then f��� � � � � �ng itself
is the nonzero spectrum of a primitive matrix over S�

Very few of these theoretical results are ready for implementation to actually com�
pute this matrix� The most constructive result we have seen is the su�cient condition

studied by Solues ��	
� But the condition there is still limited because the construction
depends on the speci�cation of the Perron vector � in particular� the components of
the Perron eigenvector need to satisfy certain inequalities in order for the construction
to work�

The SIEP	 is closely related to the SIEP� by the following theorem ���
�
Theorem ���� If A is a nonnegative matrix with positive maximal eigenvalue r

and a positive maximal eigenvector x� then D��r��AD is a stochastic matrix where
D �� diagfx�� � � � � xng�

Thus once a SIEP� is solved and if the eigenvector corresponding to the positive
maximal eigenvalue is positive� then we will have solved the SIEP	 by a diagonal simi�
larity transformation�

On the other hand� it is worthy to mention an existence theorem by Karpelevi&c
��� ��
� Karpelevi&c completely characterized the set 'n of points in the complex
plane that are eigenvalues of stochastic n	 n matrices� In particular� the region 'n is
symmetric about the real axis� It is contained within the unit circle and its intersections

with the unit circle are points z � e��ia�b where a and b run over all integers satisfying
� � a 	 b � n� The boundary of 'n consists of these intersection points and of
curvilinear arcs connecting them in circular order� These arcs are characterized by
speci�c parametric equations whose formulas are too complicated to described here but

can be found in ��� ��
� For example� a complex number � is an eigenvalue for a
� 	 � stochastic matrix if and only if it belongs to a region '� shown in Figure ��
Complicated though it may seem� it should be noted that the Karpelevi&c theorem
characterizes only one complex value at a time and does not provide further insights

into when two or more points in 'n are eigenvalues of the same stochastic matrix� Minc
���
 distinctively called the problem SIEP	� where the entire spectrum is given� the
inverse spectrum problem for row�stochastic matrices�

A survey of the basic theory and numerical methods for SIEP�a can be found in
the article by Boley and Golub ���
� In particular� we have the following result�

�	
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Theorem ���� Suppose all the �i� i � � � � � � n� � are distinct� Then

� The SIEP�a is guaranteed to have a solution�
�� The SIEP�a can be solved in �nitely many steps�

The following theorem� due to Duarte ���
� generalizes the SIEP�a to a much larger
class of matrices�

Theorem ���� Suppose the given real numbers f��� � � � � �ng and f��� � � � � �n��g
satisfy the interlacing property �i � �i � �i�� for i � � � � � � n�� Let k be a �x integer

between  and n and let ( be a speci�ed collection of unordered pairs of nodes �is� it� for
 � is� it � n� Then there exists a Hermitian matrix A such that ��A� � f��� � � � � �ng�
��Ak� � f��� � � � � �n��g where Ak is the �n � � 	 �n � � submatrix of A by deleting
the k�th row and column� and aij � � whenever i �� j and �i� j� is not an edge of (�

Ram and Elhay ��
 give an account of solutions to the SIEP�b�
Theorem ���� If the given eigenvalues are all distinct� then the SIEP�b is always

solvable over the complex �eld and there are at most �n��n � �����n � ��� di�erent
solutions�

In contrast to Theorem ���� Ram and Elhay also show that apart from �nding the
roots of certain polynomials� the problem can be solved in a �nite number of steps�
For physical realizability� however� the matrices C and K in the SIEP�b should further

be required to be real�valued� to have positive diagonal elements and negative o��
diagonal elements� and to be weakly diagonally dominant� So far as we know� there is
no general result in this regard� For the special case of a simply connected mass�spring
system� the damping matrix C is of rank one� i�e�� C � ccT for some column vector c�

Veseli#c ��	� ��
 shows in this case that one set of eigenvalues� closed under complex
conjugation� su�ce to determine a unique solution�

The existence question for the SHIEP can be completely settled by the Schur�Horn
theorem ��
�

��



Theorem ��	� �Schur�Horn Theorem	


� Let H be a Hermitian matrix� Let � � ��i
 � Rn and a � �ai
 � Rn denote
the vectors of eigenvalues and diagonal entries of H� respectively� If the entries are
arranged in increasing order aj� � � � � � ajn� �m� � � � � � �mn

� then

kX
i��

aji 
kX

i��

�mi
�����

for all k � � �� � � � � n with equality for k � n�
�� Given any a� � � Rn satisfying ���	� there exists a Hermitian matrix H with

eigenvalues � and diagonal entries a�

The notion of ���� is also known as a majorizing �� which has arisen as the precise
relationship between two sets of numbers in many areas of disciplines� including matrix
theory and statistics� The theorem asserts that fa�� � � � � ang majorizes f��� � � � � �ng if
and only if there exists a HermitianmatrixH with eigenvalues f��� � � � � �ng and diagonal

entries fa�� � � � � ang�
���� Numerical Methods� The SIEP can be written as a PIEP�� i�e�� we can

write T �t�� � � � � tn� �
Pn

i�� tiTi where Ti � T ��� � � � � �� � �� � � � � �� is the �xed Toeplitz

matrix of which the �rst row is identically zero except  at the i�th entry� Thus any
of the locally convergent methods such as the Newton method described in ��	
 can
be applied� Other types of iterative methods can be found in �	�� ��� ��
� and most
recently ���
� The idea in the latter approach involves simultaneous approximation of

the matrix as well as its eigenvectors�
As an alternative approach the author has proposed a continuous realization proce�

dure to solve the SIEP based on the projected gradient idea� In the projected gradient
approach the goal is to minimize the distance between QT!Q and its projection onto

the subspace N of all symmetric Toeplitz matrices while allowing the variable matrix
Q to change among O�n�� It can be shown that the projected gradient of the objective
function can be formulated explicitly� This gives rise to the construction of a descent

�ow that can be followed numerically� The explicit form also facilitates the computation
of the second�order optimality conditions� A full account of discussion on this di�eren�
tial equation approach and its generalization can be found in ���� ��� ��
� Among the
several alternatives� we suggest in particular this autonomous initial value problem�

dX
dt

� �X� k�X�

X��� � !

����

where �A�B
 �� AB �BA denotes the Lie bracket and k�X� � �kij�X�
 is the Toeplitz
annihilator matrix de�ned by

kij�X� ��

��
��
xi���j � xi�j�� if  � i 	 j � n�

� if  � i � j � n�
xi�j�� � xi���j if  � j 	 i � n�

����

It has been observed that the solution orbit of ���� always converges to a geometrically
isolated equilibrium point� Thus it seems to suggest a global method for the SIEP�

��



A surprising discovery� after fully analyzing the stability of equilibrium points for the

case n � � recently� reveals that the dynamical system does possess periodic solutions
that have never been detected numerically before �	�
� What has happened is that
these periodic orbits are orbitally unstable �	�
 and thus� due to round�o� errors� no
integral curves can ever be attracted to them� It is further observed that the isospectral

properties have never been lost despite this instability� So the ODE approach does
o�er a reasonable global method� A more rigorous mathematical analysis is missing
to suggest a constructive proof of existence for the SIEP� On the other hand� the
study in �	�
 sheds light on how the parity of eigenvalues a�ects the solvability� The

periodic solution mentioned earlier turns out to have the wrong parity assignment� It
appears plausible� according to Theorem �� and our experience� that a suitable parity
assignment and the ODE may give rise to a globally convergent method� See also the

discussion in ���
�
Using a similar idea of gradient �ow to systematically reduce the distance between

the isospectral surface and the cone of non�negative matrices� we can formulate a nice
numerical method for solving the SIEP� ��	� 	�
� We are not aware of any other tech�

niques for the SIEP�� so we describe the basic idea of the continuation approach below�
Since the emphasis in a SIEP� is on the positivity of the entries� not on the symme�

try of the matrix� it is likely that the given eigenvalues ��� � � � � �n are complex valued�
though closed under conjugation� Let ! now denote a real�valued matrix� possibly

tridiagonal� whose spectrum is f��� � � � � �ng� Note that matrices in the set

M�!� �� fP!P��jP � R�n� is nonsingularg��	�

obviously are isospectral to !� Let

��Rn
�� �� fB �BjB � R�n�g����

denote the cone of all nonnegative matrices where � means the Hadamard product of
matrices� The goal is to �nd the intersection of M�!� and ��Rn

��� Such an intersection�

if it exists� results in a nonnegative matrix isospectral to !� We formulate the inverse
spectrum problem as �nding the shortest distance between M�!� and ��Rn

���

minimize F �P�R� ��


�
kP!P�� �R �Rk������

Note that the variable P in ���� resides in the open set of nonsingular matrices whereas
R is simply a general matrix in R

n�n� Since the optimization is over an unbounded

open domain� it is possible that the minimum does not exist� The gradient rF of the
objective function F is given by�

rF �P�R� �
�
�%�P�R�M�P �T �M�P �T%�P�R��P�T ���%�P�R� �R

�
�����

where

M�P � �� PJP��

%�P�R� �� M�P ��R �R�
��



Therefore� the �ow �P �t�� R�t�� de�ned by the di�erential equations

dP

dt
�� �M�P �T �%�P�R�
P�T����

dR

dt
�� �%�P�R� �R�����

where ��� �
 again denotes the Lie bracket of two matrices� signi�es in fact the steepest
descent �ow for the objective function F � It is worth noting that the two matrices P

and R are used� respectively� as coordinates to describe the isospectral matrices and
nonnegative matrices� We may have used more dimensions of variables than necessary
to describe the underlying matrices� but that does no harm� The involvement of P�� in
the di�erential system ���� and ����� however� is worrisome� To remedy this problem�

we observe that the coe�cients of the vector �eld in ���� and ���� are analytic in t�
By the well known Cauchy�Kovalevskaya Theorem ���
 it follows that P �t� is analytic
in t as well� We may thus further describe the motion of P �t� in terms of its analytic

singular value decomposition ���
�

P �t� � X�t�S�t�Y �t�T���

where X�t� and Y �t� are orthogonal and S�t� is diagonal� The governing equations for
X�t�� S�t� and Y �t� can be obtained from the following ���� ��
� Di�erentiating both

sides of ���� we obtain the following equation after some suitable multiplications �

XT dP

dt
Y � XT dX

dt
S �

dS

dt
� S

dY T

dt
Y�����

De�ne

Q�t� �� XT dP

dt
Y�����

Z�t� �� XT dX

dt
�����

W �t� ��
dY T

dt
Y���	�

Note that Q�t� is known from ���� where the inverse of P �t� is calculated from

P�� � Y S��XT �����

The diagonal entries of S � diagfs�� � � � � sng provide us with information about the
proximity of P �t� to singularity� On the other hand� comparing the diagonal entries on

both sides of ����� we obtain the di�erential equation for S�t��

dS

dt
� diag�Q������

since both Z�t� and W �t� are skew symmetric� Comparing the o��diagonal entries on

both sides of ����� we obtain the linear system�

qjk � zjksk � sjwjk�����

�qkj � zjksj � skwjk�����
��



If s�k �� s�j � we can solve this system and obtain

zjk �
skqjk � sjqkj
s�k � s�j

��	��

wjk �
sjqjk � skqkj
s�j � s�k

�	�

for all j � k� Even in the situation where s�k � s�j � the existence of an ASVD guarantees
that the equations must be consistent and so zjk and wjk still can be obtained� Detailed

discussion of this case can be found in ���
� Once Z�t� and W �t� are known� the
di�erential equations for X�t� and Y �t� are given� respectively� by

dX

dt
� XZ��	��

dY

dt
� YW T ��	��

By now we have developed a complete coordinate system �X�t�� S�t�� Y �t�� R�t�� for
matrices inM�!�	��Rn

��� The di�erential equations ����� �	��� �	�� and ���� with the

relationship ��� describe how these coordinates should be varied in t to produce the
steepest descent �ow for the objective function F � This �ow is ready to be integrated
numerically by many initial value problem solvers� We think those special�purpose
integrators developed in ���� ��� ��� ��
 are of particular value to this continuous

approach� See also ���� ��
 for general discussion in this regard� We shall review some
special tools in x����� By using these available solvers� we have thus developed a
numerical method for solving the inverse eigenvalue problems for nonnegative matrices�

While the Schur�Horn theorem is regarded as classical by now� most of the known
proofs have been non�constructive or di�cult to implement� It has been an interesting
and challenging inverse eigenvalue problem to develop a numerical way of constructing
such a Hermitian matrix� See� for example� ��� �
� Recently an algorithm using

the continuation idea has been proposed with some success �	
� The solution to the
di�erential equation

dX

dt
� �X� �diag�X� � diagfa�� � � � � ang�X

�	��

from any initial point X� � Me�!� de�nes an isospectral �ow on Me�!� whose limit

point is a solution of the SHIEP� The argument for convergence of this method also
provides a constructive proof of the theorem� A more recent iterative method can be
found in ���
�

������ Special Tools for Continuation� We have observed in the above some
advantages of using continuous realization methods to tackle di�cult inverse eigenvalue
problems� A key issue in the continuation method is that the solution �ow stays on a
certain invariant manifold� When integrating these di�erential systems by numerical

methods� the loss of that invariance becomes signi�cant because the properties that

��



we intend to acquire from that manifold might have been lost� It is therefore impor�

tant to study numerical methods for the integration of these dynamical system that
maintain the corresponding invariance� As far as the inverse eigenvalue problems are
concerned� the invariance needed to be preserved is either the isospectral property or
the orthogonality�

In addition to the very vigorous ongoing research in the area of di�erential algebraic
equations� there has been considerable interest in recent years in structure�preserving
methods for systems like the ones we have discussed� To mention a few examples� there
are numerical Hamiltonian methods by Sanz�Serna ���� ��
� automatic and projected

unitary schemes by Dieci� Russel and Van Vleck ���
� gradient algorithms by Helmke
and Moore �
� modi�ed Gauss�Legendre Runge�Kutta methods for isospectral �ows
by Calvo� Iserles and Zanna ���� ��
� systolic algorithms and adaptive neural networks

by Dehaene ���
� and methods of iterated commutators of ordinary di�erential equations
on Lie groups by Zanna ���
� Most of these results are fairly new� It is not surprising
that the current status of these methods is still quite primitive since most discussion is
still limited to �xed�step analysis� Any advances of these methods will certainly bene�t

the computation of the dynamical system that we have proposed and� in return� bene�t
the applications that we have mentioned�

In our opinion� a more widely applicable and immediately available approach for
the parameter dynamics is to apply a standard integrator and regularly replace the

approximate solution by an appropriate �projection�� For example� suppose Q is an
approximate solution satisfying

QTQ � I �O�hr�

where r represents the order of the numerical method� Let Q � "QR be the unique QR

decomposition of Q with diag�R� � �� Then

"Q � Q�O�hr��		�

and "Q � O�p� q� ���� ��
� The condition diag�R� � � is important to ensure the transi�
tion of Q�t� is smooth in t ���
� Higham even points out that the optimal replacement

is given by the orthonormal polar factor ��
� Furthermore� this factor can be com�
puted by quadratically convergent iteration schemes without signi�cantly degrading the
�nite time global error bound for the original integrator� We have used this nonlinear
projection idea alone with traditional variable�order variable�step methods in many of

our latest studies� �The ODE Suite ��	
 is particularly suitable and convenient because
of the matrix manipulations involved in the dynamical systems� but any ODE integra�
tor will do�� Numerical experiments indicate that the implementation is almost free of
trouble and that the error bound is consistent with that estimated in theory ��
�

There is plenty of room for improving the implementation� One common feature in
the continuous realization methods is that the desired solution usually appears as the
asymptotically stable equilibrium point of the system� Thus it is desirable to develop

a fast method that can trace the qualitative behavior e�ciently without losing the
asymptotically stable equilibrium� This idea of entropy is particularly feasible for the

�




gradient �ows because the objective function naturally serves as a Lyapunov function�

In other words� the conventional concept of stability for a numerical ODE method might
be relaxed somewhat because we are only interested in the limit point� not the evolution
process itself�

Finally� we want to point out that deriving higher order iterative schemes� not in

the context of discretization of a di�erential equation� but in the context of a Newton
method� is possible� We have already outlined an idea in the context of the PIEP��
We have also experimented this idea successfully with other types of inverse eigenvalue
problems� See� for example� ��� ��� 	�
� We certainly can apply similar ideas to other

problems�

�� Least Squares Approximation with Spectral Constraint�

���� Generic Form� It is known that an inverse eigenvalue problem� especially for
the real�valued case� may not necessarily have an exact solution� It is also known that
the spectral information� in practice� often is obtained by estimation and hence needs
not to be rigorously complied with� That is� there are situations where an approximate

solution best in the sense of least squares would be satisfactory� In this section we
review how the least squares solution can be obtained�

All the problems discussed hitherto have a natural generalization to the least

squares formulation� However� recall that any inverse eigenvalue problem has two con�
straints� Thus depending upon which constraint is to be enforced explicitly� we should
clarify two ways of de�ning a least squares approximation�

One natural way is to measure and to minimize the discrepancy among the eigen�

values� i�e��
�LSIEPa	 Given a set of scalars f���� � � � � ��mg � F �m � n	� �nd a matrix X � N

and a set � � f��� � � � � �mg of indices with  � �� 	 � � � 	 �m � n such that the function

F �X��� ��


�

mX
i��

���i�X�� ��i �
���	��

where �i�X�� i � � ���� n� are eigenvalues of the matrix X� is minimized�
Note that the set of prescribed eigenvalues has cardinality m which might be less

than n� Consequently� associated with the LSIEPa for each �xed X is always a combi�

natorics problem

min
����������m�n

mX
i��

���i�X�� ��i �
���	��

that looks for the closest match between a subset of spectrum of X and the prescribed
eigenvalues�

Another way to formulate the least squares approximation is to measure and to
minimize the discrepancy between the matrices� i�e��

�LSIEPb	 Given a set M whose elements satisfy a certain spectral constraint and
a set N that de�nes a structural constraint� �nd X � M that minimizes the function

F �X� ��


�
kX � P �X�k��	��

��



where P �X� is the projection of X onto N �

The spectral constraint could be� for example� the isospectral surface

W�!� �� fX � R�n�jX � QT!Q�Q � O�n�g � S�n�

where the complete spectrum ! �� diagf��� � � � � �ng is given� or the set

W�(� V � �� fX � R�n� or S�n�jXV � V (g

where only a portion of eigenvalues ( �� diagf��� � � � � �kg and eigenvectors V ��
�v�� � � � � vk
 are given� We shall discuss the latter case in x	� but we mention it here
to remind readers of its least squares formulation� Note that if F �X� � � at a least
squares solution� then we have also solved the inverse eigenvalue problem of �nding

X � N that satis�es M� So a general SIEP can be solved through the setup of an
LSIEPb� We have already seen a similar setting in the discussion of SIEP��

For engineering applications� it is mostly the case that the realizability of the phys�

ical system is more critical an issue than the accuracy of the eigenvalues� That is� the
structural constraint N has to be enforced in order that the construction of a physical
system be realizable whereas a discrepancy in the eigenvalues is sometimes tolerable
because often these eigenvalues are an estimate anyway�

���� Variations� In the LSIEPa� it should be noted that the number of available
parameters for adjusting the matrix X� i�e�� the degree of freedom in N � could be
di�erent from the dimension n� We mention one special case of LSIEPa where the
number  of free parameters might also di�er from the number m of the partially

prescribed eigenvalues�
�LSIEPa� N � fA�d� � A� �

P�
i�� diAijA�� A�� � � � � A� � S�n� given�g� F � R�

Under the context of LSIEPb� the problem LSIEPa has a new face� For a given
!�
m �� diagf���� � � � � ��mg� consider the subset

( ��
n
Qdiag�!�

m�!c�Q
T j Q � O�n��!c � DR�n�m�

o
�	��

and the a�ne subspace

A �� fA�d�jd � R
�g����

with A�d� de�ned in LSIEPa� Since ( contains all symmetric matrices in R
n�n with

���� ���� �
�
m as part of the spectrum� �nding the shortest distance between A and ( would

be another meaningful least squares approximation� We formulate the problem as
follows�

�LSIEPb�� Find d � R
�� Q � O�n�� and !c � DR�n �m� such that the function

G�d�Q�!� ��


�
kA�d��Qdiag �!�

m�!c�Q
Tk�F ����

is minimized�
The setting of LSIEPb can have other applications� including �

��



�LSIEPb�� M �W�!�� N � fAg ���
�

�LSIEPb�� M �W�!� and N � fAll Toeplitz matrices in S�n�g�
�LSIEPb�� M �W�(� V �� N � fAg and N � R�n� or S�n��
In view of the fact that the spectral constraint and the structural constraint are

often inconsistent with each other and the fact that the spectral information often is

incomplete or inexact� we think that the least squares formulation of inverse eigenvalue
problems is a very important area that deserves further study�

���� Solvability Issues� At the �rst glance� the LSIEPa and the LSIEPb ap�
pear to be very di�erent� In particular� it appears that no permutation of eigenvalues
is involved in the LSIEPb whereas the complementary spectrum !c in the LSIEPb
is not mentioned in the LSIEPa� However� a process of implicit sorting is indeed hap�

pening inside the LSIEPb and !c is somehow settled in the LSIEPa� In fact� it can
be shown that the LSIEPa and LSIEPb are equivalent in the following sense ��
�

Theorem ���� Suppose �d�� ��� and �d�� Q��!�� are the global minimizers of the
LSIEPa
 and the LSIEPb
� respectively� Let �� denote the complement of �� over the

set f� � � � � ng� Then

� The permutation �� solves ���	 with d � d��
�� d� � d��
�� The columns of Q� are orthonormal eigenvectors of A�d�� arranged in such a

way that QT
�A�d

��Q� � diag �!���d���!���d��� �
�� !� � !���d���
�� F �d�� ��� � G�d�� Q��!���

While the formulation of LSIEPa is a natural generalization of the conventional
inverse eigenvalue problems� the formulation of LSIEPb enjoys a simple geometric
intuition� We shall see below how this geometric interpretation motivates a numerical
method�

The seemingly insigni�cant LSIEPb� is closely related to the work by Brockett
��
 who relates a number of �nite automata to a smooth �ow de�ned by the so called
double bracket equation� The answer to its solvability issue can also be interpreted
as the important Wielandt�Ho�man theorem ��� ��� �
� We describe a generic case

where all eigenvalues involved are distinct below ���
�
Theorem ���� Assume the given eigenvalues are arranged in the order �� � �� �

� � � � �n� Let the eigenvalues of the given symmetric matrix A be �� � �� � � � � � �n�
Then Q � O�n� is a local minimizer of the function kQT!Q � AkF if and only if the

columns q�� � � � � qn of the matrix QT are the normalized eigenvectors of A corresponding
respectively to ��� � � � � �n� The solution to the LSIEPb� is unique and is given by

X � ��q�q
T
� � � � �� �nqnq

T
n �����

The sorting properties of eigenvalues acquired in Theorem ��� �see also Theo�

rem ��� has incited several other important research e�orts� including the link between
Toda lattice and gradient �ow ���
 and hence the sorting of eigenvalues observed in the

��
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QR algorithm� the link with the total least squares problem ��
� and applications in
linear programming and� in particular� to the interior point methods ��� �� ��� ��
� A
glimpse of the progress in this fascinating area can be found in ���
�

���� Numerical Methods� Numerical methods for LSIEPa and LSIEPb are
discussed in ��
� The so called lift and project method is particularly worth mentioning�
We sketch the idea below�

The idea is to alternate between ( and A� that is� for each given d�k� � R�� we

iterate the following two steps�
� �Lift	 Find the point Z�k� � ( such that dist�A�d�k��� Z�k�� � dist�A�d�k���(��

We call Z�k� a lift of A�d�k�� onto (�
�� �Projection	 Find the point d�k��� � R� such that dist�A�d�k����� Z�k�� �

dist�Z�k��A�� The point A�d�k���� � A is called a projection of Z�k� onto A�
A schematic diagram of the iteration is illustrated in Figure 	� We use the shaded
region in Figure 	 to symbolize that the topology of ( could be much more complicated

than one of its substructures Mk that will be de�ned later� The method only needs to
work with the much simpler set Mk�

The projection of Z�k� � Rn�n onto A is easy to do� The vector d�k��� is the solution
of the linear system

�X
i��

hAi� Ajid�k���
i � hZ�k� �A�� Aji� � j � � � � � � �����

where hA�Bi �� trace�ATB� is the Frobenius inner product for matrix A and B� Note

that the coe�cient matrix in ���� is independent of k� So the left�hand side of ����
needs to be factorized only once�

The lift step is more involved because elements in ( involve n �m undetermined

eigenvalues !c� Motivated by Theorem ��� however� the step can proceed as follows�
Suppose A�d�k�� � Q�d�k��diag�!��k��d�k���!

��k��d
�k��� Q�d�k��T is the spectral decom�

position of A�d�k�� where ��k� � ��k��d�k�� is the permutation that solves the combina�
torics problem �	�� with d � d�k� and Q�d�k�� is the corresponding orthogonal matrix

�	



of eigenvectors� Then the shortest distance between A�d�k�� and ( is attained� by the
Wielandt�Ho�man theorem ��� ��
� at the point

Z�k� �� Q�d�k��diag
�
!�
m�!��k��d

�k��
�
Q�d�k��T �����

In other words� in order to �nd the shortest distance from A�d�k�� to (� it su�ces to �nd
the shortest distance from A�d�k�� to a substructure Mk of (� where the substructure

Mk ��
n
Qdiag

�
!�
M �!��k��d

�k��
�
QT jQ � O�n�

o
��	�

has a much simpler topology than ( because the diagonal elements are �xed� �See
Figure 	�� The cost for this lift is to solve �	�� per step� Clearly� when the iterates are
reaching convergence the permutations ��k� should become stabilized�

Theorem ���� The lift and project method is a descent method in the sense that

kA�d�k����� Z�k���k�F � kA�d�k����� Z�k�k�F � kA�d�k��� Z�k�k�F �����

Thus the method generates a sequence of matrix pairs f�Z�k�� A�d�k���g that converges
to a local stationary point for the problem of minimizing ��
	�

�� Partially Described Inverse Eigenvalue Problem�

���� Generic Form� In the reconstruction of a system� instead of knowing the

complete spectrum� there are also situations where only a portion of eigenvalues and
eigenvectors are available� This is especially the case when due to the complexity or
the size of the physical system� no reasonable analytical tools are available to evaluate
the entire spectral information� Through the vibration test where the excitation and

the response of the structure at many points are measured experimentally� there are
identi�cation techniques that can extract a part of the eigenpairs of the structure from
the measurements �	� �
� A generic partially described inverse eigenvalue problem is
as follows�

�PDIEP	 Given vectors fv���� � � � � v�k�g � Fn and scalars f��� � � � � �kg � F where
 � k 	 n� �nd a matrix X � N such that Xv�i� � �iv

�i� for i � � � � � � k�

���� Variations� More speci�cally we could consider problems such as�

�PDIEP� F � R� N � fAll Toeplitz matrices in S�n�g ���
�
�PDIEP�� F � R� N � fAll Jacobi matrices in S�n�g ����
�
�PDIEP�� F � R� N � fAll per�symmetric Jacobi matrices in S�n�g ����
�

As an example of another type of PDIEP� consider the dynamical system

M
d�

dt�
v � C

d

dt
v �Kv � ������

where M�C�K are symmetric and M is positive de�nite� that arises in a wide range of
applications� Upon separation of variables� the system naturally leads to the quadratic
��matrix problem�

P ���x � �����
��



with

P ��� � M�� � C��K�����

Suppose now a state feedback forcing function of the form

u�t� � b�fT
d

dt
v�t� � gTv�t�������

where b� f� g � R
n are constant vectors� is applied to the system� The resulting closed

loop system leads to the ��matrix problem with pencil

Q��� �M�� � �C � bfT ��� �K � bgT �����

The goal of this feedback control u�t� is to relocate those bad eigenvalues in ���� that

either are unstable or lead to large vibration phenomena in the system ���� while
maintaining those good eigenvalues� This notion gives rise to the following partial pole
assignment problem�

�PDIEP�� Given matrices M�C�K� its associated eigenvalues f��� � � � � ��ng of the

pencil ����� a �xed vector b � R
n� and m complex numbers f��� � � � � �mg� m � n�

�nd f� g � C
n such that the spectrum of the closed loop pencil ��� has spectrum

f��� � � � � �m� �m��� � � � � ��ng�
Other variations of problems include�
�PDIEP	� Given two distinct scalars �� � � R and two non�zero vectors x� y � R

n�
�nd two Jacobi matrices J and J so that Jx � �x and Jy � �y� where J and J di�er
only in the �n� n� position ����
�

�PDIEP�� Given distinct scalars f��� � � � � �ng � R and a non�zero vector x � R
n�

�nd a Jacobi matrix J such that ��J� � f��� � � � � �ng and that either Jx � ��x or
Jx � �nx ����
�

�PDIEP�� Construct an n 	 n symmetric band matrix of bandwidth p from the

knowledge of all the eigenvalues and the �rst p components of all the normalized eigen�
vectors ��	
�

���� Solvability Issues� Regarding the PDIEP� it is known that eigenvectors of
a Toeplitz matrix have a special structure ��� ��� ��
� i�e�� eigenvectors of any symmetric
and centro�symmetric matrix must be either symmetric or skew�symmetric� It is �rst
proved by Cybenko that the dimension of Toeplitz matrices with a single prescribed

eigenvector in R
n should be at least �n��

� 
 ���
� Thus the fact that the dimension of
Toeplitz matrices with two prescribed eigenvectors is independent of n appears a little
bit surprising� More precisely� let

S�v� �� fc � R
njT �c�v � �v for some � � Rg

denote the a�ne subspace of all symmetric Toeplitz matrices with v as one of its eigen�
vectors� Then the PDIEP with k � � can be answered as follows ���
�

Theorem ���� Let the entry ��u� v��� in the table below represent the pair of
numbers where ��u� v� �� dim�S�u�

T
S�v�� is the dimension of the a�ne subspace of all

��



symmetric Toeplitz matrices with u� v as two of its eigenvectors and � is the dimension of

the a�ne subspace of solutions to the PDIEP
 with k � �� Then depending upon whether
n is odd �or even	 and the symmetry of the eigenvectors� for almost all eigenvectors u
and v and for any eigenvalues �� and ��� the following table is true�

n � odd �even	 symmetric skew�symmetric

symmetric ��� ���
	 ��� ����	

skew�symmetric ��� ����	 ��� ���
	

Thus� for example� if n is odd and if at least one of the given eigenvectors is

symmetric� or if n is even and one eigenvector is symmetric and the other is skew�
symmetric� then the Toeplitz matrix is uniquely determined� That is� two eigenvectors
and two eigenvalues can uniquely determine a Toeplitz matrix in these cases�

The solution to the PDIEP� is given in the following theorem ���� �
�
Theorem ���� Let the eigenvector matrix and eigenvalue matrix of ���	 be par�

titioned into X � �X��X�
 and ! � diag�!��!��� respectively� where X� � C
n�m �X� �

C
n���n�m� � !� � DC�m�� and !� � DC��n �m�� De�ne 
 � �
�� � � � � 
m
T � C

m by


j ��


bTxj

�j � �j
�j

mY
i���i ��j

�i � �j
�i � �j

�����

Then the pair of vectors

f �� MX�!�
����

g �� �KX�
����

solve the PDIEP��


� Multivariate Inverse Eigenvalue Problem� Amultivariate eigenvalue prob�
lem is to �nd real scalars ��� � � � � �m and a real vector x � Rn such that equations

Ax � !x��	�

jjxijj � � i � � � � � �m�����

are satis�ed� in which A � S�n� is a given positive de�nite matrix partitioned into
blocks�

A �

�
�����
A�� A�� � � � A�m

A�� A�� � � � A�m
���

���
���

Am� Am� � � � Amm

�
����� �

! is the diagonal matrix

! � diagf��I 	n�
� � � � � �mI
	nm
g

with I 	ni
 the identity matrix of size ni� and x � Rn is partitioned into blocks

x � �xT� � � � � � x
T
m


T

��



with xi � Rni � Trivially� the single variate case when m �  is simply a classical

symmetric eigenvalue problem� The general problem arises from multivariate canonical
analysis in statistics ���� �� �
� In the context of factor analysis� for example�
the original n random variables are divided into m �factors� each of which consists
of ni variables� blocks in A represent covariance matrices between these factors� and

xi determines how these ni variables should be combined into one simple factor� The
equations ��	� and ���� represent necessary conditions where coe�cients are to be
determined so that the resulting linear combinations of sets of random variables are
maximally correlated�

If m � �� the problem can still be handled by using the SV D decomposition� But
for m � �� only a heuristic iterative method has been proposed by Horst ��
� but the
convergence theory has been proved only recently ���
� It is further proved that the

number of solutions is
Qm

i����ni�� Quite surprisingly� it appears that this problem has
never been studied in the numerical linear algebra community� Neither the algebraic
theory nor numerical methods are in place by any standard�

The multivariate eigenvalue problem is interesting in its own right and is intricate

with many possible new research directions� On the other hand� following the spirit of all
the other inverse eigenvalue problems discussed above� we can formulate various kinds
of multivariate inverse eigenvalue problems� i�e�� given the partition pattern and spectral
information we want to determine whether a sample matrix A can be constructed� This

study would be useful for constructing statistical models� Conceivably these problems
would be far more challenging to handle than the already di�cult single�variate inverse
eigenvalue problems� We are not aware of any work in this area�

�� Conclusion� A physical process is often described by a mathematical model
of which the parameters represent important physical quantities� An important step
in the construction of a mathematical model for engineering applications is to verify

the model by comparing the predicted behavior of the model with experimental results
and then to update the model to more accurately represent the physical process� An
inverse eigenvalue problem amounts to one such modeling process in which quantities
are represented in terms of matrices whereas the comparison is based upon the spectral

information and the update is governed by the underlying structure constraint�
We have brie�y discussed in this paper a variety of inverse eigenvalue problems�

These problems are identi�ed and classi�ed according to their mathematical attributes�
Some of the problems have immediate engineering application while others are perhaps

more mathematical abstraction� Regardless� these inverse eigenvalue problems raise
some fundamental questions including issues of solvability� numerical reconstruction�
sensitivity of the reconstruction to noisy data� and so on� We have reviewed some of

the known results� but more importantly we have pointed out many more unsettled
open problems� The following table o�ers a quick glimpse at the current status of
problems surveyed in this paper� The results that have been discussed speci�cally in
this presentation are identi�ed by theorem and�or section numbers) otherwise� we try

to list some references for further study� Be cautioned that by no means the list is
complete� We have attached an extensive bibliography of pertinent literature in this

��



area for further reference� The question mark �*� in the table indicates that we are

not aware of any result in that regard� On other hand� a listing of references does
not necessarily imply that the problem is completely solved� Quite on the contrary�
often the listing represents only some partial results� The check mark �

p
� indicates

that some results are available but either the author fails to locate the source or these

results can be derived from other established facts�
It is hoped that this presentation will serve to stimulate further research in this

direction�
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Variation Solvability Computability Relation to Others

PIEP� ����� ���� �

PIEP� � x�	
� ���� �
� MIEP�� SIEP�

PIEP� Thm	 �	� ����

AIEP� ����� ���� ���� ���� �����

AIEP� ����� ���� ���� ���� ����
����

���� ��� ��� �� �
� ����
���� ���� ����

AIEP� Thm	 �	� ���� ���

AIEP� � ���

AIEP
 � ����

MIEP� ����� ��� ����� ���� PIEP�

MIEP� ���
� ���� ����
p

PIEP�

MIEP� Thm	 �	� �

MIEP� � ���

MIEP
 � �

SIEP� Thm	 �	� x�	�� �
�� ���� ��� ���� PIEP�

SIEP� ���� ���� ����

SIEP� � ��
�

SIEP� Thm	 �	� � �	� x�	� SIEP


SIEP
 � x�	� � Thm	 �	
� �
�� SIEP�

SIEP�a Thm	 �	� ���� ��� �� ���� ���� ����

����

SIEP�b Thm	 �	� �����

SIEP�
p

���� ��� ���

SIEP�
p

����

SIEP ���� �����

SIEP��
p

��� �
� ��� ���� ����

PISVP � ���� PIEP�

SHIEP Thm	 �	 �
�� ����

LSIEPa�
p x�	� � Thm	 �	� LSIEPb�

LSIEPb�
p x�	� LSIEPa�

LSIEPb� Thm	 �	�
p

LSIEPb�
p x �	� SIEP�

LSIEPb� � �

PDIEP� Thm	 
	� ���� ����

PDIEP� ����� �����

PDIEP� ����� �����

PDIEP� Thm	 
	�
p

PDIEP
 ����� �����

PDIEP� ����� �����
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p
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