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Abstract. A collection of inverse eigenvalue problems are identified and classified according to their
characteristics. Current developments in both the theoretic and the algorithmic aspects are summarized
and reviewed in this paper. This exposition also reveals many open questions that deserves further
study. An extensive bibliography of pertinent literature is attached.
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1. Introduction.

1.1. Objective. An inverse eigenvalue problem concerns the reconstruction of a
matrix from prescribed spectral data. The spectral data involved may consist of the
complete or only partial information of eigenvalues or eigenvectors. The objective of
an inverse eigenvalue problem is to construct a matrix that maintains a certain specific
structure as well as that given spectral property..

Associated with any inverse eigenvalue problem are two fundamental questions —
the theoretic issue on solvability and the practical issue on computability. A major effort
in solvability has been to determine a necessary or a sufhicient condition under which an
inverse eigenvalue problem has a solution. The main concern in computability, on the
other hand, has been to develop a procedure by which, knowing a priori that the given
spectral data are feasible, a matrix can be constructed numerically. Both questions are
difficult and challenging.

Studies on inverse eigenvalue problems have been intensive, ranging from engineer-
ing application to algebraic theorization. Yet the results are scattered even within the
same field of discipline. Despite the many efforts found in the literature, only a handful
of the problems discussed in this paper have been completely understood or solved.
Our goal in this work is to gather together a collection of inverse eigenvalue problems,
to identify and classify their characteristics, and to summarize current developments
in both the theoretic and the algorithmic aspects. We hope this presentation will help
to better define the regimen of inverse eigenvalue problems as a whole and hence to
stimulate further research.

1.2. Application. Inverse eigenvalue problems arise in a remarkable variety of ap-
plications. The list includes but is not limited to control design, system identification,
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seismic tomography, principal component analysis, exploration and remote sensing, an-
tenna array processing, geophysics, molecular spectroscopy, particle physics, structure
analysis, circuit theory, mechanical system simulation and so on.

To mention a few examples, we note that the state feedback as well as the output
feedback pole assignment problems have been of major interest in system identification
and control theory. There is a vast literature of research on this subject alone. An
excellent recount of recent activities in this area can be found in the survey paper by
Byrnes [35]. We shall see that pole assignment problems are a special case of what we
call parameterized inverse eigenvalue problems in this article.

Also, one of the basic problems in classical vibration theory is to determine the
natural frequencies and normal modes of the vibrating body. But inverse problems are
concerned with the construction of a model of a given type, e.g., a mass-spring system,
a string, and so on, with prescribed spectral data. Thus inverse problems have practical
value to applied mechanics and structure design [9, 61, 90, 91, 92, 120, 156, 158, 161].
Discussion for higher dimensional problems can be found in [10, 137, 138, 198, 199, 200].

Applications to other types of engineering problems can be found in the books by
Gladwell [93], Helmke and Moore [111], and articles such as [125, 188, 191, 196]. Exam-
ples of geophysics applications can be found in [153]. Examples of physics applications
can be found in [8, 12, 59, 63, 72, 188]. Even within the field of numerical analysis
where a specific algorithm is to be designed an inverse eigenvalue problem may arise.
See, for example, [145].

Much of the discussion for inverse problems in the literature has been due to an
interest in the inverse Sturm-Liouville problem [5, 107, 109, 152, 154, 202]. See also
[57, 58, 107, 151] for a comprehensive study of the connection between the continuous
problem and the matrix problem.

A significant common phenomenon in all these applications is that the physical
parameters of a certain system are to be reconstructed from knowledge of its dynamical
behavior, in particular its natural frequencies and/or normal modes. If the physical
parameters can be (and often they are) described mathematically in the form of a
matrix, then we have an inverse eigenvalue problem. In order to make the resulting
model physically realizable, it should be noted that sometimes additional stipulations
must be imposed upon the matrix.

1.3. Diversity. Depending on the application, inverse eigenvalue problems may be
described in several different forms. Translated into mathematics, it is often necessary
in order that the inverse eigenvalue problem be meaningful to restrict the construction
to special classes of matrices, especially to those with specified structures. A problem
without any restriction on the matrix generally is of little interest. The solution to
an inverse eigenvalue problem therefore should satisfy two constraints — the spectral
constraint referring to the prescribed spectral data and the structural constraint referring
to the desirable structure. These constraints define a variety of inverse eigenvalue
problems that will be surveyed in this paper.

In practice, it may occur that one of the two constraints of the problem should be
enforced more critically than the other due to, for example, the physical realizability.
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Without the realizability, the physical system simply cannot be built. There are also
situations when one constraint could be more relaxed than the other due to, for example,
the physical uncertainty. The uncertainty arises when there is simply no accurate
ways to measure the spectrum or there is no reasonable means to obtain the entire
information. When the two constraints cannot be satisfied simultaneously, sometimes
we are interested in a least squares solution.

Gladwell suggests from the standpoint of engineering application that there should
also be a distinction between determination and esttmation in the nature of an inverse
problem. He calls it an essentially mathematical problem when the given data is ex-
act and complete so that the system can be precisely determined, and an essentially
engineering problem when the the data is only approximate and often incomplete, and
when only an estimation of the parameters of the system is sought so that the resulting
behavior agrees approximately with the prescribed data [94, 97]. It is important to for-
mulate the right question since research based on inappropriate or ill-chosen questions
leads to unsatisfying and unnecessarily complicated answers.

1.4. Literature Overview. Classical approaches to determining the solvability
of an inverse eigenvalue problems involve techniques developed from algebraic curves,
degree theory or algebraic geometry. See, for example, [2, 16, 66, 80, 81, 86, 127].
Although in most cases the algebraic theory is still incomplete or missing, there are
also numerical algorithms developed for computation purpose. A partial list includes,
for example, [18, 28, 43, 54, 99, 104, 115, 128, 129, 144, 146, 184, 187].

A review of recent literature on inverse eigenvalue problems related exclusively to
small vibrations of mechanical system can be found in [94] that is then updated in
[97]. An early survey of direct methods for solving certain symmetric inverse eigenvalue
problems was given by Boley and Golub [27]. Algorithms of iterative nature for more
general problems were considered by Friedland et al [85]. This paper covers an even
larger scope of inverse eigenvalue problems.

An earlier attempt similar to the objective of this paper was made by Zhou and Dai
in their book [203] that greatly motivates this author to continue the current extension.
We build our presentation upon that in [203] by bringing in the latest results known to
this date. In particular, an extensive bibliography of pertinent literature is compiled.
Regretfully, many Chinese references in [203] are not included because of difficulties in
translation and availability. Other excellent resources for references, particularly those
related to mechanical systems, can be found in [87, 93, 94, 97], and those to inverse
Sturm-Liouville problems in [5].

We mention that entries of the matrix to be constructed usually represent physical
parameters to be determined. So an inverse eigenvalue problem can generally be re-
garded as a parameter estimation problem. Each inverse eigenvalue problem, however,
also carries it own characteristic. In the literature, the study usually is focused on one
characteristic a time. Following the practice in the literature, we categorize inverse
eigenvalue problems according to characteristics such as additive, multiplicative, pa-
rameterized, structured, partially described or least squares. This classification along
with review articles by Gladwell [94, 97] who differentiates problems according to the
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MVIEP

(single variate)

Fic. 1. Classification of inverse eigenvalue problems.

type of the mechanical system, i.e., continuous or discrete, damped or undamped, and
the type of the prescribed data, i.e., spectral, modal, or nodal, complete or incomplete,
should complement each other to offer a fairly broad view of research activities in this
area.

1.5. Outline and Notation. This paper discusses explicitly thirty-seven inverse
eigenvalue problems, not counting the many other implied variations. The forms and
algorithms differ noticeably from problem to problem. Thus it is almost impossible to
bring any unity into this collection. Also, an inverse eigenvalue problem often carries
overlapping characteristics. It is sometimes difficult to determine which characteristic
is the most prominent.

In an attempt to provide a better grasp of the scenarios, we shall adopt the name
scheme *TEP# to identify a problem throughout the paper. Letter or letters “ x” in
front of IEP indicate the type of the problem. The number “#” following IEP indicates

the sequence of variation within type “*IEP”. We first introduce the following acronym:s:

MVIEP = Multi-Variate Inverse Eigenvalue Problem
LSIEP = Least Square Inverse Eigenvalue Problem
PIEP = Parameterized Inverse Eigenvalue Problem
SIEP = Structured Inverse Eigenvalue Problem
PDIEP = Partially Described Inverse Eigenvalue Problem
ATEP = Additive Inverse Eigenvalue Problem
MIEP = Multiplicative Inverse Eigenvalue Problem

The precise definition for each type of problems will be described in the sequel. We

suggest using Figure 1 to lay down a possible inclusion relationship between the different

problems. We hope readers will agree after perusing through our argument that this

diagram, though not precise, provides a reasonable connection between the problems.
We intend to imply several points from Figure 1 that affect our presentation:
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o The MVIEP basically is an unexplored territory because most of the studies
in the literature have been for the single variate only. We shall touch upon its
general setting in §6, but concentrate on the single variate problem for the rest
of this paper. There should be plenty of new research topics in this area alone.

o All problems have a natural generalization to the least squares formulation.

e The ATEP and the MIEP are two extensively studied special cases of the PIEP.

o The relationship depicted in Figure 1 is not necessarily definite because many
characteristics may overlap. We should not be surprised if there are other types
of characterization overlooked in this classification.

In this survey, we choose to call attention to three major types of problems. In §2
we describe the PIEP where the emphasis is on the way that these parameters modulate
the problem. In §3 we discuss the SIEP where the emphasis is on the structure that a
solution matrix is supposed to maintain. In §4 we discuss the LSIEP where the best
solution exists only in the sense of least squares approximation. We shall consider these
three problems slightly more in breadth and depth with regard to the motivation, main
results, and algorithmic issues.

In addition, we shall briefly discuss the PDIEP in §5 because it is difficult to place
properly in Figure 1. The PDIEP arises when there are simply no reasonable tools
available to evaluate the entire spectral information due to, for instance, the complexity
or the size of the physical system. Often only partial data are readily obtainable and
the engineers have to build the system based on that partial information.

To emphasize the modular representative in each category, we begin each section
with a paradigmatic description of the problem. We then discuss variations by being
more specific on conditions of the underlying matrices. It quickly becomes clear that we
will not be able to give a full account on each of the problems in this presentation. We
can only try to provide the readers with a few references whenever some kind of theory
or algorithms have been derived. Despite our efforts, it is obvious that we will have
left out some interesting problems from our collection. Yet we shall see that there are
already more questions than answers in this exposition — the reason why this treatise
is originally motivated.

Being tossed between the vast diversity of problems, theories, algorithms, and open
questions, we find it very difficult to achieve any uniformity in this presentation. By
presenting the discussion as a synthesis of subsections entitled Generic Form, Variations,
Solvability Issues, and Numerical Methods, we hope we have provided a grasp of the
different aspects of inverse eigenvalue problems.

Because of the scope of problems covered in this paper, we inevitably have to call
upon lot of jargon in this presentation. We shall explain some of the unusual terms,
but for most of the technical linear algebra terms we suggest that readers refer to the
classical book by Horn and Johnson [118]. To facilitate the discussion, we shall adopt
the following notation hereinafter:



F represents the scalar field of either real R or complex C.

A, B, ... denote matrices.

b)), z(u), v;, . . . denote vectors.

o(A) denotes the spectrum of A.

||-|| denotes either the 2-norm of a vector or the Frobenius norm of a matrix.
M, N, ... denote certain subsets of square matrices of which the size is clear

from the context. In particular, we have:

R(n) = R™",

S(n) {All symmetric matrices in R(n)},

O(n) := {All orthogonal matrices in R(n)},
Dr(n) := {All diagonal matrices in R(n)},

C(n) e,

H(n) := {All Hermitian matrices in C(n)},
De(n) = {All diagonal matrices in C(n)}.

2. Parameterized Inverse Eigenvalue Problem.

2.1. Generic Form. Although almost every inverse eigenvalue problems can be
regarded as an parameter estimation problem, the emphasis in this section is on the
meticulous way that these parameters regulate the problem. A generic PIEP can be
described as follows:

(PIEP) Given a family of matrices A(c) € M with ¢ = [c1,...,¢m] € F™ and
scalars {1,..., \n} CF, find a parameter ¢ such that o(A(c)) = { 1,..., \n}.

Note that the number m of parameters in ¢ may be different from n. Depending
upon how the family of matrices A(c) is specifically defined in terms of ¢, the PIEP can
appear and be solved very differently. Inverse eigenvalue problems in the above PIEP
format arise frequently in discrete modeling [90, 107, 151] and factor analysis [110]. We
shall illustrate several different aspects by examples in the following, but a common
feature in all variations of the PIEP is that the parameter ¢ is used as a “control” that
modulates to the underlying problem in a certain specific, predestined way.

2.2. Variations. The inclusion of PIEP is quite broad. We mention a few inter-
esting variations below:

The case when A(c) is affine in ¢ has attracted considerable attention recently:

(PIEP1) A(c) = Ao + X0 ¢;A; where A, € R(n), F = R.

(PIEP2) A(c) = Ao+ X0, ¢;A; where A, € S(n), F =R [85].

Also, the following two problems have been under extensive investigation in the
literature:

(AIEP) Given a matriz A € M, scalars {\1,..., .} CF, and a class of matrices
N, find @ matriz X € N such that c(A+ X) ={)1,..., \n}.

(MIEP) Given a matriz A € M, scalars {\1,..., \,} CF, and a class of matrices
N, find @ matriz X € N such that o(XA) = {\1,..., \n}.



It is clear that the AIEP is a special case of the PIEP with A(X) = A+ X and X
playing the role of ¢, and that the MIEP corresponds to the case where A(X) = X A.
By being more specific on the class N of matrices, the problems themselves can be
divided into further subclasses. Since both AIEP and MIEP have been of long and
independent interest in various applications, we name them as separate types and shall
examine them more carefully later.

The following example is yet another more complicated PIEP arising in descriptor
systems:

(PIEP3) Given matrices A € C(n), B; € ¢™™ | (C; € ¢5*" ¢ =1,...,¢q, and
scalars {\;,...,\,} C C, find matrices K; € C™*% such that o(A + Y7, B;K;C;) =
{1, -, ) [189].

When ¢ = 1, the PIEP3 includes as special cases the state feedback as well the
output feedback pole assignment problems. This problem stands alone as an important
issue for decades. It has been studied extensively by different approaches ranging from
linear system theory, combinatorics, complex function theory to algebraic geometry.
See, for example, [34, 35, 111] and the references contained therein. Yet the results are
still incomplete.

2.2.1. Additive Inverse Eigenvalue Problem. Asindicated above, the emblem
of an AIEP is that a given matrix A is perturbed by the addition of a specially structured
matrix X in order to match the eigenvalues. The eigenvalue information can provide
at most n equations, so sometimes it may be desirable to limit the number of free
parameters in X. Other than this, the set AV can be taken quite liberally. We may
therefore use the set A/ to impose a certain structural constraint on the solution matrix
X. For example, it may be that matrices in A/ are required to introduce no more
non-zero entries (fill-in) than what are already in A, or that only certain positions of
the matrix A are allowed to be added to. Structure on A sometimes arises naturally
because of engineers’ design constraints. When the number of unknown parameters in
X and the number of equations provided through the eigenvalue information are not
consistent, an AIEP may be considered in the context of least squares. See §4 for more
details.

Thus far, most of the attention has been paid to the case where N contains only
diagonal matrices. Even so, differences among the following special cases should be
carefully distinguished

(AIEP1) M = R(n), F = &, N = Dg(n)
(AIEP2) M = S(n), F = &, ' = Dg(n).
(AIEP3) M =C(n), F = C, N = De(n) [81]

(AIEP4) M = 7-[( ), F=r, N = Dg(n) [69].

The AIEP4 was first posed by Downing and Householder [69]. Its special case
AIEP2 with A being a Jacobi matrix is of particular interest because the discretization
of the boundary value problem, for example,
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eigenvalue problem in tridiagonal structure,
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where X is a diagonal matrix representing the discretization of p(z). Thus an AIEP2
may be interpreted as a discrete analog of the inverse Strum-Liouville problem, a clas-
sical subject where the potential p(z) is to be found so that the system possesses a
prescribed spectrum.

Another interesting variant of the AIEP arises in, e.g., control or algorithm design,
where the stability is at issue. In such a problem it is more practically critical to have
eigenvalues located in a certain region than at a certain points. One such problem can
be stated as follows:

(AIEP5) Given A € R(n), find X € N with o(A+ X) lies in a certain fixed region,
say the right-half, of the complex plane.

Related to the AIEP5, for example, is the nearest unstable matrix problem [33].
The problem concerns the distance from a given matrix, stable in the sense that all
its eigenvalues have negative real part, to the nearest matrix with one eigenvalue on
the imaginary axis. Also related is the communality problem in factor analysis [110]
and the educational testing problem [53, 77]. The former concerns finding a diagonal
matrix D so that the sum A + D in which A is a given real symmetric matrix with
zero diagonal entries has as many zero eigenvalues as possible. The latter concerns
finding a positive diagonal matrix D so that the difference A — D in which A is a given
real symmetric positive definite matrix remains positive semi-definite while the trace
trace(D) is maximized.

2.2.2. Multiplicative Inverse Eigenvalue Problem. In contrast to the ATEP,
a MIEP stands out when the task is to pre-multiply a given matrix A by a specially
structured matrix X to reposition or to precondition the distribution of its eigenvalues.
This is very similar to but more general than the idea of preconditioning the matrix A
where it is desired to find an efficient preconditioner M for A so that the product M1 A
approzimates the identity. It is known that preconditioning plays a very important role
in many computational issues. Although the sense in which M~ A should approximate
the identity differs according to the underlying method to be used, the general setting
in the MIEP can be applied to the optimal preconditioning of a given matrix A. The set
N can be used particularly to exploit a certain sparsity pattern of the preconditioner
[101, 102].

Similar to the ATEP, perhaps the simplest possible preconditioners are the diagonal
scalings:



Fic. 2. Vibration of particles on a string.

(MIEP1) M = R(n), F =R, N = Dg(n).

(MIEP2) M = S§(n), F =R, N = Dg(n)

(MIEP3) M =C(n), F =C, N = D¢(n) [80].

We illustrate one example of MIEP2 arising from engineering application. Consider
the vibration of particles on a string sketched in Figure 2. Suppose four particles, each
with mass m;, are uniformly spaced with distance h and are vibrating vertically subject
to the horizontal tension F. Then the equation of motion is given by [203]:

d2£B1 I Ig9 — I1
= —F—+F
™ RTP T
d2$2 To — I T3 — T2
= —F F
ey R
d?z, T3 — T3 Tg — T3
= —F F
ey R
d2$4 T4 — I3 T4
- _F _ gt
e h h
which can be summarized as the system
d*z
(3) W = —DAxz
2 -1 0 0
T -1 2 -1 0 )
where z = [z, 22,23, 24]", A = 0 -1 92 1 and D = diag(di, ds, ds, ds)
0o 0 -1 2
with d; = mEh. To solve (3), we typically consider the eigenvalue problem
DAz = Xz

where A is the square of the so called natural frequency of the system. The inverse
problem then amounts to calculating the mass m,;, : = 1,...,4, so that the resulting
system vibrates at a prescribed natural frequency.

Similarly, a discretization of the boundary value problem

(4) —"(2) = Mp(e)u(a)

!

yields the eigenvalue problem

(5) Au = 2 Xu



where X is a positive diagonal matrix representing p(z). Thus an MIEP is to determine
the density function p(z) > 0 from the prescribed spectrum.

A conservative, n degrees of freedom mass-spring system with mass matrix X and
stiffness matrix A also ends with the formulation (5). Since the physical realizability
of the stiffness matrix A usually is more complex than the mass matrix X, a practical
way of ensuring the overall physical realizability in engineering design is to determine
A from static constraints and then to find a positive diagonal matrix X so that some
desired natural frequencies are achieved.

There are other types of multiplicative inverse eigenvalue problems:

(MIEP4) Given a matrix A € H, and scalars {)1,...,A\,} C R, find a matrix
X € Dr(n) such that o(XPAX 1) = {\,..., 2.} [69].

(MIEP5) Given A € R(n), find X € Dg(n) with positive entries such that o(X A)
lies in the right-half complex plane.

2.3. Solvability Issues. It would be nice to be able to address the solvability
issue of the PIEP by one major theorem. But such a result simply does not, and
probably will never, exist because the description of PIEP is too general. Searching
through the literatures, on the other hand, reveals that scattered around are pieces of
understanding of its individual variations. The information in fact is so diverse and
massive that we find it extremely difficult to condense the results here. We can only
summarize some of the major developments problem by problem.

It is easy to construct examples, even in R(2), that the PIEP1 and the PIEP2 may
have no solution at all. In this case, a least squares formulation becomes more desirable.
We shall discuss this issue in §4.

Considerable advances toward the understanding of the AIEP have been made over
the years. There is a rich literature on both the theoretic and the numerical aspects
for this type of problems. To see a few necessary and some sufficient conditions on the
solvability, we refer to results in articles [20, 36, 79, 103, 106, 126, 131, 132, 142, 143,
147,148,164, 173, 180, 192, 193]. Notably we have the following main result addressing
the existence question for the AIEP3 by Friedland [2, 81]:

THEOREM 2.1. For any specified {\1,..., A\, }, the AIEPS is solvable. The number
of solutions is finite and does not exceed n!. Moreover, for almost all {1, ..., )\, }, there
are exactly n! solutions.

We hasten to point out that the existence question when F = R, including the
ATEP1 or the ATEP2, has yet to be settled. It would be an interesting research topic to
study the theoretical and the algorithmic aspects of the more general AIEP when the
constraint set A imposes a structure other than the diagonal. We are not aware of any
discussion in this regard.

By using degree theory, Friedland has also proved the following theorem for the
MIEP3:

THEOREM 2.2. If all principal minors of A are distinct from zero, then the MIEPS3
is solvable for arbitrary {A1,..., \n} and there exist at most n! distinct solutions.

Although in practice one does not need a preconditioner that exactly repositions
the eigenvalues, an understanding of the MIEP might shed some insights into the design
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of a good preconditioner. Friedland’s result suggests that in the complex context the
matrix A can be perfectly conditioned by a diagonal matrix. Despite its elegance in
mathematical theory, one should not overlook the practicality of Theorem 2.2. What
is missing is an efficient algorithm for implementing Theorem 2.2. Indeed, we are not
even aware of any numerical procedure to do so. In fact, we are more interested in only
the real arithmetic and thus the MIEP1 or MIEP5. Unfortunately, despite the many
preconditioners that have been proposed or used in practice, there are not as many
theoretic results known for these types of problems. General discussions on the MIEP
can be found in [67, 105, 149, 170, 181]. In the context of minimizing the condition
number (M~ A), one classical result due to Forsythe and Strauss [78, 101] is worth
mentioning.

THEOREM 2.3. Assume A is symmetric, posttive definite, and has property-A,

gr} g ] where Dy and Dy are
2
diagonal matrices. Let D denote the diagonal of A. Then

t.e., A can be symmetrically permuted into the form

(6) k(D~Y2AD™Y?) < k(DAD)

for any other positive definite diagonal matriz D. In other words, D 1is the optimal
diagonal preconditioner for the matriz A.

The following theorem is a standard result addressing the solvability issue of PIEP3
when ¢ =1 [122, 179].

THEOREM 2.4. Given A € R(n), B € R™™, and a set of n complex numbers
{1, ..., \n}, closed under complez conjugation, then there ezist a matriz K € R™*™
such that c(A+ BK) = {\1,..., A} if and only if the pair (A, B) ts controllable, that
18, if and only if the following condition holds:

{yTA = py” and y"B =0} —= ¢yT =0.

Moreover, in the single-input case, i.e., m = 1, if a solution exists, then it is unique.
We shall refer readers to a recent survey paper by Byrnes [35] for pole assignment
problems and not give any more reviews here.

2.4. Sensitivity Analysis. Associated with any PIEP, and indeed any inverse
eigenvalue problem, is the important issue of sensitivity analysis. That is, we need to
determine how a solution matrix is subject to change with respect to the perturba-
tion of the prescribed eigenvalues. This is the inverse problem of the classical matrix
perturbation theory [17, 176].

The dificulty of this inverse sensitivity analysis even for symmetric matrices can
be illustrated from the generalized Wielandt-Hoffman theorem [17, Theorem 8.5] that,
for any two Hermitian matrices A and B, we have

(7) | Eig'(A) — Big!(B)ll2 < [|A — B> < |[Eig"(A) — Eig'(B)]»

where Eigt(A) (and similarly Eig'(A)) means the diagonal matrix with eigenvalues of A
arranged in descending (ascending) order. The classical theory concerns the sensitivity
11



of the eigenpairs to random perturbation. The first inequality in (7) provides an upper
bound on the variation of eigenvalues. The inverse problem, however, concerns the
structural modification, say, of a physical system due to spectral adjustment. Even if
the adjustment is relatively minor, the second inequality in (7) does not necessarily
provide a good bound on the variation of solution matrices. In fact, it is fundamental
that eigenvalues are continuous functions in the entries of a matrix [177]. But the
converse sometimes even does not make any sense because the inverse problem may
have no solution at all if the data are changed. This important yet difficult question so
far as we know has not been addressed thoroughly in the literature.

Some recent work on the validation of a numerical solution to an ATEP can be found
in [1, 178, 195] and the thesis [7]. Some immediate application and related discussion
can be found in, for example, [34, 122, 179] for robust pole assignment problems, and
[15, 133, 155] for incomplete modal analysis. For other situations, the analysis perhaps
needs to be carried out individually. Any advance in this direction certainly is welcomed.

2.5. Numerical Methods. Even though the existence theory or a sensitivity
analysis for a PIEP may still be incomplete or missing, it does not necessarily imply
that the problem is untouchable by some numerical means. In this section we review
some of the methods for the PIEP.

Numerical algorithms for solving the AIEP2 and the AIEP4 can be found, for
example, in [18, 24, 27, 69, 85, 107, 130, 146, 187]. Most methods for symmetric or
Hermitian problems depend heavily on the fact that the eigenvalues are real valued
and, hence, can be totally ordered. In this case, the ith eigenvalue A\;(X) of A+ X for
each fixed ¢ is continuous and piecewise differentiable in X. Standard techniques for
solving nonlinear algebraic systems may be used. We shall illustrate one such iterative
method for the ATEP under the context of PIEP in a later part of this section.

When eigenvalues are complex valued, including the case F = C or even the AIEP1
in general, it becomes more difficult to track the evolution of eigenvalues because com-
plex numbers do not form an ordered field and one cannot explicitly identify which value
in the spectrum is the :th eigenvalue. An existence proof for the AIEP3 by the homo-
topy method which, in return, gives rise to a numerical method for finding all solutions
of the AIEP3 can be found in [43]. See also [194]. Except for the homotopy method
that tracks each individual eigenvalue by a homotopy curve determined by its initial
value, it seems that other methods for solving a complex-valued AIEP will inevitably
involve some kind of matching mechanism [30, 31, 41].

The MIEP1 may be written in the form of the PIEP1 by, for example, selecting
Ag=0and Ay = ekaz fork=1,...,n where az 1s the kth row of A and e; denotes the
kth standard basis in R™ The matrices Ay in this setting, of course, are not symmetric.
If A is symmetric and positive definite, then the matrix X A4 is similar to LT X L where
L is the Cholesky factor of A = LLT. We may then convert an MIEP2 to a PIEP2 by
using symmetric matrices Ag = 0 and Ay, = LT EyL with Ey := diag(ex).

Assuming the existence of a solution, several numerical methods for the PIEP2 have
been studied in [85]. The geometric interpretation of one of these method, Method III
in [85], as a variant of the Newton method is particularly useful and interesting [47],
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Fic. 3. Geometry of PIEP.

since many inverse eigenvalue problems can be written in the PIEP2 form. We discuss
the basic idea in a little bit more detail below.

For illustration, we shall consider the case that all eigenvalues Aq,..., A, are dis-
tinct. Let

(8) A= diag{)1,. .., \n}

and let A denote the affine subspace

(9) A= {A(c)lc € "}

where A(c) is defined in PIEP2. It can be proved that the set
(10) M(A) = {QAQT|Q € O(n)},

where O(n) denotes the group of all n x n orthogonal matrices, is a smooth manifold
of dimension @ Any tangent vector T'(X) to M.(A) at a point X € M.(A) must
be of the form

(11) T(X)=XK - KX

for some skew-symmetric matrix K € R™*" [45, 48] . We recall the elementary fact that
the new iterate 21 of a classical Newton step

(12) 2T = o) — (f1(a) 7 f(21))

for a function f : R — R is precisely the z-intercept of the line which is tangent to
the graph of f at (z®), f(z™)). If we think of the surface M (A) as playing the role
of the graph of f and the affine subspace A as playing the role of the z-axis, then an
iterative process analogous to the Newton method can be developed for the PIEP2.

The geometry is illustrated in Figure 3.
Given X®) € M,(A), there exist a Q™) € O(n) such that

(13) QW XMt — A
13



From (11), we know X )4+ X®) K — K X*) with any skew-symmetric matrix K represents
a tangent vector to M,(A) emanating from X*). We thus seek an A-intercept A(c*+1))
of such a vector with the affine subspace .A. That is, we want to find a skew-symmetric
matrix K® and a vector ¢**t1) such that

(14) x®) T X _ g x0) - A(C(V-H)),

The unknowns K*) and c¢**1) in equation (14) can be solved separately as follows.
Using (13), we transform (14) into the system

(15) A+ AR — FOIA = Q0T (400
where
(16) K0 .= T gt g»)

is still skew-symmetric. Because K(*) has zero diagonal, the scaling by A does not
effect a change of the diagonal entries on the left-hand side of (15). This observation
effectively separates c**t1) from K®). More precisely, a comparison of the diagonals on
both sides of (15) gives rise to the linear system of n equations:

(17) JW ) = 3 _ ()
where
T
(18) Ji(;) = qz(y) quz(y), fore,5=1,...,n
(19) A= g7
T
(20) bz(»y) = qz(y) Aoqz(y), fori=1,...,n
and qz(y) is the i-th column of the matrix Q). The vector ¢(**1), therefore, can be solved

from (17). Note that K®) is not involved in (17) at all. Note also that in the setup of
(17) we have used the fact that A(c) is linear in ¢, i.e., A(c*T1)) = 4y + X7 c(lu—l_l)Aj.

J=1"%3
v+1

Once ¢tV is obtained, the skew-symmetric matrix K (and, hence, the matrix K®))

can be determined from the off-diagonal equations of (15). In fact,

(”)TA(c(v+1)) (v)
21 FV =2 %
( ) 2, )\z _ )\J )

for 1 <1 < j < n. In this way, the equation (14) is completely solved.

In the classical Newton method the new iterate z(**1) is "lifted up” naturally along
the y-axis to the the point (z+1), f(z(**1))) from which the next tangent line will
begin. We note that (z®**1) f(z*+1)) is a point on the graph of f. Analogously, we
now need a way to ”lift up” the point A(c**1)) € A to a point X+ € M (A). The
difficulty here is that there is no obvious coordinate axis to follow. One possible way of
this lifting can be motivated as follows: It is clear that solving the PIEP2 is equivalent

14



to finding an intersection of the two sets M (A) and A. Suppose all the iterations are
taking place near a point of intersection. Then we should have

(22) X0~ A(HY),
But from (14), we also should have

(23) A(c(”"'l)) ~ e KW x (1) KO

K@)

High accuracy calculation of the exponential matrix e in (23) is expensive and is

not needed. So, instead, we define the Cayley transform

(24) R® .= (I +

which happens to be the (1,1) Padé approximation of the matrix K™ Tt is well known
that R) € O(n), and that

(25) RW g KV

if ||[K®)]| is small. Motivated by (22) and (23), we now define

(26) X0+ .= R XOIRW) ¢ A (A)

and the next iteration is ready to begin. It is interesting to note that
(27) X+ RO K 4(clr41)) =K R o ()

represents what we mean by a lifting of the matrix A(c**!)) from the affine subspace
A to the surface M (A).

In summary, we realize that (14) is the equation for finding the A-intercept of a
tangent line passing X*) and that (26) is the equation for lifting the A-intercept to a
point on M (A). The above process is identical to Method III proposed in [85], but the
geometric meaning should be clearer now. We may thus say that Method III is precisely
equivalent to the Newton method applied to f(z) = 0, for some specified f(z). In [85]
Method III is proved to converge quadratically.

The lift can also be done by using the Wielandt-Hoffman theorem (See Theorem 4.2
and [44]). More specifically, we may take the lift to be the nearest point on M.(A) to
A(c*1). Tt can be shown that X**+!) must be given by

(28) IJ-|—1 . Q IJ-|—1 IJ-|—1 Q IJ-|—1
provided that
Ay = Q(u—l—l)z(u-l—l)@(u—l—l)T

is the spectral decomposition of A(c(”"'l)) and that A1 is the diagonal matrix whose
elements are a rearrangement of those of A in the same ordering as those in R+, It
15



can be shown that the rate of convergence for this case is still quadratic [183, Theorem
2.4].

The above tangent-and-lift idea can further be explored to refine other types of
parameterized inverse eigenvalue problems. Once such success is in the refinement for
the inverse Toeplitz eigenvalue problem [52]. The idea leads to the introduction of three
coordinate-free lifting schemes that can handle multiple eigenvalue cases in a way that
methods in [85] cannot. See the SIEP1 in §3. The same idea can also be applied to the
inverse singular value problem [47]. See also the PISVP in §3. It is worth pursuing to
generalize this idea to other types of inverse eigenvalue problem, especially to the much
more complicated case when A(c) is not linear in c.

3. Structured Inverse Eigenvalue Problem.

3.1. Generic Form. Perhaps the most focused inverse eigenvalue problems are
the structured problem where a matrix with a specified structure as well as a designated
spectrum is sought after. A generic structured inverse eigenvalue problem may be stated
as follows:

(SIEP) Given scalars {)1,..., .} € F, find X € N which consists of specially
structured matrices such that o(X) = {A1,..., \n}.

By demanding X to belong to A/, where a structure is defined, the SIEP is required
to meet both the spectral constraint and the structural constraint. The structural
constraint usually is imposed due to the realizability of the underlying physical system.

3.2. Variations. Many types of structures have been considered for the SIEP,
among which the following problems are most interesting:

(SIEP1) F = ® and V' = {All Toeplitz matrices in §(n)} [66, 86, 127, 184].

(SIEP2) F = B and N = {All per-symmetric Jacobi matrices in S(n)} [26, 28,
116].

(SIEP3) F = ® and V' = {All nonnegative matrices in S(n)} [45].

(SIEP4) F = ® and V' = {All nonnegative matrices in R(n)}.

(SIEP5) F = C and V' = {All row-stochastic matrices in R(n)} [54].

The spectra of structured matrices may also be structured. So sometimes additional
spectral information is given. For example, the following problems have been discussed
extensively in the literature.

(SIEP6a) Given scalars {A1,..., .} and {p1,..., n-1} C R that satisfy the in-
terlacing property A, < p; 