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Abstract� Inverse stochastic spectrum problem involves the construction of a stochastic matrix
with a prescribed spectrum� A di�erential equation aimed to bring forth the steepest descent �ow
in reducing the distance between isospectral matrices and nonnegative matrices� represented in terms
of some general coordinates� is described� The �ow is further characterized by an analytic singular
value decomposition to maintain the numerical stability and to monitor the proximity to singularity�
This �ow approach can be used to design Markov chains with speci�ed structure� Applications are
demonstrated by numerical examples�
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�� Introduction� Inverse eigenvalue problems concern the reconstruction of ma�
trices from prescribed spectral data� The spectral data may involve complete or partial
information of eigenvalues or eigenvectors� Generally� a problem without any restric�
tions on the matrix is of little interest� In order that the inverse eigenvalue problem be
meaningful� it is often necessary to restrict the construction to special classes of matri�
ces� such as symmetric Toeplitz matrices or matrices with other special structures� In
this paper we limit our attention to the so called stochastic matrices� i�e�� matrices with
nonnegative elements where all its row sums are equal to one� We propose a numer�
ical procedure for the construction of a stochastic matrix so that its spectrum agrees
with a prescribed set of complex values� If the set of prescribed values turns out to

be infeasible� the method produces a best approximation in the sense of least squares�
To our knowledge� this inverse eigenvalue problem for stochastic matrices has not been
studied extensively probably due to its di�culty as we shall discuss below� Neverthe�
less� for a variety of physical problems that can be described in the context of Markov
chains� an understanding of the inverse eigenvalue problem for stochastic matrices and
a capacity to solve the problem would make it possible to construct a system from its
natural frequencies ��� ���� The method proposed in the paper appears to be the �rst
attemp at tackling this problem numerically with some success� Our technique can also
be applied as a numerical way to solve the long standing inverse eigenvalue problems
for nonnegative matrices�

Associated with every inverse eigenvalue problem are two fundamental questions
	 the theoretic issue on solvability and the practical issue on computability� The
major e
ort in solvability has been to determine a necessary or a su�cient condition

under which an inverse eigenvalue problem has a solution whereas the main concern
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Fig� �� �� by the Karpelevi�c Theorem�

in computability has been to develop an algorithm by which� knowing a priori that
the given spectral data are feasible� a matrix can be constructed numerically� Both
questions are di�cult and challenging� Searching through the literature� we have found
only a handful of inverse eigenvalue problems that have been completely understood or
solved� The focus of this paper is on the computability for stochastic matrices�

For stochastic matrices� the inverse eigenvalue problem is particularly di�cult as
can be seen from the involvement in the best known result on existence by Karpelevi�c
���� ��� Karpelevi�c completely characterized the set �n of points in the complex
plane that are eigenvalues of stochastic n� n matrices� In particular� the region �n is
symmetric about the real axis� It is contained within the unit circle and its intersections
with the unit circle are points z � e��a�b where a and b run over all integers satisfying
� � a � b � n� The boundary of �n consists of these intersection points and of
curvilinear arcs connecting them in circular order� These arcs are characterized by
speci�c parametric equations whose formulas can be found in ���� ��� For example�
a complex number � is an eigenvalue for a � � � stochastic matrix if and only if it
belongs to a region �� such as the one shown in Figure �� Complicated though it may
seem� the Karpelevi�c theorem characterizes only one complex value a time and does
not provide further insights into when two or more points in �n are eigenvalues of the
same stochastic matrix� Minc ��� distinctively called the problem we are considering�
where the entire spectrum is given� the inverse spectrum problem�

It is known that the inverse eigenvalue problem for nonnegative matrices is virtually
equivalent to that for stochastic matrices� For example� a complex nonzero number � is
an eigenvalue of a nonnegative matrix with a positive maximal eigenvalue r if and only
if ��r is an eigenvalue of a stochastic matrix� Our problem is much more complicated
because it involves the entire spectrum� Fortunately� based on the following theorem
we can proceed our computation once a nonnegative matrix is found�
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Theorem ���� If A is a nonnegative matrix with positive maximal eigenvalue r
and a positive maximal eigenvector x� then D��r��AD is a stochastic matrix where

D �� diagfx�� � � � � xng�
We thus should turn our attention to the inverse eigenvalue �or spectrum� problems

for nonnegative matrices� a subject that has received considerable interest in the litera�
ture� Some necessary and a few su�cient conditions on whether a given set of complex
numbers could be the spectrum of a nonnegative matrix can be found� for example�
in ��� �� �� �� ��� ��� ��� ��� ��� and the references contained therein� Yet numerical
methods for constructing such a matrix� even if the spectrum is feasible� still need to
be developed� Some discussion can be found in �� ���� Regardless of all the e
orts� the
inverse eigenvalue problem for nonnegative matrices has not been completely resolved
to this date�

In an earlier paper �� the �rst author has developed an algorithm that can con�
struct symmetric nonnegative matrices with prescribed spectra by means of di
erential
equations� Symmetry was needed there because the techniques by then were for �ows
in the group of orthogonal matrices only� Upon realizing the existence of an analytic
singular value decomposition �ASVD� for a real analytic path of matrices ��� ��� ����
we are able to advance the techniques in �� to general matrices in this paper�

This paper is organized as follows� We reformulate the inverse stochastic spectrum
problem as that of �nding the shortest distance between isospectral matrices and non�
negative matrices� In x� we introduce a general coordinate system to describe these
two types of matrices and discuss how this setting naturally leads to a steepest descent
�ow� This approach generalizes what has been done before� but requires the inversion
of matrices that is potentially dangerous� In x� we argue that the steepest descent
�ow is in fact analytic and hence an analytic singular value decomposition exists� We
therefore are able to describe the �ow by a more stable vector �eld� We illustrate the
application of this di
erential equation to the inverse spectrum problem by numerical
examples in x��

�� Basic Formulation� The given spectrum f��� � � � � �ngmay be complex�valued�
It is not di�cult to create a simple� say tridiagonal� real�valued matrix � carrying the
same spectrum� For multiple eigenvalues� one should also consider the possible real�
valued Jordan canonical form� depending on the geometric multiplicity� Matrices in the
set

M��� �� fP�P��jP � Rn�n is nonsingularg���

obviously are isospectral to �� Let

��Rn
�� �� fB �BjB � Rn�ng���

denote the cone of all nonnegative matrices where � means the Hadamard product of
matrices� Our basic idea is to �nd the intersection of M��� and ��Rn

��� Such an
intersection� if exists� results in a nonnegative matrix isospectral to �� Furthermore� if
the condition in Theorem ��� holds� i�e�� if the eigenvector corresponding to the positive
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maximal eigenvalue is positive� then we will have solved the inverse spectrum problem
for stochastic matrices by a diagonal similarity transformation� The di�culty� as we
have pointed earlier� is the lack of means to determine if the given spectrum is feasible�
An arbitrarily given set of values ��� � � � � �n� even if �i � �n for all i� may not be the
spectrum of any nonnegative matrix� In this case� it is reasonable to ask for only the
best possible approximation� To handle both problems at the same time� we reformulate
the inverse spectrum problem as that of �nding the shortest distance between M���
and ��Rn

���

minimize F �P�R� ��
�

�
kP�P�� �R �Rk����

where k � k represents the Frobenius matrix norm� Obviously� if � is feasible� then
F �P�R� � � for some suitable P and R� Note that the variable P in ��� resides in the
open set of nonsingular matrices whereas R is simple a general matrix in Rn�n� The
optimization in ��� subjects to no other signi�cant constraint� Since the optimization
is over unbounded open domain� it is possible that the minimum does not exist� We
shall comment more on this point later�

The Fr�echet derivative of F at �P�R� acting on �H�K� is calculated as follows�

F ��P�R��H�K� � hP�P�� �R �R�H�P�� � P��P��HP����K �R� R �Ki

� h�P�P�� �R �R�P�T�T � P�T�TP T �P�P�� �R �R�P�T � Hi���

�h��P�P�� � R �R� �R�Ki

where h�� �i denotes the Frobenius inner product of two matrices� De�ne� for abbrevia�
tion�

M�P � �� P�P�����

��P�R� ��M�P �� R �R���

The norm of ��P�R� represents how close we are able to solve the inverse spectrum
problem� With respect to the product topology on Rn�n�Rn�n� we can easily read o

the gradient rF of the objective function F from ����

rF �P�R� �
�
���P�R�M�P �T �M�P �T��P�R��P�T �����P�R� �R

�
����

Therefore� the �ow �P �t�� R�t�� de�ned by the di
erential equations

dP

dt
�� �M�P �T ���P�R��P�T���

dR

dt
�� ���P�R� �R����

where ��� �� denotes the Lie bracket of two matrices� signi�es in fact the steepest descent
�ow for the objective function F �

An important advance we have made here is that the gradient rF �P�R� no longer
needs to be projected as was required in �� since P needs not to be orthogonal� On the
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other hand� a possible frailty of this advance is that the solution �ow P �t� is susceptible
to becoming unbounded�

The di
erential system ��� and ��� has another interesting property that is useful
for constructing Markov chains with designated structure� The Hadamard product in
��� implies that if rij � �� then drij

dt
� �� Thus the zero structure in the original matrix

R��� is preserved throughout the integration� We may use this property to explore the
possibility of constructing a Markov chain with prescribed linkages and spectrum�

�� ASVD �ow� A somewhat worrisome feature in the di
erential system ��� and
��� is the involvement of P��� In this section we propose using the ASVD as a stable way
to carry out the computation� Also� we have pointed out earlier that the minimization
��� over two open sets may not have a minimum� It is possible during the integration
that the �ow P �t� from one particular starting value graduately moves toward the
boundary� i�e�� the closed subset of singular matrices in Rn�n� and becomes more and
more nearly singular� The ASVD technique allows us to monitor the situation� If the
singular values indicate that P �t� is nearly rank de�cient� we can abort the integration
and restart from a new initial value�

An analytic singular value decomposition of the path of matrices P �t� is an analytic
path of factorizations

P �t� � X�t�S�t�Y �t�T����

where X�t� and Y �t� are orthogonal and S�t� is diagonal� In ��� Bunse�Gerstner et al
prove that an ASVD exists if P �t� is analytic� The fact that P �t� de�ned by ��� and
��� is indeed analytic follows from the Cauchy�Kovalevskaya Theorem ���� since the
coe�cients of the vector �eld in ��� and ��� are analytic� With this understanding� we
may proceed to describe the di
erential equations for the ASVD of P �t��

It is worthy to point out that the two matrices P and R are used� respectively� as
coordinates to describe the isospectral matrices and nonnegative matrices� We may have
used more dimensions of variables than necessary to describe the underlying matrices�
but that does no harm� When �ows P �t� and R�t� are introduced� in a sense a �ow

in M��� and a �ow in ��Rn
�� are also introduced� To stablize the computation� we

further describe the motion of the coordinate P by three other variables X� S� and Y

according to ����� The �ows of X�t�� S�t� and Y �t� can be found in the following way
due to Wright ���� ����

Di
erentiating both sides of ����� we obtain the following equation after some suit�
able multiplications �

XT dP

dt
Y � XT dX

dt
S �

dS

dt
� S

dY T

dt
Y�����

De�ne

Q�t� �� XT dP

dt
Y�����

Z�t� �� XT dX

dt
�����
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W �t� ��
dY T

dt
Y�����

Note that Q�t� is known from ��� where the inverse of P �t� is calculated from

P�� � Y S��XT �����

The diagonal entries of S � diagfs�� � � � � sng provide us with information about the
proximity of P �t� to singularity� On the other hand� comparing the diagonal entries on
both sides of ����� we obtain the di
erential equation for S�t��

dS

dt
� diag�Q�����

since both Z�t� and W �t� are skew symmetric� Comparing the o
�diagonal entries on
both sides of ����� we obtain the linear system�

qjk � zjksk � sjwjk�����

�qkj � zjksj � skwjk�����

If s�k �� s�j � we can solve this system and obtain

zjk �
skqjk � sjqkj
s�k � s�j

�����

wjk �
sjqjk � skqkj
s�j � s�k

����

for all j � k� Once Z�t� and W �t� are known� the di
erential equations for X�t� and
Y �t� are given� respectively� by

dX

dt
� XZ�����

dY

dt
� YW T �����

By now we have developed a complete coordinate system �X�t�� S�t�� Y �t�� R�t�� for
matrices inM���� ��Rn

��� The di
erential equations ����� ���� ���� and ��� with the
relationship ���� describe how these coordinates should be varied in t to produce the
steepest descent �ow for the objective function F � This �ow is ready to be integrated
numerically by any initial value problem solvers� We have thus proposed a numerical
method for solving the inverse stochastic spectrum problem�

�� Convergence� When assessing the convergence properties of the foregoing ap�
proach� we must distinguish carefully the means used to measure the convergence�

First of all� the approach fails only at two occasions 	 either P �t� becomes sin�
gular in �nite time or that F �P �t�� R�t�� converges to a nonzero constant� The former
case� detected by examining the singular values of P �t�� requires a restart from a new
initial value with the hope to avoid the singularity� The latter case indicates that a
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least squares local solution has been found� but that solution has not yet solved the
inverse spectrum problem� A restart may help to locate an exact solution� if the pre�
scribed spectrum is feasible� or to move to another least squares approximation that
may produce a di
erent objective value�

In all cases� the function

G�t� �� F �P �t�� R�t������

enjoys the property that

dG

dt
� �krF �P �t�� R�t��k� � �����

along any solution curve �P �t�� R�t��� It follows that G�t� is monotone decreasing and
that dG

dt
� � only when a local stationary point of F �P�R� is reached� Suppose that

P �t� remains nonsingular throughout the integration� an assumption that seems generic

according to our experiences� Then G�t� has to converge� It is in this sense that our
method is globally convergent�

In �� the coordinate matrix P �t� is limited to be orthogonal� hence is bounded and
exists for all t� This constraint is not imposed on the approach discussed in the current
paper� Generally there is no guarantee that P �t� is bounded� However� in the case that
the solution �ow �P �t�� R�t�� corresponding to a certain initial value indeed is bounded
and exists for all t � �� then we can conclude from Lyapunov�s second method ��� that
��limit points of P �t� exist and that each limit point satisfy rF �P�R� � �� In other
words� limit points of the �ow are necessarily stationary points� Because that the vector
�eld always points to the steepest descent direction and that other types of stationary
points are unstable� any limit point reached through numerical computation will most
likely be a local minimizer for F � The structure of ��limit set of the di
erential system
��� and ��� can be further analyzed in a way similar to that in ��� For example� if the
��limit set of a �ow contains a point at which F �P�R� � �� then that point is the only
element in the ��limit set� The �ow hence converges to that limit point� We shall not
repeat the detailed argument here� Our experiences seem to indicate that our method
works reasonably well for solving the inverse spectrum problem�

�� Numerical Experiment� In this section� we report some experiences of our
experiment with the di
erential equation applied to the inverse problem� The compu�
tation is carried out by MATLAB ���a on an ALPHA ��������LX workstation� The
solvers used for the initial value problem are ode��� and ode��s from the MATLAB
ODE SUITE ����� The code ode��� is a PECE implementation of Adams�Bashforth�
Moulton methods for non�sti
 systems� The code ode��s is a quasi�constant step size
implementation of the Klopfenstein�Shampine family of the numerical di
erential for�
mulas for sti
 systems� The statistics about the cost of integration can be obtained
directly from the odeset option built in the integrator� More details of these codes
can be found in the document ����� The reason for using these two codes is simply for
convenience and illustration� Any other ODE solvers can certainly be used instead�

	



In our experiments� the tolerance for both absolute error and relative error is set at
������ This criterion is used to control the accuracy in following the solution path� The
high accuracy we required here has little to do with the dynamics of the underlying
vector �eld� We examine the output values at time interval of ��� The integration
terminates automatically when the norm of ��P�R� or the relative improvement of
��P�R� between two consecutive output points is less than ���� indicating either a
stochastic matrix with the prescribed spectrum or� in the case of an infeasible spectrum�
a least squares solution has been found� So as to �t the data comfortably in the running
text� we report only the case n � � and display all numbers with �ve digits�

Example � To ensure the feasiblity of test data� we start with a randomly gener�
ated stochastic matrix and use it eigenvalues as the objective spectrum� To demonstrate
the robustness of our approach� the initial values of the di
erential equations are also
generated randomly� Reported below is one typical run in our experiments�

The random matrix

A �

�
�������

����� ����� ������ ������ ������

������ ������ ������ ������ ������
������ ������ ����� ���� ������
����� ����� ������ ������ ������
������ ������ ����� ����� ������

�
�������

is stochastic� Its spectrum f��������������� ������ ������i��������g� also random
but feasible� is used as the target� We note that the presence of complex�conjugate
pair�s� of eigenvalues in the spectrum is quite common� Orthogonal matrices X�� Y�
and the diagonal matrix S� from the singular value decomposition P� � X�S�Y� of the
random matrix

P� �

�
�������

������ ������ ������ ������ ������
���� ������ ����� ������ ������
������ ����� ������ ������ �����
���� ������ ����� ������ �����
������ ����� ������ ������ ������

�
�������

together with the matrix R� � �������� where � is the matrix with all entries �� are
used as the initial values for X�t�� Y �t�� S�t� and R�t�� respectively� Figure � depicts
the history of F �P �t�� R�t�� throughout the integration� As is expected� F �P �t�� R�t��
is monotone decreasing in t� The �ow P �t� converges to a nonnegative matrix with the
prescribed spectrum� that by Theorem ��� is converted into a stochastic matrix B�

B �

�
�������

����� ������ ������ ������ ������
����� ������ ����� ������ �����
������ ������ ������ ������ ������
����� ����� ������ ������ ������
������ ������ ������ ������ �����

�
�������
�

Note that B is not expected to be correlated to A other than the spectrum since
no other information of A is used in the calculation� While the history of F �P �t�� R�t��
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is independent of the integrator used� Figure � indicates the number of steps taken
in each interval of length �� by the non�sti
 solver ode��� and by the sti
 solver
ode��s� Both solvers seem to work reasonably well� although the sti
 solver clearly is
advancing with much larger step sizes at the cost of solving implicit algebraic equations�
Figure � summarizes the statistics of the cost when using ode��s� It should be pointed
out that the numerical computation of the partial derivative �and the related function
evaluations� could have been saved if the interval of output points had been larger �����

Suppose we merely change the initial value R� in the above to another random
matrix�

R� �

�
�������

������ ������ ������ ���� �������
������ ������ ������� ����� ������
����� ������ ������ ������ �������

������� ����� ������� ������� �������
������� ������ ������ ������� ������

�
�������
�

Then the resulting stochastic matrix C becomes

C �

�
�������

������ ������ ����� ������ ������
����� ������ ������ ����� ������
������ ����� ����� ������ ������
������ ������ ������ ������ ������
����� ����� ������ ������ ������

�
�������
�

illustrating the non�uniqueness of the solution for the inverse spectrum problem and
also the robustness of our di
erential equation approach�

Example �� In this example� we illustrate the application of our approach to struc�
tured stochastic matrix� Suppose we want to �nd a stochastic matrix with eigenvalues
f�������������� ������ �������������g� Furthermore� suppose we want the Markov
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chain to be such that the states form a ring and that each state is linked at most to its
two immediate neighbors� We begin with the initial matrices

P� �

�
�������

������ ������ ����� ����� �����
����� ������ ����� ������ �����
������ ������ ������ ����� ������
������ ����� ������ ������ ������
������ ����� ������ ����� ������

�
�������

and R� � �������� where

�� �

�
�������

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �

�
�������
�

As we pointed out earlier� the zeros in R� are invariant under the integration of ���
and ���� Thus we are maintaining the ring structure while searching for the one with
matched spectrum� It turns out that the stochastic matrix

D �

�
�������

������ ������ � � ����
������ ����� ����� � �
� ������ ������ ���� �
� � ������ ����� ������
������ � � ������ ������

�
�������

is the limit point of the solution �ow and possesses the desirable spectrum�
Example �� By a result of Dmitriev and Dynkin ���� a complex number � with

j arg�j � ��
n
is an eigenvalue of an n � n stochastic matrix if and only � lies either in

the triangle 	��� �� e��i�n� or in 	��� �� e���i�n�� The result by replacing the complex�

conjugate pair in the spectrum of Example � with another pair of complex�conjugate
values in these two triangles will not tamper the fact that every individual value is an
eigenvalue of a certain stochastic matrix� However� whether these values are eigenvalues
of the same stochastic matrix is di�cult to con�rm�

We experiment with� for instance� the eigenvalues ������ ������i� Using the same
initial values �R� � �������� as in Example �� we have experienced extremely slow
convergence for this case� The history of F �P�R� in Figure � clearly indicates this
observation� The limit point� given by

E �

�
�������

������ ������ ����� ������ �����
������ ������ ������ ������ �����
������ ������ ������ ������ ������
���� ����� ������ ������ ������
����� ������ ������ ����� ������

�
�������
�
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exhibits an unexpected zero structure that we think is the cause of the slow conver�
gence� The variation of the smallest singular value in the ASVD is plotted in Figure ��
indicating that matrices P �t� stay away from singularity at a good distance� Suppose
we modify the initial value to re�ect the structure by simply setting the corresponding
entries in the original R� zero� Then the �ow converges to another limit point

F �

�
�������

������ � ����� � ������
������ ������ ������ ������ �����
� ������ ������ ����� �
���� ����� ������ ������ �����
������ ������ ������ ������ ������

�
�������

at an almost equally slow pace� The spectra of both E and F agree with the desired
data up to the integration error�

�� Conclusion� The theory of solvability on the inverse spectrum problem for
stochastic or nonnegative matrices is yet to be developed� nevertheless we have proposed
an ODE approach that is capable of constructing numerically stochastic or nonnegative
matrices with the desired spectrum� if the spectrum is feasible� The method is easy to
implement by existing ODE solvers� The method can also be used to approximate least
squares solutions or linearly structured matrices�
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