A NUMERICAL METHOD FOR THE
INVERSE STOCHASTIC SPECTRUM PROBLEM
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Abstract. Inverse stochastic spectrum problem involves the construction of a stochastic matrix
with a prescribed spectrum. A differential equation aimed to bring forth the steepest descent flow
in reducing the distance between isospectral matrices and nonnegative matrices, represented in terms
of some general coordinates, is described. The flow is further characterized by an analytic singular
value decomposition to maintain the numerical stability and to monitor the proximity to singularity.
This flow approach can be used to design Markov chains with specified structure. Applications are
demonstrated by numerical examples.
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1. Introduction. Inverse eigenvalue problems concern the reconstruction of ma-
trices from prescribed spectral data. The spectral data may involve complete or partial
information of eigenvalues or eigenvectors. Generally, a problem without any restric-
tions on the matrix is of little interest. In order that the inverse eigenvalue problem be
meaningful, it is often necessary to restrict the construction to special classes of matri-
ces, such as symmetric Toeplitz matrices or matrices with other special structures. In
this paper we limit our attention to the so called stochastic matrices, i.e., matrices with
nonnegative elements where all its row sums are equal to one. We propose a numer-
ical procedure for the construction of a stochastic matrix so that its spectrum agrees
with a prescribed set of complex values. If the set of prescribed values turns out to
be infeasible, the method produces a best approximation in the sense of least squares.
To our knowledge, this inverse eigenvalue problem for stochastic matrices has not been
studied extensively probably due to its difficulty as we shall discuss below. Neverthe-
less, for a variety of physical problems that can be described in the context of Markov
chains, an understanding of the inverse eigenvalue problem for stochastic matrices and
a capacity to solve the problem would make it possible to construct a system from its
natural frequencies [7, 11]. The method proposed in the paper appears to be the first
attemp at tackling this problem numerically with some success. Our technique can also
be applied as a numerical way to solve the long standing inverse eigenvalue problems
for nonnegative matrices.

Associated with every inverse eigenvalue problem are two fundamental questions
— the theoretic issue on solvability and the practical issue on computability. The
major effort in solvability has been to determine a necessary or a sufficient condition
under which an inverse eigenvalue problem has a solution whereas the main concern
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in computability has been to develop an algorithm by which, knowing a priori that
the given spectral data are feasible, a matrix can be constructed numerically. Both
questions are difficult and challenging. Searching through the literature, we have found
only a handful of inverse eigenvalue problems that have been completely understood or
solved. The focus of this paper is on the computability for stochastic matrices.

For stochastic matrices, the inverse eigenvalue problem is particularly difficult as
can be seen from the involvement in the best known result on existence by Karpelevic
[14, 16]. Karpelevi¢ completely characterized the set ©, of points in the complex
plane that are eigenvalues of stochastic n x n matrices. In particular, the region ©,, is
symmetric about the real axis. It is contained within the unit circle and its intersections
with the unit circle are points z = €*™/* where @ and b run over all integers satisfying
0 <a < b < n The boundary of ©, consists of these intersection points and of
curvilinear arcs connecting them in circular order. These arcs are characterized by
specific parametric equations whose formulas can be found in [14, 16]. For example,
a complex number A is an eigenvalue for a 4 x 4 stochastic matrix if and only if it
belongs to a region O, such as the one shown in Figure 1. Complicated though it may
seem, the Karpelevic theorem characterizes only one complex value a time and does
not provide further insights into when two or more points in ©,, are eigenvalues of the
same stochastic matrix. Minc [16] distinctively called the problem we are considering,
where the entire spectrum is given, the inverse spectrum problem.

It is known that the inverse eigenvalue problem for nonnegative matrices is virtually
equivalent to that for stochastic matrices. For example, a complex nonzero number « is
an eigenvalue of a nonnegative matrix with a positive maximal eigenvalue r if and only
if a/r is an eigenvalue of a stochastic matrix. Our problem is much more complicated
because it involves the entire spectrum. Fortunately, based on the following theorem
we can proceed our computation once a nonnegative matrix is found.
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THEOREM 1.1. If A is a nonnegative matriz with positive mazimal eigenvalue r
and a positive mazimal eigenvector x, then D 'r *AD is a stochastic matriz where
D := diag{xy,..., T, }.

We thus should turn our attention to the inverse eigenvalue (or spectrum) problems
for nonnegative matrices, a subject that has received considerable interest in the litera-
ture. Some necessary and a few sufficient conditions on whether a given set of complex
numbers could be the spectrum of a nonnegative matrix can be found, for example,
in [1, 3, 8,9, 10, 12, 13, 17, 20] and the references contained therein. Yet numerical
methods for constructing such a matrix, even if the spectrum is feasible, still need to
be developed. Some discussion can be found in [6, 20]. Regardless of all the efforts, the
inverse eigenvalue problem for nonnegative matrices has not been completely resolved
to this date.

In an earlier paper [6] the first author has developed an algorithm that can con-
struct symmetric nonnegative matrices with prescribed spectra by means of differential
equations. Symmetry was needed there because the techniques by then were for flows
in the group of orthogonal matrices only. Upon realizing the existence of an analytic
singular value decomposition (ASVD) for a real analytic path of matrices [5, 15, 21],
we are able to advance the techniques in [6] to general matrices in this paper.

This paper is organized as follows: We reformulate the inverse stochastic spectrum
problem as that of finding the shortest distance between isospectral matrices and non-
negative matrices. In §2 we introduce a general coordinate system to describe these
two types of matrices and discuss how this setting naturally leads to a steepest descent
flow. This approach generalizes what has been done before, but requires the inversion
of matrices that is potentially dangerous. In §3 we argue that the steepest descent
flow is in fact analytic and hence an analytic singular value decomposition exists. We
therefore are able to describe the flow by a more stable vector field. We illustrate the
application of this differential equation to the inverse spectrum problem by numerical
examples in §4.

2. Basic Formulation. The given spectrum {\;, ..., A\, } may be complex-valued.
It is not difficult to create a simple, say tridiagonal, real-valued matrix A carrying the
same spectrum. For multiple eigenvalues, one should also consider the possible real-
valued Jordan canonical form, depending on the geometric multiplicity. Matrices in the
set

(1) M(A) := {PAP'|P € R"*" is nonsingular}
obviously are isospectral to A. Let
(2) n(RY):={BoB|B e R""}

denote the cone of all nonnegative matrices where o means the Hadamard product of

matrices. Our basic idea is to find the intersection of M(A) and 7(R’}). Such an

intersection, if exists, results in a nonnegative matrix isospectral to A. Furthermore, if

the condition in Theorem 1.1 holds, i.e., if the eigenvector corresponding to the positive
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maximal eigenvalue is positive, then we will have solved the inverse spectrum problem
for stochastic matrices by a diagonal similarity transformation. The difficulty, as we
have pointed earlier, is the lack of means to determine if the given spectrum is feasible.
An arbitrarily given set of values Ay,..., \,, even if \; € O, for all 7, may not be the
spectrum of any nonnegative matrix. In this case, it is reasonable to ask for only the
best possible approximation. To handle both problems at the same time, we reformulate
the inverse spectrum problem as that of finding the shortest distance between M(A)
and 7m(R"):

1
(3) minimize F(P, R) := §||PAP‘1 —RoR|?

where || - || represents the Frobenius matrix norm. Obviously, if A is feasible, then
F(P, R) = 0 for some suitable P and R. Note that the variable P in (3) resides in the
open set of nonsingular matrices whereas R is simple a general matrix in R™*". The
optimization in (3) subjects to no other significant constraint. Since the optimization
is over unbounded open domain, it is possible that the minimum does not exist. We
shall comment more on this point later.

The Fréchet derivative of F' at (P, R) acting on (H, K) is calculated as follows:

F'(P,R)(H,K) = (PAP'—RoR HAP '—-PA(P'HP ')~ KoR—- RoK)
(4) = ((PAP'— RoR)P'AT — PT"ATPT(PAP™ — Ro R)P™" H)
—(2(PAP™'—~RoR)oR,K)

where (-,-) denotes the Frobenius inner product of two matrices. Define, for abbrevia-
tion,

(5) M(P) := PAP™!
(6) A(P,R) := M(P) — Ro R.

The norm of A(P, R) represents how close we are able to solve the inverse spectrum
problem. With respect to the product topology on R"*"™ x R"*™ we can easily read off
the gradient VF of the objective function F' from (4):

(7)  VF(P,R) = ((A(P,R)M(P)" = M(P)"A(P,R))P~",~2A(P, R) o R) .

Therefore, the flow (P(t), R(t)) defined by the differential equations
dP

(8) % = [M(P)TaA(Pa R)]P_T
dR
9) — = 2A(P,R)oR,
dt
where [-, -] denotes the Lie bracket of two matrices, signifies in fact the steepest descent

flow for the objective function F'.
An important advance we have made here is that the gradient VF(P, R) no longer
needs to be projected as was required in [6] since P needs not to be orthogonal. On the
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other hand, a possible frailty of this advance is that the solution flow P(¢) is susceptible
to becoming unbounded.

The differential system (8) and (9) has another interesting property that is useful
for constructing Markov chains with designated structure. The Hadamard product in
(9) implies that if r;; = 0, then d;ftj = 0. Thus the zero structure in the original matrix
R(0) is preserved throughout the integration. We may use this property to explore the

possibility of constructing a Markov chain with prescribed linkages and spectrum.

3. ASVD flow. A somewhat worrisome feature in the differential system (8) and
(9) is the involvement of P~!. In this section we propose using the ASVD as a stable way
to carry out the computation. Also, we have pointed out earlier that the minimization
(3) over two open sets may not have a minimum. It is possible during the integration
that the flow P(¢) from one particular starting value graduately moves toward the
boundary, i.e., the closed subset of singular matrices in R"*", and becomes more and
more nearly singular. The ASVD technique allows us to monitor the situation. If the
singular values indicate that P(t) is nearly rank deficient, we can abort the integration
and restart from a new initial value.

An analytic singular value decomposition of the path of matrices P(¢) is an analytic
path of factorizations

(10) P(t) = X(t)S()Y ()"

where X (¢) and Y'(¢) are orthogonal and S(t) is diagonal. In [5] Bunse-Gerstner et al
prove that an ASVD exists if P(¢) is analytic. The fact that P(t) defined by (8) and
(9) is indeed analytic follows from the Cauchy-Kovalevskaya Theorem [18] since the
coefficients of the vector field in (8) and (9) are analytic. With this understanding, we
may proceed to describe the differential equations for the ASVD of P(t).

It is worthy to point out that the two matrices P and R are used, respectively, as
coordinates to describe the isospectral matrices and nonnegative matrices. We may have
used more dimensions of variables than necessary to describe the underlying matrices,
but that does no harm. When flows P(t) and R(t) are introduced, in a sense a flow
in M(A) and a flow in 7(R") are also introduced. To stablize the computation, we
further describe the motion of the coordinate P by three other variables X, S, and Y
according to (10). The flows of X (¢), S(¢) and Y (¢) can be found in the following way
due to Wright [15, 21].

Differentiating both sides of (10), we obtain the following equation after some suit-
able multiplications :

dP dX ds dy’™

11 X' —y=X""—g4+—4+S5—Y.
(11) dt dt +dt+ dt
Define
(12) Q) = x*y,

dX
1 Zt) = XT—
(13) (t) et
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(14) W) = %y

Note that Q(t) is known from (8) where the inverse of P(t) is calculated from
(15) Pt=YS'XT

The diagonal entries of S = diag{si,...,s,} provide us with information about the
proximity of P(t) to singularity. On the other hand, comparing the diagonal entries on
both sides of (11), we obtain the differential equation for S(t):

as

(16) = diag(Q).

since both Z(t) and W (t) are skew symmetric. Comparing the off-diagonal entries on
both sides of (11), we obtain the linear system:

(17) Uk = ZjkSk + SjWik,
(18) —qr; = ZjkSj + SkWjk-
If s # 57, we can solve this system and obtain

Skqjk + Sjqk;
19 pa = LHE
(19) 3k Sy — 53

Sjqjk + SkQk;j
2 2

(20) Wik =

for all j > k. Once Z(t) and W(t) are known, the differential equations for X (¢) and
Y (t) are given, respectively, by

dX
21 — = XZ
( ) dt )
dy
22 — = yw"T.
(22) -

By now we have developed a complete coordinate system (X (¢), S(t), Y(t), R(t)) for
matrices in M(A) x 7(R%). The differential equations (21), (16), (22) and (9) with the
relationship (10) describe how these coordinates should be varied in ¢ to produce the
steepest descent flow for the objective function F. This flow is ready to be integrated
numerically by any initial value problem solvers. We have thus proposed a numerical
method for solving the inverse stochastic spectrum problem.

4. Convergence. When assessing the convergence properties of the foregoing ap-
proach, we must distinguish carefully the means used to measure the convergence.
First of all, the approach fails only at two occasions — either P(t) becomes sin-
gular in finite time or that F'(P(t), R(t)) converges to a nonzero constant. The former
case, detected by examining the singular values of P(t), requires a restart from a new
initial value with the hope to avoid the singularity. The latter case indicates that a
6



least squares local solution has been found, but that solution has not yet solved the
inverse spectrum problem. A restart may help to locate an exact solution, if the pre-
scribed spectrum is feasible, or to move to another least squares approximation that
may produce a different objective value.

In all cases, the function

(23) G(t) == F(P(t), k(1))

enjoys the property that

(24) &~ v EP@), BE)IP <0

along any solution curve (P(t), R(t)). It follows that G(¢) is monotone decreasing and
that % = 0 only when a local stationary point of F(P, R) is reached. Suppose that
P(t) remains nonsingular throughout the integration, an assumption that seems generic
according to our experiences. Then G(t) has to converge. It is in this sense that our
method is globally convergent.

In [6] the coordinate matrix P(¢) is limited to be orthogonal, hence is bounded and
exists for all . This constraint is not imposed on the approach discussed in the current
paper. Generally there is no guarantee that P(t) is bounded. However, in the case that
the solution flow (P(t), R(t)) corresponding to a certain initial value indeed is bounded
and exists for all ¢ > 0, then we can conclude from Lyapunov’s second method [4] that
w-limit points of P(t) exist and that each limit point satisfy VF (P, R) = 0. In other
words, limit points of the flow are necessarily stationary points. Because that the vector
field always points to the steepest descent direction and that other types of stationary
points are unstable, any limit point reached through numerical computation will most
likely be a local minimizer for F'. The structure of w-limit set of the differential system
(8) and (9) can be further analyzed in a way similar to that in [6]. For example, if the
w-limit set of a flow contains a point at which F'(P, R) = 0, then that point is the only
element in the w-limit set. The flow hence converges to that limit point. We shall not
repeat the detailed argument here. Our experiences seem to indicate that our method
works reasonably well for solving the inverse spectrum problem.

5. Numerical Experiment. In this section, we report some experiences of our
experiment with the differential equation applied to the inverse problem. The compu-
tation is carried out by MATLAB 4.2a on an ALPHA 3000/300LX workstation. The
solvers used for the initial value problem are odel13 and odel5s from the MATLAB
ODE SUITE [19]. The code odel13 is a PECE implementation of Adams-Bashforth-
Moulton methods for non-stiff systems. The code odel5s is a quasi-constant step size
implementation of the Klopfenstein-Shampine family of the numerical differential for-
mulas for stiff systems. The statistics about the cost of integration can be obtained
directly from the odeset option built in the integrator. More details of these codes
can be found in the document [19]. The reason for using these two codes is simply for
convenience and illustration. Any other ODE solvers can certainly be used instead.
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In our experiments, the tolerance for both absolute error and relative error is set at
102, This criterion is used to control the accuracy in following the solution path. The
high accuracy we required here has little to do with the dynamics of the underlying
vector field. We examine the output values at time interval of 10. The integration
terminates automatically when the norm of A(P, R) or the relative improvement of
A(P, R) between two consecutive output points is less than 107 indicating either a
stochastic matrix with the prescribed spectrum or, in the case of an infeasible spectrum,
a least squares solution has been found. So as to fit the data comfortably in the running
text, we report only the case n = 5 and display all numbers with five digits.

Example 1 To ensure the feasiblity of test data, we start with a randomly gener-
ated stochastic matrix and use it eigenvalues as the objective spectrum. To demonstrate
the robustness of our approach, the initial values of the differential equations are also
generated randomly. Reported below is one typical run in our experiments.

The random matrix

0.0596
0.0972
0.2015
0.2637
0.1785

0.2586
0.2833
0.1143
0.2116
0.3138

0.0838
0.3559
0.3645
0.1920
0.1386

0.3022
0.2545
0.2669
0.0333
0.2146

0.2958
0.0092
0.0528
0.2994
0.1545

is stochastic. Its spectrum {1.0000, —0.2403,0.1186 + 0.1805i, —0.1018}, also random
but feasible, is used as the target. We note that the presence of complex-conjugate
pair(s) of eigenvalues in the spectrum is quite common. Orthogonal matrices Xy, Yy
and the diagonal matrix Sy from the singular value decomposition Py = X,SyY) of the

random matrix

0.2002
0.6964
0.7538
0.4366
0.8897

0.4213
0.0752
0.3620
0.3220
0.1436

0.9229
0.9361
0.2157
0.8688
0.7097

0.7243
0.2235
0.5272
0.1729
0.5343

0.4548
0.0981
0.2637
0.8697
0.7837

together with the matrix Ry = 0.83291, where 1 is the matrix with all entries 1, are
used as the initial values for X (¢), Y(¢), S(¢) and R(t), respectively. Figure 1 depicts
the history of F'(P(t), R(t)) throughout the integration. As is expected, F(P(t), R(t))
is monotone decreasing in ¢. The flow P(t) converges to a nonnegative matrix with the
prescribed spectrum, that by Theorem 1.1 is converted into a stochastic matrix B:

0.1679
0.1436
0.0000
0.0560
0.1931

0.0522
0.1779
0.1377
0.4690
0.1011

0.4721
0.4186
0.5291
0.2404
0.5339

0.0000
0.1901
0.3034
0.0038
0.1553

0.3078
0.0698
0.0299
0.2309
0.0165

Note that B is not expected to be correlated to A other than the spectrum since
no other information of A is used in the calculation. While the history of F/(P(t), R(t))
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Distance between Isospectral and Nonnegative
10 T T

log(F(P,R))

=
S
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log(t)

Fi1G. 2. A log-log plot of F(P(t), R(t)) versus t for Example 1.

is independent of the integrator used, Figure 2 indicates the number of steps taken
in each interval of length 10 by the non-stiff solver odel113 and by the stiff solver
odelb5s. Both solvers seem to work reasonably well, although the stiff solver clearly is
advancing with much larger step sizes at the cost of solving implicit algebraic equations.
Figure 3 summarizes the statistics of the cost when using odel5s. It should be pointed
out that the numerical computation of the partial derivative (and the related function
evaluations) could have been saved if the interval of output points had been larger [19].

Suppose we merely change the initial value Ry in the above to another random
matrix:

0.8329 —0.9698  0.2274  0.9466 —0.1409

-0.6222  0.3131 —-0.7072  0.6990 —0.6490

Ry = 0.5684  0.4914  0.2558 —0.2685 —0.0901
—0.9794  0.6124 —-0.4724 —-0.9758 —0.8408
—0.5250 —0.9640  0.0399 —0.0852  0.4312

Then the resulting stochastic matrix C' becomes

0.1422 0.0310 0.8267 0.0000 0.0001
0.0016 0.5337 0.2791 0.0756 0.1099
C = 0.0000 0.6413 0.1603 0.0000 0.1984 |,
0.2549 0.7019 0.0139 0.0037 0.0255
0.0360 0.6595 0.2178 0.0315 0.0553

illustrating the non-uniqueness of the solution for the inverse spectrum problem and
also the robustness of our differential equation approach.

Example 2. In this example, we illustrate the application of our approach to struc-
tured stochastic matrix. Suppose we want to find a stochastic matrix with eigenvalues
{1.0000, —0.2608, 0.5046, 0.6438, —0.4483}. Furthermore, suppose we want the Markov
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Fi1G. 4. Cost of odel5bs for Example 1.
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chain to be such that the states form a ring and that each state is linked at most to its
two immediate neighbors. We begin with the initial matrices

0.1825 0.7922 0.2567 0.9260 0.9063
0.1967 0.5737 0.7206 0.5153 0.0186
Py = 0.5281 0.2994 0.9550 0.6994 0.1383
0.7948 0.6379 0.5787 0.1005 0.9024
0.5094 0.8956 0.3954 0.6125 0.4410

and Ry = 0.92101 where

11001
11100
i=l01110
00111
10011

As we pointed out earlier, the zeros in Ry are invariant under the integration of (8)
and (9). Thus we are maintaining the ring structure while searching for the one with
matched spectrum. It turns out that the stochastic matrix

0.0000 0.3094 0 0 0.6906

0.0040 0.5063 0.4896 0 0
D=0 0.0000 0.5134 0.4866 0

0 0 0.7733 0.2246 0.0021

0.4149 0 0 0.3900 0.1951

is the limit point of the solution flow and possesses the desirable spectrum.

Example 3. By a result of Dmitriev and Dynkin [16], a complex number « with
|arg a| < 27” is an eigenvalue of an n x n stochastic matrix if and only « lies either in
the triangle A (0, 1,e2™/) or in A(0,1,e~2™/™). The result by replacing the complex-
conjugate pair in the spectrum of Example 1 with another pair of complex-conjugate
values in these two triangles will not tamper the fact that every individual value is an
eigenvalue of a certain stochastic matrix. However, whether these values are eigenvalues
of the same stochastic matrix is difficult to confirm.

We experiment with, for instance, the eigenvalues .3090 + 0.5000:. Using the same
initial values (Ry = 0.83291) as in Example 1, we have experienced extremely slow
convergence for this case. The history of F(P, R) in Figure 4 clearly indicates this
observation. The limit point, given by

0.3818 0.0000 0.4568 0.0000 0.1614
0.5082 0.3314 0.0871 0.0049 0.0684
E = | 0.0000 0.0000 0.5288 0.4712 0.0000 |,
0.0266 0.7634 0.0292 0.0310 0.1498
0.5416 0.0524 0.3835 0.0196 0.0029
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Distance between Isospectral and Nonnegative
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Fia. 5. A log-log plot of F(P(t), R(t)) versus t for Example 3.
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FiG. 6. History of the smallest singular value for Ezample 3.
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exhibits an unexpected zero structure that we think is the cause of the slow conver-
gence. The variation of the smallest singular value in the ASVD is plotted in Figure 5,
indicating that matrices P(t) stay away from singularity at a good distance. Suppose
we modify the initial value to reflect the structure by simply setting the corresponding
entries in the original Ry zero. Then the flow converges to another limit point

0.3237 0 0.4684 0 0.2079
0.4742 0.3184 0.1303 0.0007 0.0764
F=10 0.0000 0.5231 0.4769 0
0.0066 0.7536 0.0372 0.0958 0.1068
0.5441 0.0429 0.3959 0.0022 0.0149

at an almost equally slow pace. The spectra of both E and F' agree with the desired
data up to the integration error.

6. Conclusion. The theory of solvability on the inverse spectrum problem for
stochastic or nonnegative matrices is yet to be developed, nevertheless we have proposed
an ODE approach that is capable of constructing numerically stochastic or nonnegative
matrices with the desired spectrum, if the spectrum is feasible. The method is easy to
implement by existing ODE solvers. The method can also be used to approximate least
squares solutions or linearly structured matrices.

7. Acknowledgement. The authors wish to thank Bart De Moor for bring this

problem to their attention, and Carl Meyer for kindly pointing them to the reference
[16].
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