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Abstract

Two numerical methods � one continuous and the other discrete � are proposed
for solving inverse singular value problems� The �rst method consists of solving an
ordinary di�erential equation obtained from an explicit calculation of the projected
gradient of a certain objective function� The second method generalizes an iterative
process proposed originally by Friedland et al� for solving inverse eigenvalue prob�
lems� With the geometry understood from the �rst method� it is shown that the
second method �also� the method proposed by Friedland et al� for inverse eigenvalue
problems� is a variation of the Newton method� While the continuous method is
expected to converge globally at a slower rate �in �nding a stationary point of the
objective function�� the discrete method is proved to converge locally at a quadratic
rate �if there is a solution�� Some numerical examples are presented�



�� Introduction�

For decades there has been considerable discussion about inverse eigenvalue prob�
lems� Some theoretical results and computational methods can be found� for example�
in the articles �	� 
� �� �� 	� and the references contained therein� Recently Friedland
et al� �	� have surveyed four quadratically convergent numerical methods for the
following inverse eigenvalue problem�

�IEP� Given real symmetric matrices A�� A�� � � � � An � Rn�n and
real numbers ��� � � � � � ��n� �nd values of c �� �c�� � � � � cn�

T � Rn

such that the eigenvalues of the matrix

A�c� �� A� � c�A� � � � �� cnAn�	�

are precisely ���� � � � � �
�

n�
In particular� the so called Method III proposed in �	� has been suggested to be a new
method� Also included in �	� is a good collection of interesting applications where
the �IEP� may arise�

In this paper we want to consider the inverse singular value problem� a question
very analogous to the �IEP�� The problem is stated as follows�

�ISVP� Given real general matrices B�� B�� � � � � Bn � Rm�n� m � n

and non�negative real numbers ��� � � � � � ��n� �nd values of c ��
�c�� � � � � cn�

T � Rn such that the singular values of the matrix

B�c� �� B� � c�B� � � � �� cnBn�
�

are precisely ���� � � � � �
�

n�
At the present time� we do not know of any physical application of the �ISVP�� But
we think the problem is of interest in its own right�

Using the fact that the eigenvalues of the symmetric matrix

�
 A

AT 

�
are plus

and minus of the singular values of the matrix A� an �ISVP� can always be solved by
conversion to an �IEP�� On the other hand� it can easily be argued by counterexamples
that the �IEP� will not always have a solution� Existence questions for the �IEP��
therefore� should be considered under more restricted condition� The inverse Toeplitz
eigenvalue problem �ITEP�� for example� is a special case of the �IEP� where A� � 

and Ak �� �A
�k�
ij � with

A
�k�
ij ��

�
	� if ji� jj � k � 	�
� otherwise�

���

Even though the �ITEP� is so specially structured� the question of whether symmetric
Toeplitz matrices can have arbitrary real eigenvalues is still an open problem for n � �
��� �� 	��� Likewise� the existence question for the �ISVP� might also be an interesting
research topic� As yet we have not been aware of any result in the literature� The
present paper is devoted to the numerical computation only�

The following notations will be used throughout the discussion� O�n� stands for
the manifold of all orthogonal matrices in Rn�n� � �� ��ij� � Rm�n stands for the
�diagonal� matrix in which

�ij ��

�
��i � if 	 � i � j � n�
� otherwise�

���

�



The setMs��� de�ned by

Ms��� �� fU�V
T jU � O�m�� V � O�n�g���

obviously is equal to the set of all matrices in Rm�n whose singular values are precisely
���� � � � � �

�

n� We use B to denote the a�ne subspace

B �� fB�c�jc � Rng����

Clearly solving the �ISVP� is equivalent to �nding an intersection of the two sets
Ms��� and B� In this paper we propose two di�erent ways to �nd such an intersection�
if it exists�

Our �rst approach is motivated by a recent study of the projected gradient method
���� The �ISVP� is cast as an equality�constrained optimization problem in which the
distance �measured in the Frobenius norm� betweenMs��� and B is minimized� We
show that the gradient of the distance function can be projected explicitly onto the
feasible set without using Lagrange multipliers� Consequently� we are able to derive
an ordinary di�erential equation which characterizes a steepest descent �ow for the
distance function� The steepest descent �ow is easy to follow by using any available
ODE software� Our �rst method for the �ISVP� is embedded in this continuous real�
ization process� The formulation of the di�erential system is presented in Section 
�
A similar approach for the �IEP� has already been discussed in ����

Our second approach is simply a generalization of the so called Method III in �	��
Method III has been thought to be a new method� In the course of trying to understand
why Method III works� we begin to realize� based on the knowledge we learn from ��� ���
that Method III can be interpreted geometrically as a �classical� Newton method� We
emphasize the word �classical� because the geometry involved in Method III is closely
related to that of the Newton method for one dimensional nonlinear equations� This
interpretation �for the �IEP�� will be explained in Section �� Once the geometry is
understood� Method III can easily be generalized to an iterative process for the �ISVP��
Furthermore� the method can be shown to converge quadratically� The discussion of
our second approach is presented in Section ��

One other important result of Friedland et al� is the modi�cation of Method III so
as to retain quadratic convergence when multiple eigenvalues are present� We certainly
can do similar modi�cation in our method when multiple singular values are present�
This modi�cation is described in Section �� The behavior of our modi�ed method is
expected to be similar to that in �	�� Indeed� a proof of quadratic convergence can be
established in the same spirit as in �	�� We shall not provide the proof in this paper�
The numerical examples reported in Section �� however� should illustrate our results�

Both of the continuous approach and the iterative approach generate sequences of
matrices in the manifoldMs���� But schematically� the continuous approach evolves
explicitly in the manifoldMs��� whereas the iterative approach is an implicit lifting of
evolution in the a�ne subspace B� It is also worth noting that the continuous method
converges globally but slowly whereas the iterative method converges quadratically but
locally� These features can� therefore� be taken advantage of in such a way that the
continuous method is used �rst to a low order of accuracy to help get into the domain
of convergence of the discrete method which� then� will be turned on to improve the
accuracy�

�



�� A Continuous Approach for ISVP�

In this section we shall solve the �ISVP� by minimizing the distance between
Ms��� and B� The distance is measured in term of the norm induced by the Frobenius
inner product

� A�B ��� trace�ABT � �
X
i�j

AijBij���

for any A � �Aij� and B � �Bij� in Rm�n� We shall derive an ordinary di�erential
equation that characterizes a steepest descent �ow for the distance function�

For clarity� we shall assume that the given matrices B�� � � � � Bn � Rm�n in the
�ISVP� are linearly independent� A classical Gram�Schmidt process may be applied
to produce a new sequence �B�� � � � � �Bn that are mutually orthonormal with respect to
the Frobenius inner product� Furthermore� these matrices are related by

�Bk � ��kB� � � � �� �kkBk���

for some real numbers �ij � Obviously� if

nX
k��

�ck �Bk �
nX

k��

ckBk ����

then �c �� ��c�� � � � � �cn�T and c �� �c�� � � � � cn�T are related by

c � ��c�	�

where � is the upper triangular matrix

M ��

�
�����
��� ��� � � � ��n
 ��� � � �
���

���
 � � �  �nn

�
����� ��		�

It is clear� therefore� that without loss of generality we may assume the matrices
B�� � � � � Bn are mutually orthonormal to begin with� We may further assume that B�

is perpendicular to all Bk � for k � 	� � � � � n� It will become clear in the sequel that
these assumptions facilitate the computations�

Given an arbitrary X � Rm�n� it is not di�cult to see that the distance between
X and the a�ne subspace B is given by

dist�X�B� � kX � �B� � P �X��k�	
�

where� due to the orthonormality�

P �X� �
nX

k��

� X�Bk � Bk�	��

is simply the projection of X onto the linear subspace spanned by B�� � � � � Bn� For
any U � Rm�m and V � Rn�n� we de�ne a residual matrix R�U� V � by

R�U� V � �� U�V T � �B� � P �U�V T ����	��

�



Our �rst approach of solving the �ISVP� is to consider the optimization problem�

Minimize F �U� V � ��
	



kR�U� V �k��	��

Subject to �U� V � � O�m��O�n��

We note in �	�� that U�V T � Ms��� so long as �U� V � � O�m��O�n�� We note also
that the feasible set O�m�� O�n� is a smooth manifold ����

By introducing the product topology on Rm�m � Rn�n with the induced inner
product

� �A�� B��� �A�� B�� ���� A�� A� � � � B�� B� ���	��

we calculate the Fr�echet derivative of F as follows�

F ��U� V ��H�K� � � R�U� V �� H�V T � U�KT � P �H�V T � U�KT � �

� � R�U� V �� H�V T � U�KT �

� � R�U� V �V�T � H � � � �TUTR�U� V �� KT � ��	��

In the middle line of �	�� we have used the fact that the range of R is always perpen�
dicular to the range of P � The gradient rF of F � therefore� may be interpreted as
the pair of matrices�

rF �U� V � � �R�U� V �V �T � R�U� V �TU�� � Rm�m �Rn�n��	��

Because of the product topology� we know

T�U�V ��O�m�� O�n�� � TUO�m�� TVO�n��	��

where T�U�V ��O�m��O�n�� stands for the tangent space to the manifold O�m��O�n�
at �U� V � � O�m��O�n� and so on� The projection of rF �U� V � onto T�U�V ��O�m��
O�n��� therefore� is the product of the projection of the �rst component of rF �U� V �
onto TUO�m� and the projection of the second component of rF �U� V � onto TVO�n��
Each of these projections can easily be calculated by using a technique developed in
���� In particular� we claim that the projection g�U� V � of the gradient rF �U� V � onto
T�U�V ��O�m�� O�n�� is given by the pair of matrices�

g�U� V � �

	
R�U� V �V �TUT � U�V TR�U� V �T



U�

R�U� V �TU�V T � V �TUTR�U� V �



V



��
�

Thus� the vector �eld

d�U� V �

dt
� �g�U� V ��
	�

de�nes a steepest descent �ow on the manifold O�m��O�n� for the objective function
F �U� V ��

Corresponding to the �ow �
	� on the manifold O�m�� O�n�� there is a �ow on
the setMs��� de�ned by

X�t� �� U�t��V �t�T ��

�

�



Upon di�erentiating both sides of �

� with respect to t and substituting �
	� for dU
dt

and dV
dt
� we see that X�t� is governed by an ordinary di�erential system�

dX

dt
� X

XT �B� � P �X��� �B� � P �X��TX




�
X�B� � P �X��T � �B� � P �X��TX



X��
��

Once an initial value of X�� � Ms��� is speci�ed� the equation �
�� de�nes an initial
value problem whose orbit moves in the steepest descent direction toward minimizing
dist�X�t��B�� This is what we call the �rst method for the �ISVP�� As t �� �� the
solution X�t� of �
�� moves toward a local stationary point for the distance function�
A special case which we hope will occur� is� of course� dist�X����B� � � In this
case� the coe�cients needed in �ISVP� are determined from ci �� X���� Bi �� If this
case does not happen� then one needs to change to another initial value and repeat
the integration�

In the above derivation� no assumption on the multiplicity of singular values is
needed� If ���� � � � � �

�

n are all distinct� then it can be proved that Ms��� is indeed a

smooth manifold of dimension m�m����n�n���
� � Otherwise�Ms��� is a union of �nitely

many submanifolds with di�erent dimensions� In either case� we note that any tangent
vector T �X� toMs��� at a point X � Ms��� about which a local chart can be de�ned
must be of the form ���

T �X� � XK �HX�
��

for some skew symmetric matrices H � Rm�m and K � Rn�n � The right�hand side of
�
�� obviously is a special case of �
��� We will see in the next two sections that this
observation helps us to generalize a result of Friedland et al� �	� from the �IEP� to
the �ISVP��

�� A Newton Method for IEP�

In this section� we introduce a geometric interpretation of Method III proposed by
Friedland et al� �	� for the �IEP� before we go on to discuss our second method for the
�ISVP�� We think such an interpretation is worth mentioning because the geometry
behind Method III is very simple and not mentioned in �	�� and also because this
geometry sheds light on how the �ISVP� should be handled� For clarity� we shall
consider the unmodi�ed version of Method III only� that is� all eigenvalues ���� � � � � �

�

n

are assumed to be distinct� Let

 �� diagf���� � � � � �
�

ng�
��

and let A denote the a�ne subspace

A �� fA�c�jc � Rng�
��

where A�c� is de�ned by �	�� It can be proved that the set

Me� � �� fQ Q
T jQ � O�n�g�
��

is a smooth manifold of dimension n�n���
� � Similar to �
��� any tangent vector T �X�

toMe� � at a point X � Me� � must be of the form ���

T �X� � XK �KX�
��

�



for some skew�symmetric matrix K � Rn�n�
We recall the elementary fact that the new iterate x����� of a classical Newton

step

x����� � x��� � �f ��x�������f�x�����
��

for a function f � R �� R is precisely the x�intercept of the line which is tangent to
the graph of f at �x���� f�x������ If we think of the surfaceMe� � as playing the role
of the graph of f and the a�ne subspace A as playing the role of the x�axis� then an
iterative process analogous to the Newton method can be developed for the �IEP��

Given X��� � Me� �� there exist a Q��� � O�n� such that

Q���TX���Q��� �  ����

From �
��� we know X��� � X���K � KX��� with any skew�symmetric matrix K

represents a tangent vector to Me� � emanating from X���� We thus seek an A�
intercept A�c������ of such a vector with the a�ne subspace A� That is� we want to
�nd a skew�symmetric matrix K��� and a vector c����� such that

X��� �X���K��� �K���X��� � A�c���������	�

The geometry is illustrated in Figure 	� �Insert Figure 	 in this space�
We now explain how the equation ��	� can be solved� Using ���� it follows that

 �  �K��� � �K��� � Q���TA�c������Q�����
�

where

�K��� �� Q���TK���Q�������

is still a skew�symmetric matrix� The n diagonal equations of ��
� give rise to the
linear system

J���c����� � �� � b�������

where

J
���
ij �� q

���
i

T
Ajq

���
i � for i� j � 	� � � � � n����

�� �� ����� � � � � �
�

n�
T����

b
���
i �� q

���
i

T
A�q

���
i � for i � 	� � � � � n����

and q
���
i is the i�th column of the matrix Q���� The vector c������ therefore� can be

solved from ����� Once c����� is obtained� the skew�symmetric matrix �K��� �and�
hence� the matrix K���� can be determined from the o��diagonal equations of ��
�� In
fact�

�K
���
ij �

q
���
i

T
A�c������q

���
j

��i � ��j
�����

for 	 � i � j � n� In this way� the equation ��	� is completely solved�

�



In the classical Newton method the new iterate x����� is �lifted up� naturally
along the y�axis to the the point �x������ f�x������� from which the next tangent line
will begin� We note that �x������ f�x������� is a point on the graph of f � Analogously�
we now need a way to �lift up� the point A�c������ � A to a point X����� � Me� ��
The di�culty here is that there is no obvious coordinate axis to follow� One possible
way of this lifting can be motivated as follows� It is clear that solving the �IEP� is
equivalent to �nding an intersection of the two sets Me� � and A� Suppose all the
iterations are taking place near a point of intersection� Then we should have

X����� � A�c�����������

But from ��	�� we also should have

A�c������ � e�K
���
X���eK

���
����

High accuracy calculation of the exponential matrix eK
���
in ��� is expensive and is

not needed� So� instead� we de�ne the Cayley transform

R �� �I �
K���



��I �

K���



�����	�

which happens to be the �	� 	� Pad�e approximation of the matrix eK
���
� It is well

known that R � O�n�� and that

R � eK
���

��
�

if kK���k is small� Motivated by ���� and ���� we now de�ne

X����� �� RTX���R � Me� �����

and the next iteration is ready to begin� It is interesting to note that

X����� � RTeK
���
A�c������e�K

���
R � A�c����������

represents what we mean by a lifting of the matrix A�c������ from the a�ne subspace
A to the surfaceMe� ��

In summary� we realize that ��	� is the equation for �nding the A�intercept of a
tangent line passing X��� and that ���� is the equation for lifting the A�intercept to a
point on Me� �� The above process is identical to Method III proposed in �	�� but
the geometric meaning should be clearer now� We may thus say that Method III is
precisely equivalent to the Newton method applied to f�x� � � for some speci�ed
f�x�� In �	� Method III is proved to converge quadratically� In the next section we
shall use the same idea to develop a quadratically convergent method for the �ISVP��

�� An Iterative Approach for ISVP�
In this section we come back to the �ISVP� and develop a quadratically convergent

iterative method� The given matrices B�� B�� � � � � Bn are no longer required to be
orthonormal as assumed in Section 
� We shall assume� however� that all singular
values ���� � � � � �

�

n are positive and distinct� The multiple singular values case will be
discussed in the next section�

�



Given X��� � Ms���� there exist U
��� � O�m� and V ��� � O�n� such that

U ���TX���V ��� � ������

We now seek a B�intercept of a line that is tangent to the manifold Ms��� at X
����

According to �
�� and the discussion in the proceeding section� this amounts to �nding
two skew�symmetric matrices H��� � Rm�m� K��� � Rn�n and a vector c����� � Rn

such that

X��� �X���K��� �H���X��� � B�c����������

or equivalently

� � � �K��� � �H���� � U ���TB�c������V �������

with

�H��� �� U ���TH���U ��������

�K��� �� V ���TK���V ��������

We note that the system ���� involves m�m���
� � n�n���

� � n unknowns all together�

namely the vector c����� and the skew matrices �H��� and �K���� But there are only mn
equations� Fortunately� a closer look at ���� shows that the �m�n��m�n���

� unknowns
�H
���
ij � n � 	 � i �� j � m� at the lower�right corner of �H��� are not bound to any

equations at all� For simplicity� we shall set

�H
���
ij �  for n� 	 � i �� j � m����

For convenience� we denote

W ��� �� U ���TB�c������V ������	�

Then ���� is equivalent to

W
���
ij � �ij � �ii

�K
���
ij � �H

���
ij �jj � for 	 � i � n� 	 � j � n��
�

where �K
���
ij is understood to be zero if i � n � 	� We analyze these equations as

follows�
�a� For 	 � i � j � n� the equations from ��
� can be rewritten as a linear system

J���c����� � �� � b�������

where

J
���
st �� u���s

T
Btv

���
s � for 	 � s� t � n�����

�� �� ����� � � � � �
�

n�
T �����

b���s �� u���s

T
B�v

���
s � for 	 � s � n�����

and u
���
s and v

���
s are the column vectors of U ��� and V ���� respectively� If the matrix

J��� is nonsingular� then the vector c����� is obtained from solving ����� Once c�����

is known� the matrix W ��� is determined�

�



�b� For n� 	 � i � m and 	 � j � n� we have from ��
�

�H
���
ij � � �H

���
ji � �

W
���
ij

��j
�����

�c� For 	 � i � j � n� we have from ��
�

W
���
ij � �ii

�K
���
ij � �H

���
ij �jj �����

W
���
ji � �jj

�K
���
ji �

�H
���
ji �ii � ��jj

�K
���
ij � �H

���
ij �ii�����

Solving for �H
���
ij and �K

���
ij yields

�H
���
ij � � �H

���
ji �

��iW
���
ji � ��jW

���
ij

���i �
� � ���j �

�
����

�K
���
ij � � �K

���
ji �

��iW
���
ij � ��jW

���
ji

���i �
� � ���j �

�
���	�

By now� the equations in ���� are completely solved� The skew�symmetric matrices
H��� and K��� are determined according to ���� and �����

The next step is to lift the matrix B�c������ � B to a point X����� � Ms��� in a
way similar to that for the �IEP�� First we de�ne two orthogonal matrices

R �� �I �
H���



��I �

H���



������
�

S �� �I �
K���



��I �

K���



��������

Then the lifted matrix onMs��� is de�ned to be

X����� �� RTX���S�����

We note from ���� that

X����� � RT �eH
���
B�c������e�K

���
�S����

is indeed a lifting since RTeH
���
� Im and e�K

���
S � In� if kH���k and kK���k are

small� Note also that the matrix X����� needs not to be formed explicitly in the
computation� Rather� only the orthogonal matrices

U ����� �� RTU �������

and

V ����� �� STV ��������

are needed in the computation of ��	� and ����� The iterative scheme is now completed�
It remains to show that the above scheme converges quadratically� We shall use

the induced Frobenius norm in Rm�m � Rn�n �See �	��� to measure the discrepancy
between iterates of �U ���� V ����� We �rst introduce a lemma �See Corollary ��	 in �	���

�



Lemma ���� Suppose the �ISVP� has an exact solution at c�� Suppose B�c�� �
!U�!V T with � !U� !V � � O�m�� O�n�� For any �U� V � � O�m�� O�n�� let

E �� �E�� E�� �� �U � !U� V � !V ������

denote the error matrix� If the pair of matrices �H�K� � Rm�m�Rn�n are such that
U !UT � eH and V !V T � eK� then

jj�H�K�jj� OjjEjj�����

Proof� The assertion follows immediately from the observation that U !UT � �E��
!U� !UT � Im�E�

!UT � eH � Im�H �O�jjH jj�� and a similar expression for V !V T �
At the ��th stage� de�ne

E��� �� �E
���
� � E

���
� � � �U ��� � !U� V ��� � !V �����

The proof of the next theorem is parallel to that in �	��
Theorem ���� Suppose all singular values ��� � � � � � �

�

n are positive and distinct�
Suppose also that the matrix J��� de�ned in ���� is nonsingular� Then the next itera�
tion ���� and ��	� can be de�ned� Furthermore�

jjE�����jj � O�jjE���jj�����	�

Proof� The matrix U ���TB�c��V ���� though lying on the manifold Ms���� is not
necessarily equal to �� If we write

U ���TB�c��V ��� �� e�
�H���

�e
�K���

�� �U ���T e�H
���
� U ������V ���TeK

���
� V ������
�

with

H
���
� �� U ��� !H���U ���T �����

K
���
� �� V ��� !K���V ���T �����

then it is easy to check that

eH
���
� � U ��� !UT �����

eK
���
� � V ��� !V T �����

By Lemma ��	� we know that

jj�H
���
� � K

���
� �jj � O�jjE���jj������

Because the Frobenius norm is invariant under orthogonal transformations� from ����
and ���� we also have

jj� !H���� !K����jj � O�jjE���jj������

�	



Together with ��
�� it follows that

U ���TB�c��V ��� � ��� !K��� � !H�����O�kE���k�������

Taking the di�erence between ���� and ���� yields

U ���T �B�c���B�c�������V ���

� �� !K��� � �K����� � !H��� � �H����� �O�jjE���jj������

The diagonal equations of ��� give rise to a linear system

J����c� � c������ � O�jjE���jj����	�

where J��� is de�ned in ����� Thus

jjc� � c�����jj � O�jjE���jj�����
�

Similarly� from the o��diagonal equations of ��� it is not di�cult to see that

jj !H��� � �H���jj � O�jjE���jj�������

jj !K��� � �K���jj � O�jjE���jj�������

Because of ����� it must be that

jj� �H���� �K����jj � O�jjE���jj������

From ����� ����� ���� and ����� it follows that

jjH��� �H
���
� jj � O�jjE���jj�������

jjK��� �K
���
� jj � O�jjE���jj�������

Observe that

E
�����
� �� U ����� � !U � RTU ��� � e�H

���
� U ���

� ��I �
H���



�� �I �H

���
� � O�jjH

���
� jj���I �

H���



���I �

H���



���U ���

� �H
���
� �H��� � O�jjH

���
� H���jj� jjH

���
� jj����I �

H���



���U ��������

So it is clear now that

jjE
�����
� jj � O�jjE���jj�������

A similar argument works for E
�����
� � Thus ��	� is proved�

We �nally remark that one step of the above �Newton� method is a descent di�
rection for the objective function �	��� Thus it is possible to combine the objective
function with some step�length control to improve the global convergence properties
of our iterative method�

��



�� Multiple Singular Values�

In searching for the B�intercept of a tangent line of Ms��� the de�nition ����
allows no zero singular values� Similarly� the de�nitions ��� and ��	� require all of
the singular values to be distinct� In this section� we consider the case when multiple
singular values are present� For clarity� we shall continue to assume that all singular
values are positive� To simplify the notation� we shall also assume that only the �rst
singular value ��� is multiple� with multiplicity p�

We observe �rst that all the formulas ���� ���� and ���� are still well de�ned�
For 	 � i � j � p� however� we can conclude from ���� and ���� only that

W
���
ij �W

���
ji � ����

Instead of determining values for �H
���
ij and �K

���
ij � the system ��� gives rise to additional

q ��
p�p���

� equations for the vector c������ That is� multiple singular values gives rise

to an overdetermined system for c������ a situation analogous to that discussed in
�	� for the �IEP�� Geometrically� the case implies that maybe no tangent line from
Ms��� will intercept the a�ne subspace B at all� To remedy this� we follow a strategy
of Friedland et al� to modify the �ISVP� as�

�ISVP�� Given positive values ��� � � � � � ��p � ��p�� � � � � � ��n�q�
�nd real values of c�� � � � � cn such that the n�q largest singular values
of the matrix B�c� are ���� � � � � �

�

n�q�
Now that we have q degrees of freedom in choosing the remaining singular values�

we shall use the equation �compare with �����

!� � !� �K��� � �H���!� � U ���TB�c������V �����	�

to �nd the B�intercept� where

!� �� diagf���� � � � � �
�

n�q� !�n�q��� � � � � !�ng��
�

and !�n�q��� � � � � !�n are free parameters� An algorithm for solving the �ISVP"� proceeds
as follows�

Given U ��� � O�m� and V ��� � O�n��
�a� Solve for c����� from the system of equations�

nX
k��

�
u
���
i

T
Bkv

���
i

�
c
�����
k � ��i � u

���
i

T
B�v

���
i � for i � 	� � � � � n� q����

nX
k��

�
u���s

T
Bkv

���
t � u

���
t

T
Bkv

���
s

�
c
�����
k �

�u���s

T
B�v

���
t � u

���
t

T
B�v

���
s � for 	 � s � t � p�����

�b� De�ne !�
���
k by

!�
���
k ��

�
��k� if 	 � k � n� q�

u
���
k

T
B�c������v

���
k � if n� q � k � n

����

�c� Once c����� is determined� calculate W ��� according to ��	��

��



�d� De�ne the skew symmetric matrices �K��� and �H��� according to the equation
��	�� For 	 � i � j � p� the equation to be satis�ed is

W
���
ij � !�

���
i
�K
���
ij � �H

���
ij !�

���
j �����

Thus there are many ways to de�ne �K
���
ij and �H

���
ij � For example� one may set

�K
���
ij 	 

for 	 � i � j � p� In this case� the skew�symmetric matrix �K��� is de�ned by

�K
���
ij ��

��
��

��
���
i

W
���
ij

���
���
j

W
���
ji

���
���
i

������
���
j

��
� if 	 � i � j � n� and p � j�

� if 	 � i � j � p

����

and the skew�symmetric symmetric matrix �H��� is de�ned by

�H���
ij ��

����������
����������

�
W

���
ij

��
���
j

� if 	 � i � j � p�

�
W

���
ij

��
���
j

� if n� 	 � i �m� and 	 � j � n�

��
���
i W

���
ji ���

���
j W

���
ij

������
i

���������
j

��
� if 	 � i � j � n� and p � j�

� if n � 	 � i �� j � m�

����

�e� Once �H��� and �K��� are determined� proceed with the lifting in the same way
as for the �ISVP��

We should point out that no longer we are on a �xed manifold Ms���� since !�
is changed at each step� We believe a proof of convergence similar to that given by
Friedland et al� for the �IEP� can easily be carried out� In particular� we claim that
the above algorithm for the case of multiple singular value converges quadratically�
Our numerical results should illustrate this point�

	� Zero Singular Value�

A zero singular value indicates rank de�ciency� To �nd a lower rank matrix in
a generic a�ne subspace B is intuitively a more di�cult problem� In this case� it is
most likely that the �ISVP� does not have a solution�

To demonstrate what might happen to the algorithm proposed earlier� we consider
the simplest case where ��� � � � � � ��n�� � ��n � � A closer look at equation

��
� indicates that except for �Hin �and �Hni�� i � n � 	� � � � � m� all other quantities
including c����� are well�de�ned� Furthermore� in order that equation ��
� be valid�
it is necessary that

W
���
in �  for i � n� 	� � � � � m�����

If condition ���� fails� then it simply says that no tangent line of Ms��� from the
current iterate X��� will intersect the a�ne subspace B� The iteration� therefore� can
not be continued�


� Numerical Experiments�

We have tested both continuous and iterative methods on various types of prob�
lems� In this section we report three numerical experiments� For demonstration pur�
pose� we consider the case when m � � and n � �� The following matrices� generated

��



randomly by MATLAB on a DECstation �#
 from a normal distribution with
mean � and variance 	�� are used as the basis matrices�

B� �

�
������
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�
������
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�
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������� 	�� 
���	� 	�� ���
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�� 	��

	������ 	�� �
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�
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�� 	�� �	����	� 	�� ��	���� 	�� ������� 	��

�	�		��� 	�� ����
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�
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So as to �t the data comfortably in the running text� we display all the numbers
with only �ve digits�

Example � �The continuous method�
It is important to note that the system �
�� is a di�erential equation de�ned on

a manifold �		� � the solution X�t� should in theory stay on the manifoldMs��� for
all t� provided X�� � Ms���� Any numerical method� therefore� ought to maintain
the orthogonality of the corresponding U�t� and V �t� in �

��

We can think of at least three approaches to conduct the experiments for the
continuous method� The �rst is to directly apply a suitable initial value problem solver
in such a way that the solution trajectory is closely followed� The second is to use
ideas similar to �	�� or �	�� where the trajectory needs not to be followed accurately
but a device is added which recovers orthogonality� The third is to design special
schemes that are primary for trajectory problems� e�g�� ��� ��	
� and the references

��



therein� Apparently� the last two approaches require more theory development and
programming involvement whereas the �rst approach should be quite straightforward�
Since our purpose here is to report the behavior of the proposed �
�� only� we are less
concerned about how e�cient the equation is solved� The �rst approach is used�

The subroutine ODE in �	�� is used as the integrator� Both local control param�
eters ABSERR and RELERR in ODE are set to be 	���� This criterion is used to
control the accuracy in following the solution path of �
��� We examine the output
values at time interval of 	� Normally� we should expect the loss of one or two digits
in the global error� Thus� when the norm of the di�erence between two consecu�
tive output points becomes less than 	���� we assume the path has converged to an
equilibrium point� The execution is then terminated automatically�

By construction� the path of �
�� is guaranteed to converge to a stationary point
for the distance betweenMs��� and B� Nonetheless� such a point is not necessarily a
solution to the �ISVP�� In our experiments� we have often run into this situation� For�
tunately� the impasse can be circumvented by changing� e�g�� a simple plane rotation�
to another initial value X�� that is also inMs����

Empirical data for two di�erent sets of singular values are reported in Table 	� In
each test� the initial value X�� is taken simply to be the diagonal matrix with �� as
its diagonal entries� The value of t indicates how long it takes to meet the convergence
criterion mentioned above�

We choose to report� in particular� the second case to illustrate how slow the
convergence might be� Although we do not understand the cause completely� we note
that the slowness is inherited in the di�erential equation itself and has nothing to do
with the numerical method used� As is mentioned earlier� the topology of Ms���
becomes complicated when multiple singular values are present� We suspect that the
much slower convergence is probably due to the cluster of singular values� On the other
hand� the status indicator IFLAG in the code ODE has never signaled any abnormal
return in our application� Despite of the long integration� it appears that sti�ness is
not a major concern� For the majority of our other tests� the value of t for convergence
seems to incline more toward the lower value reported� It would be interesting to use
a statistical method to estimate the expected value of t�

Example � �The iterative method�
The iterative algorithm described in section � can easily be implemented with the

aid of the package MATLAB�
Since the iterative algorithm converges only locally� our numerical experiment is

meant solely to examine the quadratic rate of convergence� To make sure that the
�ISVP� under testing does have a solution� we �rst randomly generate a vector c
 �
R	� Then singular values of the corresponding matrix B�c
� are used as the prescribed
singular values� We perturb each entry of the vector c by a uniform distribution
between �	 and 	 and use the perturbed vector as the initial guess for the iteration�

Table 
 includes the initial guess c��� and the corresponding limit point c� for
three test cases� It is interesting to note that the limit point c� of the iteration is not
necessary the same as the original vector c
 to which c��� is reasonably close� The
singular values of B�c��� however� do agree with those of B�c
��

Table � indicates how the singular values of B�c���� di�er from those of B�c���
The di�erence between singular values of B�c���� and B�c�� is measured in the 
�

norm� From Table � it is obvious that quadratic convergence indeed occurs in practice�
Example � �Multiple singular values�

��



In this example we want to illustrate that the iterative method modi�ed in sec�
tion � for the �ISVP"� converges quadratically� Since multiple singular values are
present� the construction of a numerical example is not trivial� For demonstration� we
continue to use the same basis matrices as in Example 
� We assume the multiplicity
is p � 
� Instead of doing the same as in Example 
� we �x the prescribed singular
values �� � ��� �� 
�T and search by trials the right initial guess of c����

Table � contains three di�erent initial values of the vector c��� and the correspond�
ing limit points c��

Table � contains the singular values of B�c���� and of B�c��� We note that the
order of singular values in Case �c� has changed� The value � is no longer the largest
singular value� In fact� unless the initial guess c��� is close enough to an exact solution
c�� we have no reason to expect that our algorithm� especially ����� will preserve the
ordering� Nevertheless� once convergence occurs� then from ��	� we know that �� must
be a subset of the singular values of the �nal matrix�

Table � displays the 
�norm of the vector ����� �� throughout the iteration� It is
seen that at the initial stage the convergence is slow� but eventually the rate picks up
and becomes quadratic� This observation agrees with our prediction�

��
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