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Abstract

Two numerical methods — one continuous and the other discrete — are proposed
for solving inverse singular value problems. The first method consists of solving an
ordinary differential equation obtained from an explicit calculation of the projected
gradient of a certain objective function. The second method generalizes an iterative
process proposed originally by Friedland et al. for solving inverse eigenvalue prob-
lems. With the geometry understood from the first method, it is shown that the
second method (also, the method proposed by Friedland et al. for inverse eigenvalue
problems) is a variation of the Newton method. While the continuous method is
expected to converge globally at a slower rate (in finding a stationary point of the
objective function), the discrete method is proved to converge locally at a quadratic
rate (if there is a solution). Some numerical examples are presented.



1. Introduction.

For decades there has been considerable discussion about inverse eigenvalue prob-
lems. Some theoretical results and computational methods can be found, for example,
in the articles [1, 2, 8, 9, 10] and the references contained therein. Recently Friedland
et al. [10] have surveyed four quadratically convergent numerical methods for the
following inverse eigenvalue problem:

(IEP) Given real symmetric matrices Ag, A1,...,4, € R™™ and

real numbers A¥ > ... > A*, find values of ¢ := (c1,...,¢,)T € R”
such that the eigenvalues of the matrix

(1) Alc):= Ao+ c1d1 + ...+ chdn

are precisely AJ,..., Ar.

In particular, the so called Method III proposed in [10] has been suggested to be a new
method. Also included in [10] is a good collection of interesting applications where
the (IEP) may arise.
In this paper we want to consider the inverse singular value problem, a question
very analogous to the (IEP). The problem is stated as follows:
(ISVP) Given real general matrices Bg, B1,...,B, € R™*", m >n

and non-negative real numbers of > ... > o}, find values of ¢ :=
(c1,---,¢n)T € R™ such that the singular values of the matrix

(2) B(c):=Bg+c1By +...+cuBn

are precisely of,...,0;.

At the present time, we do not know of any physical application of the (ISVP). But
we think the problem is of interest in its own right.

Using the fact that the eigenvalues of the symmetric matrix are plus

0 A
AT 0
and minus of the singular values of the matrix A, an (ISVP) can always be solved by
conversion to an (IEP). On the other hand, it can easily be argued by counterexamples
that the (IEP) will not always have a solution. Existence questions for the (IEP),
therefore, should be considered under more restricted condition. The inverse Toeplitz
eigenvalue problem (ITEP), for example, is a special case of the (IEP) where Ag = 0

and Ag := (Agc)) with

# . )1, ifli-jl=k-1;
(3) A ._{

0, otherwise.

Even though the (ITEP) is so specially structured, the question of whether symmetric
Toeplitz matrices can have arbitrary real eigenvalues is still an open problem forn > 5
[3, 7, 15]. Likewise, the existence question for the (ISVP) might also be an interesting
research topic. As yet we have not been aware of any result in the literature. The
present paper is devoted to the numerical computation only.

The following notations will be used throughout the discussion: O(n) stands for
the manifold of all orthogonal matrices in R™"; ¥ := (%;;) € R™*™ stands for the
”diagonal” matrix in which

of, f1<i=j5<mnm;
4 Ei' = v’ . -
(4) I { 0, otherwise.
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The set M,(X) defined by

(5) M(2) :={UVT|U € O(m),V € O(n)}

obviously is equal to the set of all matrices in R™*™ whose singular values are precisely
0l,...,0n. We use B to denote the affine subspace

(6) B = {B(c)|c € B™).

Clearly solving the (ISVP) is equivalent to finding an intersection of the two sets
M(2) and B. In this paper we propose two different ways to find such an intersection,
if it exists.

Our first approach is motivated by a recent study of the projected gradient method
[4]. The (ISVP) is cast as an equality-constrained optimization problem in which the
distance (measured in the Frobenius norm) between M,(X) and B is minimized. We
show that the gradient of the distance function can be projected explicitly onto the
feasible set without using Lagrange multipliers. Consequently, we are able to derive
an ordinary differential equation which characterizes a steepest descent flow for the
distance function. The steepest descent flow is easy to follow by using any available
ODE software. Our first method for the (ISVP) is embedded in this continuous real-
ization process. The formulation of the differential system is presented in Section 2.
A similar approach for the (IEP) has already been discussed in [3].

Our second approach is simply a generalization of the so called Method III in [10].
Method IIT has been thought to be a new method. In the course of trying to understand
why Method III works, we begin to realize, based on the knowledge we learn from [3, 4],
that Method III can be interpreted geometrically as a ”classical” Newton method. We
emphasize the word ”classical” because the geometry involved in Method III is closely
related to that of the Newton method for one dimensional nonlinear equations. This
interpretation (for the (IEP)) will be explained in Section 3. Once the geometry is
understood, Method III can easily be generalized to an iterative process for the (ISVP).
Furthermore, the method can be shown to converge quadratically. The discussion of
our second approach is presented in Section 4.

One other important result of Friedland et al. is the modification of Method III so
as to retain quadratic convergence when multiple eigenvalues are present. We certainly
can do similar modification in our method when multiple singular values are present.
This modification is described in Section 5. The behavior of our modified method is
expected to be similar to that in [10]. Indeed, a proof of quadratic convergence can be
established in the same spirit as in [10]. We shall not provide the proof in this paper.
The numerical examples reported in Section 6, however, should illustrate our results.

Both of the continuous approach and the iterative approach generate sequences of
matrices in the manifold M,(X). But schematically, the continuous approach evolves
explicitly in the manifold M,(X) whereas the iterative approach is an implicit lifting of
evolution in the affine subspace B. It is also worth noting that the continuous method
converges globally but slowly whereas the iterative method converges quadratically but
locally. These features can, therefore, be taken advantage of in such a way that the
continuous method is used first to a low order of accuracy to help get into the domain
of convergence of the discrete method which, then, will be turned on to improve the
accuracy.



2. A Continuous Approach for ISVP.

In this section we shall solve the (ISVP) by minimizing the distance between
M,(X) and B. The distance is measured in term of the norm induced by the Frobenius
inner product

(7) < A, B >:= trace(ABT) = Z A;;B;j
Z,J

for any A = (A;;) and B = (B;;) in R™*™. We shall derive an ordinary differential
equation that characterizes a steepest descent flow for the distance function.

For clarity, we shall assume that the given matrices By,..., B, € R™*™ in the
(ISVP) are linearly independent. A classical Gram-Schmidt process may be applied
to produce a new sequence By, ..., B, that are mutually orthonormal with respect to

the Frobenius inner product. Furthermore, these matrices are related by
(8) By =T1By + ...+ Tx By,

for some real numbers I';;. Obviously, if

(9) > &Br = ckBs,
k=1 k=1

then é:= (&,...,é,)T and ¢ := (c1,...,cn)T are related by
(10) c=T¢
where I' is the upper triangular matrix
Fin T .o Tin
(11) M= 0 Faz ‘
0 .. 0 Tm
It is clear, therefore, that without loss of generality we may assume the matrices
By,..., B, are mutually orthonormal to begin with. We may further assume that By
is perpendicular to all Bg, for k = 1,...,n. It will become clear in the sequel that

these assumptions facilitate the computations.
Given an arbitrary X € R™*™, it is not difficult to see that the distance between
X and the affine subspace B is given by

(12) dist(X, B) = || X — (Bo + P(X))||

where, due to the orthonormality,

(13) P(X)=) <X,By> By
k=1

is simply the projection of X onto the linear subspace spanned by Bi,...,B,. For
any U € R™*™ and V € R™™, we define a residual matrix R(U,V) by

(14) RWU,V):=UxVT — (By + P(USVT)).
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Our first approach of solving the (ISVP) is to consider the optimization problem:

1
(15) Minimize — F(U,V) := 2| R(T, )1
Subject to (U,V) € O(m) x O(n).
We note in (15) that UXVT € M,(2) so long as (U, V) € O(m) x O(n). We note also
that the feasible set O(m) x O(n) is a smooth manifold [6].

By introducing the product topology on R™*™ x R™*™ with the induced inner
product

(16) < (Al,Bl),(Ag,Bg) >i=< A1,A2 >+ < By, By >,
we calculate the Fréchet derivative of F' as follows:

FI(U,V)H,K) = <RU,V),HxVT 4 USKT - P(HXVT + USKT) >
= <RWUV),HZVT + USKT >
(17) = <RWU,V)VET,H >+ <3TUTR(U,V), KT > .

In the middle line of (17) we have used the fact that the range of R is always perpen-
dicular to the range of P. The gradient VF of F, therefore, may be interpreted as
the pair of matrices:

(18) VF(U,V)=(RUVVST, R(UV)TUE) € R™™ x R™™,
Because of the product topology, we know
(19) Ty (O(m) x O(n)) = TyO(m) x T O(n)

where 7(y71)(O(m) X O(n)) stands for the tangent space to the manifold O(m) x O(n)
at (U, V) € O(m) x O(n) and so on. The projection of VF(U, V') onto Z(y,y)(O(m) X
O(n)), therefore, is the product of the projection of the first component of VF(U,V)
onto 7y O(m) and the projection of the second component of VF(U, V') onto Ty O(n).
Each of these projections can easily be calculated by using a technique developed in
[4]. In particular, we claim that the projection g(U, V') of the gradient VF(U, V) onto
Tw,v)(O(m) x O(n)) is given by the pair of matrices:

ET T _ )y T T
o(U.V) = (R(U,V)V U 2 USVTR(U,V) v,
R(UWVTUuxvT —veTUuTR(U,V
2
Thus, the vector field
d(U,v
(21) ULORAS

defines a steepest descent flow on the manifold O(m) x O(n) for the objective function
F(U,V).

Corresponding to the flow (21) on the manifold O(m) x O(n), there is a flow on
the set M,(X) defined by

(22) X(t) := U@)ZV(t)T.
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. .. . . . . dU
Upon differentiating both sides of (22) with respect to ¢ and substituting (21) for %~

and %, we see that X (t) is governed by an ordinary differential system:
X XXT(BO +P(X))— (Bo + P(X))TX
at 2
T T
o3 X (Bo POV~ (Bo + POOYX

Once an initial value of X (0) € M,(X) is specified, the equation (23) defines an initial
value problem whose orbit moves in the steepest descent direction toward minimizing
dist(X (t),B). This is what we call the first method for the (ISVP). As t — o0, the
solution X(t) of (23) moves toward a local stationary point for the distance function.
A special case which we hope will occurce is, of course, dist(X(o0),8) = 0. In this
case, the coefficients needed in (ISVP) are determined from ¢; =< X (o0), B; >. If this
case does not happen, then one needs to change to another initial value and repeat
the integration.

In the above derivation, no assumption on the multiplicity of singular values is
needed. If of,...,07 are all distinct, then it can be proved that M,(X) is indeed a
smooth manifold of dimension ﬂm—_ljﬂn—_ll Otherwise, M,(X) is a union of finitely
many submanifolds with different dimensions. In either case, we note that any tangent
vector T(X ) to M,(X) at a point X € M,(X) about which a local chart can be defined
must be of the form [3]

(24) T(X)=XK - HX

for some skew symmetric matrices H € R™*™ and K € R™*™. The right-hand side of
(23) obviously is a special case of (24). We will see in the next two sections that this

observation helps us to generalize a result of Friedland et al. [10] from the (IEP) to
the (ISVP).

3. A Newton Method for IEP.

In this section, we introduce a geometric interpretation of Method III proposed by
Friedland et al. [10] for the (IEP) before we go on to discuss our second method for the
(ISVP). We think such an interpretation is worth mentioning because the geometry
behind Method IIT is very simple and not mentioned in [10], and also because this
geometry sheds light on how the (ISVP) should be handled. For clarity, we shall
consider the unmodified version of Method III only, that is, all eigenvalues AJ,..., A,
are assumed to be distinct. Let

(25) A= diag{)],..., .}

and let A denote the affine subspace

(26) A :={A(c)|c € R™}
where A(c) is defined by (1). It can be proved that the set
(27) M(A) :={QAQ"|Q € O(n)}

is a smooth manifold of dimension ﬂ’;—_ll Similar to (24), any tangent vector T'(X)
to Mc(A) at a point X € M.(A) must be of the form [3]

(28) T(X)=XK - KX
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for some skew-symmetric matrix K € R™*",
We recall the elementary fact that the new iterate z(**1) of a classical Newton
step

(29) 2 = 20— (f1(20)) 7 f(=)

for a function f: R — R is precisely the z-intercept of the line which is tangent to
the graph of f at (z(*), f(z(*))). If we think of the surface M(A) as playing the role
of the graph of f and the affine subspace A as playing the role of the z-axis, then an
iterative process analogous to the Newton method can be developed for the (IEP).

Given X(*) € M,(A), there exist a Q) € O(n) such that
(30) 0T x(g®) = .

From (28), we know X0 4 XWEK — KX®) with any skew-symmetric matrix K
represents a tangent vector to M,(A) emanating from X®*). We thus seek an .A-
intercept A(c(**1)) of such a vector with the affine subspace .A. That is, we want to
find a skew-symmetric matrix K*) and a vector ¢(**1) such that

(31) X0 L x0g®) - g xE) — A(c(”+1)),

The geometry is illustrated in Figure 1. [Insert Figure 1 in this space]
We now explain how the equation (31) can be solved. Using (30), it follows that

(32) A+ AK® — g0 = 90T g1y g)
where
(33) K0 = g  g(g®)

is still a skew-symmetric matrix. The n diagonal equations of (32) give rise to the
linear system

(34) TP 1) — xx _ p(¥)

where

(35) J9 = a7 4,q™), forij=1,...,n
(36) A= (LT

(37) ) = ¢ 40q™) fori=1,...,n

and qz(") is the i-th column of the matrix Q). The vector ¢(**1), therefore, can be
solved from (34). Once c¢(**1) is obtained, the skew-symmetric matrix K(*) (and,
hence, the matrix K(*)) can be determined from the off-diagonal equations of (32). In
fact,

o A D)
AT —AF ’

() _
(38) K =

for 1 <4< 7 < n. In this way, the equation (31) is completely solved.
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In the classical Newton method the new iterate z(**1) is ”lifted up” naturally
along the y-axis to the the point (z(*11), f(z(**1))) from which the next tangent line
will begin. We note that (z(**1), f(z(**1))) is a point on the graph of f. Analogously,
we now need a way to "lift up” the point A(c(**1)) € A to a point X*#+1) € M(A).
The difficulty here is that there is no obvious coordinate axis to follow. One possible
way of this lifting can be motivated as follows: It is clear that solving the (IEP) is
equivalent to finding an intersection of the two sets M.(A) and A. Suppose all the
iterations are taking place near a point of intersection. Then we should have

(39) X4 o A(H),
But from (31), we also should have

(40) ATy & e K x ) KM,

K(¥)

High accuracy calculation of the exponential matrix e in (40) is expensive and is

not needed. So, instead, we define the Cayley transform

K®) I K®) -1
2 2

(41) R:=(I+

which happens to be the (1,1) Padé approximation of the matrix K Tt is well
known that R € O(n), and that

(42) R~ &Y

if ||K(®)|| is small. Motivated by (39) and (40), we now define

(43) x0+1) .= RTXMR € M,(A)

and the next iteration is ready to begin. It is interesting to note that
(44) X041 & RTKY A(c41)e KR & ALY

represents what we mean by a lifting of the matrix A(c(""'l)) from the affine subspace
A to the surface M(A).

In summary, we realize that (31) is the equation for finding the A-intercept of a
tangent line passing X (*) and that (43) is the equation for lifting the .A-intercept to a
point on M(A). The above process is identical to Method III proposed in [10], but
the geometric meaning should be clearer now. We may thus say that Method III is
precisely equivalent to the Newton method applied to f(z) = 0, for some specified
f(z). In [10] Method III is proved to converge quadratically. In the next section we
shall use the same idea to develop a quadratically convergent method for the (ISVP).

4. An Iterative Approach for ISVP.

In this section we come back to the (ISVP) and develop a quadratically convergent
iterative method. The given matrices Bg, B1,..., B, are no longer required to be
orthonormal as assumed in Section 2. We shall assume, however, that all singular
values o7, ...,0, are positive and distinct. The multiple singular values case will be
discussed in the next section.



Given X() € M,(%), there exist U*) € O(m) and V(*) € O(n) such that
(45) v xy® — 5,

We now seek a B-intercept of a line that is tangent to the manifold M () at X*),
According to (24) and the discussion in the proceeding section, this amounts to finding
two skew-symmetric matrices H®*) € R™*™ K®) ¢ R™*™ and a vector ¢**1) ¢ R®
such that

(46) x4 xWge) _ g x@) - B(c("+1))

or equivalently

(47) S+ 3K - F0x = g7 g4y )
with

(48) g0 = g gepe).

(49) BE» = T ge)ye)

We note that the system (47) involves m("zl_l) + "("2_1) + n unknowns all together,
namely the vector ¢(**1) and the skew matrices H*) and K(*). But there are only mn
equations. Fortunately, a closer look at (47) shows that the w
IZTZ-(JI-'), n+1 <1 # j < m, at the lower-right corner of H®) are not bound to any
equations at all. For simplicity, we shall set

unknowns

(50) A =0fornt1<i#j<m.
For convenience, we denote

(51) w® .= g7 gy ),
Then (47) is equivalent to

(52) WZ(JV) = Eij + E“KZ(JV) — I:IZ-(JI-I)EJ'J', for1<:1<n,1<j5<n
where K’Z(Ju) is understood to be zero if ¢ > n + 1. We analyze these equations as
follows:

(a) For 1 <4 =j < n, the equations from (52) can be rewritten as a linear system

(53) TP 1) = g* _ ()

where

(54) IO = T BA®) for 1< st <m,
(55) o* = (of,...,00)7,

(56) b = w7 By, for 1 < s < n.

() ()

and uy” and v are the column vectors of U*) and V), respectively. If the matrix
J®) is nonsingular, then the vector ¢(**1) is obtained from solving (53). Once c(*11)
is known, the matrix W) is determined.
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(b) Forn +1<i<mand 1<j<n, we have from (52)

(v (v W'L(u)
(57) B = - = -2
J
(c) For 1 < i< j < n, we have from (52)
(58) Wy = SRy - BY)%,
(59) WJ(:’) = Ejjf(;](-;’) — fIJ(;’)E“ = _Ejjki(;) + I:IZ(JV)E“
Solving for fIZ(J") and K’Z(Ju) yields
s L ey ®)
”(u)__ "(u) Uszi ‘|-0'J-W,LJ
(90 B A M e o
s o ey ®)
oy B A e e

By now, the equations in (47) are completely solved. The skew-symmetric matrices
H® and K™ are determined according to (48) and (49).

The next step is to lift the matrix B(c(**1)) € B to a point X*+1) € M,(%)in a
way similar to that for the (IEP). First we define two orthogonal matrices

o) o)
(62) Re= (14 20y 0,
K®) K®) 1
(63) 5= (T4 )1 - Ty

Then the lifted matrix on M,(X) is defined to be

(64) x+1) .= RTx(g,

We note from (46) that

(65) X0+ x RT(HY B KM g

is indeed a lifting since RTe#" ~ I,, and e K™ § ~ I, if | H®|| and ||K®)|| are
small. Note also that the matrix X(**1) needs not to be formed explicitly in the
computation. Rather, only the orthogonal matrices

(66) v+ .= RTy®)
and
(67) v .= gTy ),

are needed in the computation of (51) and (54). The iterative scheme is now completed.

It remains to show that the above scheme converges quadratically. We shall use
the induced Frobenius norm in R™*™ x R™*™ (See (16)) to measure the discrepancy
between iterates of (U(*), V(*)). We first introduce a lemma (See Corollary 3.1 in [10]):

9



~ LemMa 4.1. Suppose the (ISVP) has an ezact solution at c*. Suppose B(c*) =
UXVT with (U,V) € O(m) x O(n). For any (U, V) € O(m) x O(n), let

(68) E:=(E,E):=U-U0,V-V).

denote the error matriz. If the pair of matrices (H,K) € R™*™ X R™™ are such that
UUT = el and VVT = e, then

(69) I(H, K)|| = O E||.
Proof. The assertion follows immediately from the observation that UUT = (E1+

U)OT = Iy + EyUT = e = I, + H + O(|| H||?) and a similar expression for VV'7. [
At the v-th stage, define

(70) BW) = (B, B{Y) = (W)~ 0, V) - 7).

The proof of the next theorem is parallel to that in [10].

THEOREM 4.2. Suppose all singular values o7, ...,0} are positive and distinct.
Suppose also that the matriz J®) defined in (54) is nonsingular. Then the next itera-
tion (66) and (67) can be defined. Furthermore,

(71) IE®H|| = o(|EM)|?).

Proof. The matrix U(”)TB(C*)V(”), though lying on the manifold M,(X), is not
necessarily equal to X. If we write

U(")TB(c*)V(”) o HW 5 KW
(72) = (W e g Ky )
with
(73) Y = g Eege)T
(74) E® = vOEyeT

(75) HY — gt
(76) K — oy

By Lemma 4.1, we know that
(77) I(HE, K)|| = (|| EM))).

Because the Frobenius norm is invariant under orthogonal transformations, from (73)
and (74) we also have

(78) I(Z, E)|| = 0| EW).

10



Together with (72), it follows that
(79) v B W™ = 2 4 T - AM3 4 o(|EM|2).
Taking the difference between (47) and (79) yields

v (B(c*) - By ®)
(50) = N(KW - KO = (5 - A5+ 0| V).

The diagonal equations of (80) give rise to a linear system

(81) J¥(er — ) = o(| BV )

where J(*) is defined in (54). Thus

(82) [le* — 9] = o[ EM)|?).

Similarly, from the off-diagonal equations of (80) it is not difficult to see that

(83) 12— B®) = o(|EM|P),
(84) 18— M| = o(||E¥)|?).

Because of (78), it must be that
(85) I(Z®, @) = o(IIEW)).
From (48), (49), (73) and (74), it follows that

(86) |HO) — HO|| = O(|E)|?),
(87) KO - k)| = Oo(|EW)|2).

Observe that

E:Eu—l—l) — U(l,_|_1) _ ﬁ _ RTU(U) _ e—HgV) U(l’)

H®) y y H®) H®)
= [~ =5) (I~ B+ o(|EY| ) + =) + =)o)
v v v v v H(u) — v
(88) = [HY - H® 1 o(|HIHY)|| || HT) )T+ =) 0.

So it is clear now that
(89) IES D) = o(|| E@)| ).

A similar argument works for Eg"-l_l). Thus (71) is proved. O

We finally remark that one step of the above (Newton) method is a descent di-
rection for the objective function (15). Thus it is possible to combine the objective
function with some step-length control to improve the global convergence properties
of our iterative method.
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5. Multiple Singular Values.

In searching for the B-intercept of a tangent line of M,(X) the definition (57)
allows no zero singular values. Similarly, the definitions (60) and (61) require all of
the singular values to be distinct. In this section, we consider the case when multiple
singular values are present. For clarity, we shall continue to assume that all singular
values are positive. To simplify the notation, we shall also assume that only the first
singular value o7 is multiple, with multiplicity p.

We observe first that all the formulas (50), (53) and (57) are still well defined.
For 1 <7< j < p, however, we can conclude from (58) and (59) only that

@) | ) =
(90) W+ W =0.

Instead of determining values for fIZ(J") and IE'Z-(JI-'), the system (90) gives rise to additional
p(p—1)

q := =5 equations for the vector ¢*+1)| That is, multiple singular values gives rise
to an overdetermined system for ¢(**1), a situation analogous to that discussed in
[10] for the (IEP). Geometrically, the case implies that maybe no tangent line from

M (2) will intercept the affine subspace B at all. To remedy this, we follow a strategy
of Friedland et al. to modify the (ISVP) as

(ISVP?’) Given positive values o] = ... =0y > 05,1 > ... > 05,
find real values of ¢q, ..., ¢, such that the n — ¢ largest singular values
of the matrix B(c) are o7,...,07_,.

Now that we have ¢ degrees of freedom in choosing the remaining singular values,
we shall use the equation (compare with (47))

(91) i] + i]}"i’(l’) — ﬂ'(l’)i] — U(u)TB(c(u-I—l))V(u)

to find the B-intercept, where

(92) E _dll’a'g{o-lw' 1 On— q:an q+17"'7&n}
and 6p_g41,. .., 0p are free parameters. An algorithm for solving the (ISVP’) proceeds
as follows:

Given U®) € O(m) and V*) € O(n),

(a) Solve for c(*1) from the system of equations:

(93) Z ( v )TBkv(u)) () =o; 5")TBov§”), fori=1,...,n—¢q

5 (s Bt 4 o i) o -
= T
(94) —u{) Bovt(") — uﬁ”) Bov™), for 1 <s<t<p.
(b) Define &,(c") by

o1, ifl1<k<n-—gq
(95) (”).—{ k K

(1’) B( (u-l—l)) (), ifn—g<k<n

(c) Once c**1) is determined, calculate W) according to (51).
12



(d) Define the skew symmetric matrices K(*) and H®*) according to the equation
(91). For 1 <17 < j < p, the equation to be satisfied is

@) _ ) () _ (). (v)
(96) Wit =0, Ky — Hig'oy.
Thus there are many ways to define IE'Z(J") and fIZ(J") For example, one may set IE'Z(J") =0
for 1 < i< j < p. In this case, the skew-symmetric matrix K(*) is defined by
a.gV)Wi(jV) —|—6'§.V) WJ(:’)

(97) Kf;) = (a.gV))g_(a,g_V))Z )
0, fl1<i<j<p

if1<i<j<n,andp<j

and the skew-symmetric symmetric matrix H(*) is defined by

()
-y if1<i<j<p;
%3
wi) : . :
(98) ﬁf;) - —ﬁ, fn+1<i<m, and1<j<m

j

&EV)WJ(:’) —|—6’§-V) Wi(jV)
(&g”))Z_(&gV))Z ’

0, fn+l1<it#75<m.

ifl1<i<j<n,andp<j

(e) Once H®) and K®) are determined, proceed with the lifting in the same way
as for the (ISVP).

We should point out that no longer we are on a fixed manifold M,(Z), since 3
is changed at each step. We believe a proof of convergence similar to that given by
Friedland et al. for the (IEP) can easily be carried out. In particular, we claim that
the above algorithm for the case of multiple singular value converges quadratically.
Our numerical results should illustrate this point.

6. Zero Singular Value.

A zero singular value indicates rank deficiency. To find a lower rank matrix in
a generic affine subspace B is intuitively a more difficult problem. In this case, it is
most likely that the (ISVP) does not have a solution.

To demonstrate what might happen to the algorithm proposed earlier, we consider
the simplest case where of > ... > o5_; > o7 = 0. A closer look at equation
(52) indicates that except for H;, (and I;Tm-), i =mn+1,...,m, all other quantities
including ¢(**1) are well-defined. Furthermore, in order that equation (52) be valid,
it is necessary that

(99) Wi(:)zofori:n—l—l,...,m.

If condition (99) fails, then it simply says that no tangent line of M (%) from the
current iterate X(*) will intersect the affine subspace B. The iteration, therefore, can
not be continued.

7. Numerical Experiments.

We have tested both continuous and iterative methods on various types of prob-
lems. In this section we report three numerical experiments. For demonstration pur-
pose, we consider the case when m = 5 and n = 4. The following matrices, generated
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randomly by MATLAB on a DECstation 5000/200 from a normal distribution
mean 0.0 and variance 1.0, are used as the basis matrices:

1.1650 x 10T°  6.2684 x 107!  7.5080 x 1072  3.5161 x 107!
—6.9651 x 1071 1.6961 x 10°  5.9060 x 10~2  1.7971 x 101°
By = 2.6407 x 107! 8.7167 x 107! —1.4462 x 101° —7.0117 x 107!
1.2460 x 10T° —6.3898 x 10~!  5.7735x 10~! —3.6003 x 1071

| —1.3558 x 1071 —1.3493 x 107 —1.2704 x 107  9.8457 x 107! |

[ —4.4881 x 1072 —7.9894 x 107! —7.6517 x 107!  8.6173 x 1071 ]
—5.6225 x 1072 5.1348 x 1071  3.9668 x 10~!  7.5622 x 10!
B, = 4.0049 x 107t —1.3414 x 10T°  3.7504 x 107!  1.1252 x 101°
7.2864 x 1071 —2.3775 x 101° —2.7378 x 10~1 —3.2294 x 1071

3.1799 x 1071 —5.1117 x 107! —2.0413 x 1072 1.6065 x 1010 |

8.4765 x 1071 2.6810 x 107! —9.2349 x 107! —7.0499 x 1072 ]
1.4789 x 1071 —5.5709 x 1071 —3.3671 x 10~!  4.1523 x 101
B, 1.5578 x 10T° —2.4443 x 10t° —1.0982 x 10™°  1.1226 x 1019
5.8167 x 1071 —2.7135 x 1071 4.1419x 10! —9.7781 x 101

| —1.0215 x 107 3.1769 x 107! 1.5161 x 107°  7.4943 x 107! |

[ —5.0770 x 107!  8.8530 x 107! —2.4809 x 107! —7.2625 x 107! ]
—4.4504 x 1071 —6.1291 x 1071 —2.0914 x 10~  5.6215 x 107!
By = | —1.0639x 1019 35159 x 107%  1.1330 x 1019  1.4999 x 107!
7.0314 x 1071 —-5.2412x 1072  2.0185 x 10*°  9.2416 x 1071

| —1.8141 x 107 3.4973 x 1072 —1.8079 x 107°  1.0282 x 107° |

3.9460 x 107! 6.3941 x 107!  8.7421 x 107!  1.7524 x 1010 ]
—3.2005 x 1071 —1.3741x 107'  6.1577x 107!  9.7789 x 10!
B, = | —1.1153 x 1019 —5.5002 x 107!  3.9885 x 1072 —2.4828 x 101°
1.1587 x 10T° —1.0263 x 10t°  1.1535 x 1010 —7.8646 x 1071

6.3481 x 1071 8.2041 x 107! —1.7603 x 1071  5.6247 x 107! |

with

So as to fit the data comfortably in the running text, we display all the numbers
with only five digits.

Example 1 (The continuous method)

It is important to note that the system (23) is a differential equation defined on
a manifold [11] — the solution X (¢) should in theory stay on the manifold M,(X) for
all ¢, provided X (0) € M, (X). Any numerical method, therefore, ought to maintain
the orthogonality of the corresponding U(t) and V(¢) in (22).

We can think of at least three approaches to conduct the experiments for the
continuous method. The first is to directly apply a suitable initial value problem solver
in such a way that the solution trajectory is closely followed. The second is to use
ideas similar to [13] or [16] where the trajectory needs not to be followed accurately
but a device is added which recovers orthogonality. The third is to design special
schemes that are primary for trajectory problems, e.g., [5] ,[12] and the references
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therein. Apparently, the last two approaches require more theory development and
programming involvement whereas the first approach should be quite straightforward.
Since our purpose here is to report the behavior of the proposed (23) only, we are less
concerned about how efficient the equation is solved. The first approach is used.

The subroutine ODE in [17] is used as the integrator. Both local control param-
eters ABSERR and RELERR in ODE are set to be 1072, This criterion is used to
control the accuracy in following the solution path of (23). We examine the output
values at time interval of 10. Normally, we should expect the loss of one or two digits
in the global error. Thus, when the norm of the difference between two consecu-
tive output points becomes less than 10719, we assume the path has converged to an
equilibrium point. The execution is then terminated automatically.

By construction, the path of (23) is guaranteed to converge to a stationary point
for the distance between M (%) and B. Nonetheless, such a point is not necessarily a
solution to the (ISVP). In our experiments, we have often run into this situation. For-
tunately, the impasse can be circumvented by changing, e.g., a simple plane rotation,
to another initial value X (0) that is also in M,(X).

Empirical data for two different sets of singular values are reported in Table 1. In
each test, the initial value X(0) is taken simply to be the diagonal matrix with ¢* as
its diagonal entries. The value of ¢ indicates how long it takes to meet the convergence
criterion mentioned above.

We choose to report, in particular, the second case to illustrate how slow the
convergence might be. Although we do not understand the cause completely, we note
that the slowness is inherited in the differential equation itself and has nothing to do
with the numerical method used. As is mentioned earlier, the topology of M,(%)
becomes complicated when multiple singular values are present. We suspect that the
much slower convergence is probably due to the cluster of singular values. On the other
hand, the status indicator IFLAG in the code ODE has never signaled any abnormal
return in our application. Despite of the long integration, it appears that stiffness is
not a major concern. For the majority of our other tests, the value of ¢ for convergence
seems to incline more toward the lower value reported. It would be interesting to use
a statistical method to estimate the expected value of ¢.

Example 2 (The iterative method)

The iterative algorithm described in section 4 can easily be implemented with the
aid of the package MATLAB.

Since the iterative algorithm converges only locally, our numerical experiment is
meant solely to examine the quadratic rate of convergence. To make sure that the
(ISVP) under testing does have a solution, we first randomly generate a vector ¢# ¢
R*. Then singular values of the corresponding matrix B(c#) are used as the prescribed
singular values. We perturb each entry of the vector ¢ by a uniform distribution
between —1 and 1 and use the perturbed vector as the initial guess for the iteration.

Table 2 includes the initial guess ¢(°) and the corresponding limit point c¢* for
three test cases. It is interesting to note that the limit point ¢* of the iteration is not
necessary the same as the original vector ¢# to which ¢(%) is reasonably close. The
singular values of B(c*), however, do agree with those of B(c#).

Table 3 indicates how the singular values of B(c(%)) differ from those of B(c*).

The difference between singular values of B(c(*)) and B(c*) is measured in the 2-
norm. From Table 4 it is obvious that quadratic convergence indeed occurs in practice.

Example 3 (Multiple singular values)
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In this example we want to illustrate that the iterative method modified in sec-
tion 5 for the (ISVP’) converges quadratically. Since multiple singular values are
present, the construction of a numerical example is not trivial. For demonstration, we
continue to use the same basis matrices as in Example 2. We assume the multiplicity
is p = 2. Instead of doing the same as in Example 2, we fix the prescribed singular
values o* = (5,5,2)7 and search by trials the right initial guess of c(0),

Table 5 contains three different initial values of the vector ¢(°) and the correspond-
ing limit points c*.

Table 6 contains the singular values of B(c(®)) and of B(c*). We note that the
order of singular values in Case (c) has changed. The value 5 is no longer the largest
singular value. In fact, unless the initial guess ¢{%) is close enough to an exact solution
c*, we have no reason to expect that our algorithm, especially (95), will preserve the
ordering. Nevertheless, once convergence occurs, then from (91) we know that ¢* must
be a subset of the singular values of the final matrix.

Table 7 displays the 2-norm of the vector o(*) — o* throughout the iteration. It is
seen that at the initial stage the convergence is slow, but eventually the rate picks up
and becomes quadratic. This observation agrees with our prediction.
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Case (a)
o* (6.3315,4.7638,2.6501,1.5722)T
t 250
6.7675 x 1071 —1.3732 x 107° —2.3249 x 107 —9.0641 x 107!
—2.8887 x 1071 2.5478 x 1070 —2.9574 x 10~*  1.5012 x 101
X (00) 2.6286 x 10T —5.4150 x 107* —1.1678 x 107°  4.4892 x 101°
6.7451 x 107! —2.5151 x 10t® —1.4408 x 10*°  1.3932 x 1071
—6.5918 x 107! —3.1698 x 101° —7.6316 x 107!  2.4759 x 101°
Case (b)
o* (2.4735,2.2550,2.0092,0.9150)7
t 14100
1.3212 x 107°  7.7597 x 10~!  1.1678 x 10! —9.0992 x 10~3
—5.8743 x 1071 1.5219 x 10*° —1.4853 x 107!  1.4905 x 101
X (o0) 5.7452 x 107! 9.2632x 107! —1.8383 x 10T —6.7451 x 107!
9.4451 x 1071 1.4559 x 107!  4.3708 x 107! —4.2765 x 107!
—2.7595 x 1071 —1.2179 x 1070 85478 x 101  4.5995 x 107!
TABLE 1
Empirical data for Ezample 1
™) Case (a) Case (b) Case (c)
9] 44020 x 1071 | 1.9984 x 1070 | 1.0639 x 10*°
| 3.9909x 1071 | 1.3802 x 1070 | 1.2202 x 10+°
) | —1.5330 x 1070 | —6.5989 x 10~1 | —4.4669 x 102
¢ | —1.3434 x 1070 | —9.7495 x 101 |  6.6642 x 102
ct | —8.8571x 1072 | 2.3693 x 1070 | 8.8169 x 1071
cs 5.1462 x 1071 | 1.6524 x 10™° | 1.3168 x 10*°
¢y | —1.0132 x 10%° | —1.3027 x 10™° | —2.5081 x 1071
c; | —8.8725 x 107! | —9.3529 x 107! | —1.5865 x 1071
TABLE 2

Initial and final values of ) for Example 2

Case (a)

Case (b)

Case (c)

6.8899 x 101°

©) | 51197 x 10*°
©) | 3.9921 x 1010

1.0936 x 1011
6.5909 x 101°
4.4003 x 1010

6.8474 x 1010
5.7249 x 1010
3.2213 x 101°

03

o$% | 1.4204 x 10+° | 8.0052 x 10! | 1.4699 x 10+°

o} |5.2995 x 1070 | 1.3414 x 10™ | 6.9201 x 10™°

o3 | 3.3937 x 1010 | 8.0732 x 10*° | 5.1246 x 107°

o3 | 2.2206 x 107 | 5.0761 x 107 | 3.3332 x 10™°

o} | 1.0707 x 101° | 3.8920 x 10! | 1.0239 x 10*°
TABLE 3

Singular values of B(c(V)) for Ezample 2
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Iterations | Case (a) Case (b) Case (c)
0 2.9612 x 107% | 2.9940 x 1019 | 7.5970 x 107!
1 2.0771 x 1071 | 1.4643 x 107! | 3.1871 x 107!
2 1.6456 x 1072 | 2.4630 x 1072 | 5.5975 x 1072
3 3.4464 x 107* | 5.2647 x 1073 | 2.5138 x 1073
4 5.6724 x 1078 | 1.0221 x 1072 | 5.7491 x 10~®
5 1.2113 x 1071* | 6.5434 x 1075 | 1.1412 x 107!
6 3.1503 x 10=7 | 3.4399 x 1071°
7 7.2704 x 10712
8 6.5100 x 10715
TABLE 4
Errors of singular values for Example 2
) Case (a) Case (b) Case (c)
9 | —6.7476 x 1071 | —1.1547 x 1070 | —2.8000 x 10~
| —7.3995 x 1071 | 1.8322 x 100 | 1.6200 x 10+°
| 8.1359x 1071 | 1.9587 x 10*° | —1.8000 x 10~?
¢ | 3.8499 x 1071 | 1.0081 x 10*° | 1.3600 x 10+°
cf | —1.3441x 1070 | 1.1428 x 10™° | —7.6956 x 1071
¢y | —5.7219x 1072 | 3.6652 x 107! | 1.8501 x 10*°
c3 4.9023 x 107! | 3.0984 x 107! | 1.7808 x 107
s 4.8810 x 107! | —2.2213 x 1071 | 9.5787 x 107!
TABLE 5

Initial and final values of ) for Example 3

o) Case (a) Case (b) Case (c)

o\% | 5.7416 x 10+° | 1.0176 x 10** | 7.7756 x 10+°
o$% | 5.2465 x 10+° | 5.1525 x 107° | 5.1142 x 10+°
ol | 2.6168 x 10+° | 5.0567 x 1070 | 3.8264 x 10+°
o$® | 9.7351 x 1071 | 2.1606 x 1070 | 2.0274 x 10+°
o} | 5.0000 x 10™° | 5.0000 x 107 | 9.7369 x 10™°
o} | 5.0000 x 10%° | 5.0000 x 10+° | 5.0000 x 10+°
o% | 2.0000 x 100 | 2.0000 x 10+° | 5.0000 x 10+°
os | 7.2598 x 107! | 1.5539 x 10™° | 2.0000 x 107°

TABLE 6

Singular values of B(c(V)) for Ezample 8
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Iterations | Case (a) Case (b) Case (c)
0 9.9559 x 10~! | 6.0128 x 1070 | 2.2887 x 101°
1 4.3843 x 1071 | 4.9779 x 10! | 5.1367 x 10*°
2 8.5750 x 1072 | 7.8916 x 10T | 5.1903 x 10*1°
3 6.2047 x 1073 | 1.2682 x 101! | 4.8564 x 101°
4 1.8996 x 1075 | 4.5087 x 101° | 5.4301 x 10*°
5 1.9263 x 10710 | 9.9793 x 10~ | 4.2116 x 101°
6 3.1086 x 10715 | 1.6460 x 10~ | 2.8036 x 10*1°
7 8.2634 x 1073 | 3.7452 x 101°
8 1.4440 x 1075 | 2.3434 x 101
9 9.1313 x 107! | 8.5750 x 1072
10 2.9458 x 10715 | 5.2509 x 101°
11 4.4207 x 1010
12 4.9467 x 1071
13 2.5058 x 1071
14 8.3009 x 102
15 6.7032 x 1073
16 9.3119 x 1075
17 1.0896 x 1078
18 2.5511 x 10715

]

[ABLE 7

Errors of singular values for Example 3
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