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Abstract. Analogous to the pole assignment problem where eigenvalues of a square matrix are relocated, this
paper considers the problem of reassigning singular values of a rectangular matrix by additive low rank matrices.
Precise and easy-to-check necessary and sufficient conditions under which the problem is solvable are completely
characterized, generalizing some traditional singular value inequalities. The constructive proof makes it possible
to compute such a solution numerically.
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1. Introduction. Given matrices A ∈ Rn×n and B ∈ Rn×m, the state feedback pole
assignment problem concerns the finding of a matrix F ∈ Rm×n such that the matrix A + BF

has a prescribed set of eigenvalues. Such an eigenvalue reassignment problem arises from the
application where the state x(t) ∈ Rn of a certain physical system under the dynamic state
equation:

ẋ(t) = Ax(t) +Bu(t) (1.1)

is to be controlled by the input u(t) ∈ Rm. One classical problem in control theory is to select
the input u(t) so that the dynamics of the resulting x(t) is driven into to a certain desired state.
In the state feedback control, the input u(t) is selected as a linear function of current state x(t),
i.e.,

u(t) = Fx(t). (1.2)

In this way, the system (1.1) is changed to a closed-loop dynamical system:

ẋ(t) = (A+BF )x(t). (1.3)

A general goal in such a control scheme is to choose the gain matrix F ∈ Rm×n so as to achieve
stability and to speed up response. To accomplish this goal, the problem can be translated into
choosing F so as to reassign eigenvalues of the matrix A+BF .

The pole assignment problem has been thoroughly studied in the literature. See, for example,
[3, 15, 18, 22]. Let λ(M) denote the spectrum of a square matrix M . A standard result in this
field is that, given any set of n complex numbers {λ1, . . . , λn} which is closed under complex
conjugation, a matrix F ∈ Rm×n exists such that λ(A+BF ) = {λ1, . . . , λn} if and only if

rank [A− µI,B] = n, for all µ ∈ C. (1.4)

The condition (1.4) usually is referred to as the pair (A,B) being controllable. In the single-input
case where m = 1, it is further known that the pole assignment problem, if solvable, has a unique
solution. On the other hand, it can be proved that

⋂

F∈Rm×n

λ(A+BF ) = {µ ∈ λ(A) | rank [A− µI,B] < n},
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implying that for a certain peculiar pair (A,B) of matrices the eigenvalues of A cannot be
reassigned by any F . This kind of unassignable matrix pair forms a zero measure set.

Analogous to the task of reassigning eigenvalues of a square matrix, it is natural to ask
whether the singular values of a rectangular matrix can be arbitrarily reassigned via additive
low rank matrices. More specifically, the following special type of inverse singular value problem
(ISVPrk) is studied in this paper. For convenience, we use σ(N) to denote henceforth the set of
singular values of a general matrix N .

(ISVPrk) Given a matrix A ∈ Rm×n (m ≥ n), an integer n ≥ ` > 0 and
real numbers β1 ≥ β2 ≥ · · · ≥ βn ≥ 0, find a matrix F ∈ Rm×n such that
rank(F ) ≤ ` and σ(A+ F ) = {β1, β2, · · · , βn}.

The state feedback pole assignment problem is but a special case of the much broader class
of inverse eigenvalue problems which has attracted remarkable attention in recent years. See,
for example, [2, 7] and the many references cited therein. In contrast, the inverse singular value
problems have not received as many studies. Some earlier results that can be considered as inverse
problems include the de Oliveira theorem [9] on the principal elements and singular values, the
the Weyl-Horn theorem [13, 21] on the relationship between singular values and eigenvalues, and
the Sing-Thompson theorem [17, 20] on the majorization between the diagonal elements and
singular values. Some related numerical work can be found in [4, 5, 6]. However, we are not
aware of any discussion on the problem formulated as the ISVPrk which can also be considered
as an analogue of the well-known additive inverse eigenvalue problem.

Although an inverse singular value problem can be recast as a specially structured inverse
eigenvalue problem [7], the existing theory does not provide us a clue on when the ISVPrk is
solvable. Our main contributions in this paper are twofold: one is that we completely characterize
the necessary and sufficient condition under which the above ISVPrk is solvable and the other is
that we offer a constructive proof which can be implemented as a numerical means to find the
solution.

2. Rank One Update. We shall begin with the case where F is of rank one only. The
discussion will be used as a building block to extend to the general case.

Given any fixed column vector b ∈ Rm, consider first the case where F is of the form
F = bf> for some undetermined column vector f ∈ Rn. Choose the Householder transformation
Qb ∈ Rm×m so that

Q>b b =

[

b0
0

]

, (2.1)

where b0 = ‖b‖2 ∈ R and 0 denotes throughout the paper a zero vector of appropriate size.
Denote the product Q>

b
A in blocks, i.e.,

Q>bA =

[

a>
b

Ab

]

,

with ab ∈ Rn and Ab ∈ R(m−1)×n. Depending on whether m = n or m > n, the singular value
decomposition of Ab is of the form,

Ab = Ub











γ1 0
γ2 0

. . .
...

γn−1 0











V >b or Ab = Ub















γ1

γ2

. . .

γn
0 0















V >b ,
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respectively. For any f ∈ Rn, denote

(a>b + b0f
>)Vb = [f1, f2, · · · , fn] . (2.2)

Define the matrix A(f) ∈ R(n+1)×n as a function of f by

A(f) =



















f1 f2 · · · fn−1 fn
γ1

γ2

. . .

γn−1

γn



















,

where γn = 0 if m = n. Then, we know that

σ(A+ bf>) = {β1, β2, · · · , βn} ⇐⇒ σ(A(f)) = {β1, β2, · · · , βn}.

In the above, note that for each given b the matrix Ab is known and hence values of γi’s are
also known. To solve the ISVPrk for the case of F = bf>, it suffices to determine the values of
f1, . . . , fn. Toward that end, we have the following necessary and sufficient condition.

Lemma 2.1. Given any fixed b ∈ Rm, there exists a vector f ∈ Rn such that

σ(A(f)) = {β1, β2, · · · , βn} (2.3)

if and only if

βi ≥ γi ≥ βi+1, i = 1, 2, · · · , n, (2.4)

where βn+1 := 0.
Proof. The necessity of the interlacing inequality (2.4) is a well known property of singular

value decompositions. See, for example, [11].
To prove the sufficiency, assume that the interlacing inequality (2.4) holds. Observe first that

Af := A(f)A(f)> =



















∑n
i=1 f

2
i f1γ1 f2γ2 · · · fn−1γn−1 fnγn

f1γ1 γ2
1

f2γ2 γ2
2

...
. . .

fn−1γn−1 γ2
n−1

fnγn γ2
n



















is a bordered matrix in R(n+1)×(n+1). As such, we now describe a way to construct a vector
f ∈ Rn such that (2.3) holds true. Our approach modifies from a technique developed earlier for
the Jacobi inverse eigenvalue problems [2]. Because

σ(A(f)) = {β1, · · · , βn} ⇐⇒ λ(Af ) = {β
2
1 , · · · , β

2
n, 0},

finding a vector f ∈ Rn such that (2.3) holds is equivalent to proving the identity

p(µ) := µ

n
∏

i=1

(µ− β2
i )− det(µI −Af ) ≡ 0, (2.5)
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On one hand, note that

p(µ) =

(

trace(Af )−
n
∑

i=1

β2
i

)

µn + low degree terms in µ. (2.6)

So p(µ) is a polynomial of degree at most n in µ. On the other hand, we can expand the
determinant of Af and thus expect the vector f to solve the equation

µ

n
∏

j=1

(µ− β2
j ) = (µ−

n
∑

i=1

f2
i )

n
∏

j=1

(µ− γ2
j )−

n
∑

i=1











(fiγi)
2

n
∏

j = 1
j 6= i

(µ− γ2
j )











. (2.7)

We shall divide our proof into four mutually exclusive cases.
Case 1. Assume that all γk, k = 1, . . . n, are distinct and nonzero. For each k, by setting

µ = γ2
k in (2.7), we obtain

γ2
k

n
∏

j=1

(γ2
k − β2

j ) = −(fkγk)
2

n
∏

j = 1
j 6= k

(γ2
k − γ2

j ).

Thus, f2
k is uniquely determined

1 by

f2
k = −

∏n
j=1(γ

2
k − β2

j )
∏n

j = 1
j 6= k

(γ2
k − γ2

j )
, k = 1, · · · , n. (2.10)

The interlacing property (2.4) guarantees that the right hand side of (2.10) is nonnegative and
hence real-valued fk can be defined. With this choice of f1, · · · , fn, we see that p(µ) has n + 1
zeros at µ = 0, γ2

1 , · · · , γ
2
n and hence p(µ) ≡ 0.

Case 2. Assume that γ1 > · · · > γt > γt+1 = · · · = γn = 0 for some integer t. In this case,
the interlacing inequality (2.4) implies that

βt+2 = · · · = βn = 0,

and that the equality (2.7) is reduced to

µn−t
t+1
∏

j=1

(µ− β2
j ) = µn−t



















(µ−
n
∑

i=1

f2
i )

t
∏

j=1

(µ− γ2
j )−

t
∑

i=1











(fiγi)
2

t
∏

j = 1
j 6= i

(µ− γ2
j )





























. (2.11)

1Incidentally, we have established an interesting equality which would be hard to prove in other context. By
the fact that the sum of eigenvalues equals to the trace, we have

n
∑

i=1

f2
i +

n
∑

i=1

γ2
i =

n
∑

i=1

β2
i . (2.8)

The equality,

n
∑

i=1

γ2
i −

n
∑

i=1

β2
i =

n
∑

i=1

∏n
j=1

(γ2
i − β2

j )
∏n

j = 1
j 6= i

(γ2
i − γ2

j )
, (2.9)

thus holds for any two sequences of numbers {β1, · · · , βn} and {γ1, · · · , γn}, if all γi’s are distinct and nonzero,
and (2.4) is satisfied.
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It follows that

t+1
∏

j=1

(µ− β2
j ) = (µ−

n
∑

i=1

f2
i )

t
∏

j=1

(µ− γ2
j )−

t
∑

i=1











(fiγi)
2

t
∏

j = 1
j 6= i

(λ− γ2
j )











. (2.12)

By setting µ = γ2
k, we can determine that

f2
k = −

∏t+1
j=1(γ

2
k − β2

j )

γ2
k

∏t
j = 1
j 6= k

(γ2
k − γ2

j )
, k = 1, · · · , t. (2.13)

To obtain values for the remaining ft+1, · · · , fn, observe that λ(Af ) = {β
2
1 , · · · , β

2
t , β

2
t+1, 0, · · · , 0}.

Computing the trace of Af yields the constraint that

t+1
∑

i=1

β2
i =

n
∑

i=1

f2
i +

n
∑

i=1

γ2
i =

n
∑

i=1

f2
i +

t
∑

i=1

γ2
i .

Therefore, the only condition imposed upon ft+1, · · · , fn is that

n
∑

i=t+1

f2
i = β2

t+1 +

(

t
∑

i=1

β2
i −

t
∑

i=1

γ2
i

)

−
t
∑

i=1

f2
i ,

= β2
t+1 −

t
∑

i=1

∏t
j=1(γ

2
i − β2

j )
∏t

j = 1
j 6= i

(γ2
i − γ2

j )
+

t
∑

i=1

∏t+1
j=1(γ

2
i − β2

j )

γ2
i

∏t
j = 1
j 6= i

(γ2
i − γ2

j )

= β2
t+1






1−

t
∑

i=1

∏t
j=1(γ

2
i − β2

j )

γ2
i

∏t
j = 1
j 6= i

(γ2
i − γ2

j )






. (2.14)

In the above we have employed the fact derived in (2.9) to arrive at the second equality. So long
as f ∈ Rn satisfy (2.14), the polynomial p(µ) in (2.6) is of degree at most n − 1 in µ which,
by(2.13), has t non-zero roots at µ = γ2

k, k = 1, . . . , t and one zero root with multiplicity n − t.
It follows that p(µ) ≡ 0.

Case 3. Assume that the set {γ1, γ2, · · · , γn} consists of t many distinct non-zero elements.
For each j = 1, · · · , t, let sj denote the first index in the group such that

γsj
= γsj+1 = · · · = γsj+1−1,

where st+1 = n+ 1. The interlacing condition (2.4) enforces that

βsj+1 = · · · = βsj+1−1 = γsj
.

Furthermore, the equality (2.7) becomes

µ







t
∏

j=1

(µ− β2
sj
)













t
∏

j=1

(µ− γ2
sj
)sj+1−sj−1







=







t
∏

j=1

(µ− γ2
sj
)sj+1−sj−1







×



















(µ−
n
∑

i=1

f2
i )

t
∏

j=1

(µ− γ2
sj
)−

t
∑

i=1











(f2
si
+ · · ·+ f2

si+1−1)γ
2
si

t
∏

j = 1
j 6= i

(µ− γ2
sj
)





























. (2.15)
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After cancellation, we obtain that

µ







t
∏

j=1

(µ− β2
sj
)







=



µ−
t
∑

j=1

sj+1−1
∑

i=sj

f2
i





t
∏

j=1

(µ− γ2
sj
)

−
t
∑

i=1











(

si+1−1
∑

s=si

f2
s

)

γ2
si

t
∏

j = 1
j 6= i

(µ− γ2
sj
)











. (2.16)

Consequently, by setting µ = γ2
sk
, we obtain a constraint where

sk+1−1
∑

s=sk

f2
s = −

∏t
j=1(γ

2
sk
− β2

sj
)

∏t
j = 1
j 6= k

(γ2
sk
− γ2

sj
)
, k = 1, · · · , t. (2.17)

Note that formula (2.17) is similarly to formula (2.10) in Case 1. Using a similar argument, it
can now be shown that p(µ) ≡ 0 whenever f satisfies the condition (2.17).

Case 4. Assume that the set {γ1, γ2, · · · , γn} consists of t + 1 distinct elements including
one zero, that is, assume that

γs1 > γs2 > · · · > γst
> γst+1

= 0,

where the indices sj ’s are defined in the same way as those in Case 3. The interlacing inequality
(2.4) implies that

βsj+1 = · · · = βsj+1−1 = γsj
,

βst+1+1 = · · · = βn = 0.

and the equality (2.7) becomes

µn−st+1+1







t+1
∏

j=1

(µ− β2
sj
)













t
∏

j=1

(µ− γ2
sj
)sj+1−sj−1







= µn−st+1+1







t
∏

j=1

(µ− γ2
sj
)sj+1−sj−1







×



















(µ−
n
∑

i=1

f2
i )

t
∏

j=1

(µ− γ2
sk
)−

t
∑

i=1











(f2
si
+ · · ·+ f2

si+1−1)γ
2
si

t
∏

j = 1
j 6= i

(µ− γ2
sj
)





























, (2.18)

which is further reduced to

t+1
∏

j=1

(µ− β2
sj
) = (µ−

n
∑

i=1

f2
i )

t
∏

j=1

(µ− γ2
sj
)−

t
∑

i=1











(f2
ik
+ · · ·+ f2

ik+1−1)γ
2
si

t
∏

j = 1
j 6= i

(µ− γ2
sj
)











.

So, we have by setting µ = γ2
sk
that

sk+1−1
∑

s=sk

f2
s = −

∏t+1
j=1(γ

2
sk
− β2

sj
)

γ2
sk

∏t
j = 1
j 6= k

(γ2
sk
− γ2

sj
)
, k = 1, · · · , t. (2.19)
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Finally, the constraint imposed upon
∑n

s=st+1
f2
s can be obtained by the trace condition (2.8).

That is, we obtain by using the identity (2.9) that

n
∑

s=st+1

f2
s =

n
∑

i=1

β2
i −

n
∑

i=1

γ2
i −

t
∑

i=1

si+1−1
∑

s=si

f2
s

= β2
st+1

+

(

t
∑

i=1

β2
si
−

t
∑

i=1

γ2
si

)

−
t
∑

i=1

si+1−1
∑

s=si

f2
s

= β2
st+1

−
t
∑

i=1

∏t
j=1(γ

2
si
− β2

sj
)

∏t
j = 1
j 6= i

(γ2
si
− γ2

sj
)
+

t
∑

i=1

∏t+1
j=1(γ

2
si
− β2

sj
)

γ2
si

∏t
j = 1
j 6= i

(γ2
si
− γ2

sj
)

= β2
st+1






1−

t
∑

i=1

∏t
j=1(γ

2
si
− β2

sj
)

γ2
si
[
∏t

j = 1
j 6= i

(γ2
si
− γ2

sj
)]






. (2.20)

Now using similar arguments as in Cases 1, 2, and 3, we can prove (2.3) so long as f satisfying
both (2.19) and (2.20).

With all four cases considered, the sufficiency of (2.4) is established. The proof is now
completed.

Recall that the values of γi’s referred to in Lemma 2.1 are determined by the orthogonal
transformation Qb in (2.1) which, in turn, depends on the vector b. This relationship indicates
that if vector b is changed, then the interlacing inequality (2.4) will also be changed. Recall also
that if

σ(A) = {α1, · · · , αn}, α1 ≥ α2 ≥ · · · ≥ αn,

then the γi’s corresponding to any b must satisfy the inequalities

αi ≥ γi ≥ αi+1, i = 1, · · · , n, (2.21)

with αn+1 = 0. We are thus motivated to consider using b as a parameter to control the singular
values. The following result is particularly interesting.

Lemma 2.2. Let A ∈ Rm×n (m ≥ n) be given and fixed. Corresponding to any values γi,
i = 1, · · · , n, satisfying the interlacing inequality (2.21) where γn = 0 if m = n, there exists a
unit vector b ∈ Rm and an orthogonal matrix Qb ∈ Rm×m such that

Q>b b =

[

1
0

]

,

and

Q>bA =

[

a>
b

Ab

]

,

with

σ(Ab) =

{

{γ1, · · · , γn−1}, if m = n,

{γ1, · · · , γn}, if m > n.
(2.22)
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Proof. Depending on whether m = n or m > n, define Ã ∈ Rm×n by

Ã =















0 0 · · · 0
γ1

γ2

. . .
...

γn−1 0















or Ã =



















0 0 · · · 0
γ1

γ2

. . .

γn
0 0 · · · 0



















,

where the last row of 0’s are used, if m > n + 1, to pad the row dimension m. Because of the

interlacing inequality (2.21), by Lemma 2.1 with b̃ =

[

1
0

]

∈ Rm, there exists a column vector

c ∈ Rn such that

σ(Ã+ b̃c>) = {α1, α2, · · · , αn}.

Let the singular value decompositions of A and Ã+b̃c> be denoted as A = U1ΣV
>
1 and Ã+b̃c> =

U2ΣV
>
2 , respectively. Define

Qb := U1U
>
2 and b := Qbb̃.

The partition

Q>bA = (Ã+ b̃c>)(V2V
>
1 ) =

[

a>
b

Ab

]

has the properties that

ab = A>b (= V1V
>
2 c)

and

Ab =











γ1 0
γ2

. . .
...

γn−1 0











V2V
>
1 or















γ1

γ2

. . .

γn
0 0 · · · 0















V2V
>
1 .

The assertion therefore is proved.
We are now able to answer ISVPrk completely with the following result.
Theorem 2.3. The following three statements are equivalent:
1. The ISVPrk with ` = 1 is solvable.
2. For each i = 1, · · · , n, there exists a value γi satisfying both inequalities

αi ≥ γi ≥ αi+1, (2.23)

βi ≥ γi ≥ βi+1, (2.24)

where αn+1 := 0 and βn+1 := 0.
3. For each i = 1, · · · , n− 1,

βi+1 ≤ αi and αi+1 ≤ βi. (2.25)
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¾
β3

Fig. 2.1. Feasible range of αi’s and βi’s for the case n = 3.

Proof. By keeping the ordering α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn, the equivalence
of Statements 2 and 3 is obvious. We only need to show the equivalence of Statements 1 and 2.

Assume that the ISVPrk has a rank one solution F ∈ Rm×n. There exists orthogonal matrix
QF such that

Q>FF =

[

f>

O

]

,

where f ∈ Rn and O is a zero matrix in R(m−1)×n. Write

Q>FA =

[

a>
f

AF

]

,

where af ∈ Rn and AF ∈ R(m−1)×n. Let

σ(AF ) =

{

{γ1, γ2, · · · , γn−1} if m = n,

{γ1, γ2, · · · , γn}, if m > n,

with the descending order γ1 ≥ γ2 ≥ · · · . Then by the fact that AF is a submatrix of both Q
>
FA

and Q>F (A+F ), the singular values of AF interlace with those of both Q
>
FA and Q

>
F (A+F ), giving

rise to the inequalities (2.23) and (2.24), respectively. We thus have proved that statement 1
implies statement 2.

To show the converse, assume first that the interlacing inequality (2.23) holds. By Lemma 2.2,

there exists a unit vector b ∈ Rm and orthogonal matrix Qb ∈ Rm×m such that Q>
b
b =

[

1
0

]

,

Q>
b
A =

[

a>
b

Ab

]

, and σ(Ab) is precisely as described in (2.22). By the interlacing inequality

(2.24) and Lemma 2.1, we then obtain a vector f ∈ Rn such that

σ(A+ bf>) = {β1, β2, · · · , βn}.

Therefore, the ISVPrk is solved by defining F = bf>.
It is worthy to point out that αi’s and βi’s in Theorem 2.3 do not necessarily satisfy any

interlacing property. The feasible range for the case n = 3 is exemplified in Figure 2.1. Note that
β2 can be any value between α1 and α3 so long as β1 ≥ β2 ≥ β3.

We conclude this section with an interesting observation characterizing the class of special
matrices A of which the singular values absolutely cannot be reassigned by any rank one matrices.

The following result is a corollary from Theorem 2.3.
Corollary 2.4. Let the multiplicity of all distinct singular values α1(A) , · · · , αt(A) of A

be denoted as s1, · · · , st. Then

⋂

rank(F )≤1

σ(A+ F ) = {αk(A) with algebraic multiplicity (sk − 2) |sk > 2, 1 ≤ k ≤ t}.
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Hence,

⋂

rank(F )≤1

σ(A+ F ) = ∅ ⇐⇒ sk ≤ 2, k = 1, · · · , t.

3. Main Result. We are now ready to deal with the general ISVPrk. The following
result includes Theorem 2.3 as a special case in that the “gap” between the original singular
values αi’s and the desirable singular values βi’s is separated by the rank number `.

Theorem 3.1. The ISVPrk is solvable if and only if for each i = 1, · · ·n− `,

βi+` ≤ αi, and αi+` ≤ βi. (3.1)

Proof. We shall prove our result by the mathematical induction. Note that we have already
established the case for ` = 1 in Theorem 2.3. Assume that the assertion in Theorem 3.1 is true
for ` = k. We want to establish the case ` = k + 1 ≤ n.

We first argue the necessity. Any F ∈ Rm×n with rank(F ) ≤ k + 1 can be factorized as

F = F1 + F2,

with rank(F1) ≤ k and rank(F2) ≤ 1. Denote

σ(A+ F1) = {γ1, γ2, · · · , γn}.

Then, by assumption, it must be that for each i = 1, · · · , n− k

γi+k ≤ αi and αi+k ≤ γi.

In addition, using Theorem 2.3, we have that for each i = 1, · · · , n− 1

βi+1 ≤ γi and γi+1 ≤ βi.

Together, we see for each i = 1, · · · , n− k − 1 it must be true that

βi+k+1 ≤ αi and αi+k+1 ≤ βi.

We then argue the sufficiency. Note that



















βk+2 ≤ α1

βk+3 ≤ α2

...
βn ≤ αn−k−1

and



















αk+2 ≤ β1

αk+3 ≤ β2

...
αn ≤ βn−k−1

.

It is a matter of inspection that there exist γi, i = 1, · · · , n, with

γ1 ≥ γ2 ≥ · · · ≥ γn,
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such that



































































































max{β1, α1} < γ1

max{αk+2, β3} ≤ γ2 ≤ β1

max{αk+3, β4} ≤ γ3 ≤ β2

...
max{αn, βn−k+1} ≤ γn−k ≤ βn−k−1

βn−k ≤ γn+1−k ≤ βn−k
...

βk+1 ≤ γk ≤ βk−1

βk+2 ≤ γk+1 ≤ min{βk, α1}
βk+3 ≤ γk+2 ≤ min{βk+1, α2}

...
βn ≤ γn−1 ≤ min{βn−2, αn−1−k}

γn = 0

,

if n− k < k + 1, or











































































































max{α1, β1} < γ1

max{αk+2, β3} ≤ γ2 ≤ β1

max{αk+3, β4} ≤ γ3 ≤ β2

...
max{α2k, βk+1} ≤ γk ≤ βk−1

max{α2k+1, βk+2} ≤ γk+1 ≤ min{α1, βk}
max{α2k+2, βk+3} ≤ γk+2 ≤ min{α2, βk+1}

...
max{αn, βk+J+2} ≤ γk+J+1 ≤ min{αJ+1, βk+J}

βk+J+3 ≤ γk+J+2 ≤ min{αJ+2, βK+J+1}
βk+J+4 ≤ γk+J+3 ≤ min{αJ+3, βk+J+2}

...
βn ≤ γn−1 ≤ min{αn−k−1, βn−2}

γn = 0.

,

if n− k ≥ k + 1 with J = (n− k)− (k + 1). These values of γi, i = 1, · · · , n, satisfy

γi+k ≤ αi, αi+k ≤ γi, i = 1, · · · , n− k,

and

βi+1 ≤ γi, γi+1 ≤ βi, i = 1, · · · , n− 1.

By the inductive assumption, there exists a matrix F1 ∈ Rm×n such that

rank(F1) ≤ k, σ(A+ F1) = {γ1, γ2, · · · , γn}.

Furthermore, by Theorem 2.3, there exists a matrix F2 ∈ Rm×n such that

rank(F2) ≤ 1, σ((A+ F1) + F2) = {β1, β2, · · · , βn}.
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Hence, if we define

F = F1 + F2,

then F satisfies

rank(F ) ≤ rank(F1) + rank(F2) ≤ k + 1, σ(A+ F ) = {β1, β2, · · · , βn}.

This completes the proof of sufficiency.
By the mathematical induction principle, Theorem 3.1 is true for any 1 ≤ ` ≤ n.
The necessary condition of Theorem 3.1 is related to the classical Weyl inequality for singular

values of sums of matrices. See, for example, the earlier paper [1] and the seminal books [14] and
[19]. However, we believe the fact that the necessary condition is also sufficient is new and is of
significant importance. The simplicity of the condition (3.1) is also quite pleasant.

4. Numerical Algorithm. The proofs given above can be implemented as numerical
means to compute a solution for the ISVPrk. For clarity, we rehash the procedures in algorithmic
format.

Algorithm 4.1. (Singular Value Reassignment with Rank One Update) Given a matrix
A ∈ Rm×n with m ≥ n and a set of nonnegative numbers β1 ≥ · · · ≥ βn, the following steps check
and find vectors b ∈ Rm and f ∈ Rn such that σ(A+ bf>) = {β1, · · · , βn}.

1. Compute the singular value decomposition

A = U1ΣV
>
1

and denote σ(A) = {α1, · · · , αn} with α1 ≥ · · · ≥ αn.
2. For i = 1, · · · , n− 1, check to see if

βi+1 ≤ αi and αi+1 ≤ βi.

If not, stop.
3. For i = 1, · · · , n− 1, define

γi :=
min{αi, βi}+max{αi+1, βi+1}

2
.

and

γn :=

{

0, if m = n,
min{αn,βn}

2 , otherwise.

4. If γ1 > · · · > γn > 0, define for each k = 1, · · · , n

ck :=

√

√

√

√

√

−

∏n
j=1(γ

2
k − α2

j )
∏n

j = 1
j 6= k

(γ2
k − γ2

j )
;

else modify ck’s according to the remaining three cases discussed in Lemma 2.1.
5. Define

Â :=











[c>; diag(γ1, · · · , γn−1), zeros(m− 1, 1)], if m = n,

[c>; diag(γ1, · · · , γn)], if m = n+ 1,

[c>; diag(γ1, · · · , γn); zeros(m− n− 1, n)], otherwise.
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6. Compute the singular value decomposition

Â := U2ΣV
>
2 .

7. Define

b := U1U2(1, :)
>,

Vb := V1V
>
2 ,

ab := A>b (or Vbc).

8. If γ1 > · · · > γn > 0, define for each k = 1, · · · , n

f̂k :=

√

√

√

√

√

−

∏n
j=1(γ

2
k − β2

j )
∏n

j = 1
j 6= k

(γ2
k − γ2

j )
;

else modify f̂k’s according to the remaining three cases discussed in Lemma 2.1.
9. Define

f := Vbf̂ − ab.

We remark that the selection of midpoints in Step 3 of Algorithm 4.1 is but one safe way to
ensure conditions (2.23) and (2.24). Other choices are certainly possible. Also we have to point
out that details of a mathematically equivalent but numerically more stable way of computing
the ratios in c and f̂ has been discussed elsewhere in the context of Jacobi inverse eigenvalue
problems [8, 12] which we shall not elaborate here. If so desired, one simply needs to replace
formulas in Step 4 and Step 8 by the more stable formulation.

Once a rank one update algorithm is available, it is important to realize the entire induction
process described in Theorem 3.1 can easily be implemented in any programming language that
supports a routine to call itself recursively. See discussions of similar implementations in, for
example, [5, 6]. The main feature in the routine should be a single divide and conquer mechanism
that can be demonstrated by the pseudo-code listed in Table 4.1.

As the routine svd_update is calling itself recursively when ell is not one, the rank of
the problem is reduced by one successively and the current data are saved internally. This is
the “dividing” process. Once ell has reached the bottom, that is, when ell = 1, the process is
reversed and begins to build up matrices F1 followed by F2 layer by layer. This is the “conquering”
process. The final output F is the desired solution to the ISVPrk.

5. Conclusion. We have provided a rigorous theoretic basis for the singular value reas-
signment problem. A simple yet both necessary and sufficient condition (3.1) completely settles
the issue of solvability for the ISVPrk. Our proof is constructive so it can be exploited to provide
a possible means for computing the solution numerically. Using the rank one case as the building
block, the algorithm features a divide-and-conquer scheme. The numerical procedure as it stands
now, particularly Algorithm 4.1, might not be stable when there are close-by singular values.
Remedies are available in the literature, but this paper mainly concentrates on the general ideas.

6. Acknowledgment. The original idea of the ISVPrk with rank one update was
brought to our attention by Wojciech A. Tadej.
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function [F]=svd_update(A,alpha,beta,ell);

if ell == 1 % The rank one case

[b,f] = svd_update_rank_1(A,alpha,beta); % Algorithm 4.1

F = b*f’;

else

k = ell-1; % The general case

choose gamma(1) >= gamma(2) >= ... >= gamma(n) such that

gamma(i+k) <= alpha(i); alpha(i+k) <= gamma(i); i = 1, ..., n-k

beta(i+1) <= gamma(i); gamma(i+1) <= beta(i); i = 1, ..., n-1

[F1] = svd_update(A,alpha,gamma,k);

[b,f] = svd_update_rank_1(A+F1,gamma,beta);

F2 = b*f’;

F = F1+F2;

end

Table 4.1

A pseudo-MATLAB program for the recursive algorithm.
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