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Any logical procedure that is used to reason or infer either deductively or
inductively so as to draw conclusions or make decisions can be called, in a
broad sense, a realization process. A realization process usually assumes the
recursive form that one state gets developed into another state by following
a certain specific rule. Such an action is qualified as what is generally known
as a dynamical system. In mathematics, especially for existence questions, a
realization process often appears in the form of an iterative procedure or a
differential equation. For years researchers have taken great effort to describe,
analyze, and modify realization processes for various applications.

The thrust in this exposition is to exploit the notion of dynamical systems as a
special realization process for problems arising from the field of linear algebra.
Several differential equations whose solutions evolve in some submanifolds of
matrices are cast in fairly general frameworks of which special cases have
been found to afford unified and fundamental insights into the structure and
behavior of existing discrete methods and, now and then, suggest new and
improved numerical methods. In some cases, there are remarkable connections
between smooth flows and discrete numerical algorithms. In other cases, the
flow approach seems advantageous in tackling very difficult open problems.
Various aspects of the recent development and application in this direction
are discussed in this paper.
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1. Introduction

At the risk of oversimplifying an extremely complex mechanism of thinking,
we begin with a large and loose metaphor to delineate the characteristic of
a realization process. A realization process usually is constituted of three
components: First, we have two abstract problems of which one is an artifi-
cial problem whose solution is easy to find while the other is the real problem
whose solution is hard to attain. Secondly, we need to design a bridge or a
path that connects the easy problem and to the difficult problem. The basic
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idea is to utilize the bridge to set the rule for a certain dynamical system
that evolves from the solution of the easy problem to the solution of the
difficult problem. Once the blueprint for the bridge construction is in place,
we finally need a practical method allowing us to move along the path so
that the desirable solution is reached at the end of the process.

The steps taken for the realization, that is, the changes from one state to
the next state along the bridge, can be discrete or continuous. Limited by
current computing technology and devices, however, it is generally accepted
that the most common and effective way to execute a computation is by
means of floating-point arithmetic (Goldberg 1991). As such, it is almost
a mandate that a continuous realization process must be discretized first
before it can be put into operation numerically (Allgower and Georg 2003).
For this reason and perhaps more so for convenience, we have observed that a
majority of numerical algorithms in practice are iterative in nature. It could
very well be the case that an iterative scheme was initially devised without
the notion of “a connecting bridge” in mind. Its convergence and hence
the appearance of a bridge connecting the starting point to the limit point
often are not immediately evident, but rather are the upshot after some hard
analysis. In hindsight, we now recognize that most of the iterative methods
can be categorically classified as a realization process.

Our principal goal in this exposition is to characterize the relationship
between the dynamics of classical iterative methods and that of certain
differential systems. We note that in certain cases the continuous model
“interpolates” exactly the iterates of the corresponding discrete method, or
that the discrete model “samples” the solution flow of the corresponding
differential equation at integer times, while in other case we can only sug-
gest a straightforward continuous extension or an obvious discretization. In
all cases, we think that knowing the interplay between dynamical systems
and computational methods not only is of theoretical interest but also has
important consequences as will be manifested in the subsequent discussion.

Needless to say, the success of a realization process depends on how
the bridge is extended from the trivial solution to the desirable solution.
Sometimes we have specific guidelines in building the bridge. Bridges un-
derlying the projected gradient method (Chu and Driessel 1990), the inte-
rior point method (Karmarkar 1984, Wright 1997, Potra and Wright 2000,
Wright 2005) or the conjugate gradient method (Hestenes and Stiefel 1952,
Greenbaum 1997, Meurant 2006), for example, are based on the princi-
ple of systematically optimizing the values of certain objective functions.
Sometimes the bridge is developed more or less on the basis of innate in-
clination where we can only hope that the bridge will connect to the other
end. The continuous Newton method (Smale 1977) or the homotopy method
(Allgower and Georg 1980, Garćıa and Gould 1980, Morgan 1987), for ex-
ample, requires extra efforts to make sure that the bridge actually makes
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Figure 1.1. Possible turnabout between continuous and discrete dynamical
systems.

the desirable connection. At yet other situations, such as the QR algo-
rithm (Francis 1961/1962, Watkins 1982) or the Rayleigh quotient iteration
(Parlett 1974), it appears that the bridge comes to existence in an anoma-
lous way. But the matter of fact is that usually a much deeper mathematical
or physical cause is involved. When the theory in unveiled, we are often
amazed to see that these seemingly aberrant bridges do exist by themselves
naturally.

The diagram in Figure 1.1 serves as a reminder of the possible turnabout
between continuous and discrete dynamical systems. The dotted lines rep-
resent that an iterative scheme might be generated or regenerated from a
differential system. The direction of going from a continuous system to a
discrete system usually is regarded as “natural” since most numerical ODE
techniques are doing precisely that task, but one major thrust of this paper
is to illustrate some nontraditional ways of discretization which are not as
straightforward as an ordinary ODE scheme but could lead to new and effec-
tive algorithms. On the other hand, the direction of going from an iterative
scheme to a differential system is not always as obvious as merely consid-
ering the discrete scheme as an Euler step of a differential system. Other
mechanisms, such as control, acceleration, optimization, or structure pre-
serving, can also induce the types of relationships. Our presentation in this
paper centers around describing case by case each direction in the flowchart
of Figure 1.1 with applications arising from linear algebra algorithms.

2. Numerical Analysis versus Dynamical System

Most of the iterative methods developed for practical purpose assume the
format of an m-step sequential process (Ortega and Rheinboldt 2000),

xk+1 = Gk(xk, . . . ,xk−m+1), k = 0, 1, . . . , (2.1)



Linear Algebra Algorithms as Dynamical Systems 5

where

Gk : Dk ⊂ V m → V, (2.2)

are some predetermined maps, V is a designated vector space and m is
a fixed integer. Obviously, to start up an m-step iteration, initial values
x0,x−1, . . . ,x−m+1 must be specified first. An m-step process is said to
be stationary if all iteration maps Gk together with the domains Dk are
independent of k.

Conventional numerical integrators such as the Runge-Kutta methods and
the Adams methods for an initial value problem,

dx

dt
= f(t,x), x(0) = x0, (2.3)

are typical one-step and multi-step sequential processes, respectively. The
corresponding iterative maps Gk are defined forthright for explicit methods
but are more devious for implicit methods. Discussions on issues of stability
and convergence for discrete methods in this context are abundant in the lit-
erature. We shall not review any numerical ODE techniques in this paper,
but would recommend the seminal books by Hairer, Nørsett and Wanner
(1993) and Hairer and Wanner (1996) as general references on this subject.
Our focus of this paper is concentrated primarily on a few very specific iter-
ative processes that were developed originally for problems from fields other
than ODEs. It will become apparent that the differential systems associated
with the applications to be discussed in the sequel are of distinct characters
and that special numerical techniques might be needed. It perhaps is fitting
to echo what Gear (1981) has suggested that there are more things to do
with ODE techniques.

It should be stressed that the subject of discrete dynamical system has
its own distinguished role in nonlinear analysis as models for many natural
phenomena and is itself a discipline of extensive and deep research activities.
For example, there is this Sarkovskii’s theorem remarkable for its lack of
hypotheses and for its qualitative universality, asserting that if the discrete
dynamical system by iterating a continuous function f : R → R has a point
of period 3, then it has points of all periods. This topic is beyond the scope
of our current discussion. Far from being an expert suggestion, we find the
introductory textbooks by Devaney (1992) and Elaydi (2005) as well as the
extended article by Galor (2005) very accessible. The book by Kulenović
and Merino (2002) is interesting in that it contains read-to-use software
for computer simulation. For more rigorous theoretical development and a
rich collection of applications, we recommend the monograph by Sedaghat
(2003). Of course, the fundamental textbook by Wimp (1984) remains the
absolute reference for computational issues associated with finite difference
equations.
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2.1. Dynamics of Iterative Maps

A subtle line must be drawn in that the classical convergence analysis and
stability theory of numerical analysis considers only systems with a trivial
asymptotic behavior, namely convergence to a unique equilibrium point,
whereas most dynamical systems show a more complicated behavior with
limit cycles or even strange attractors (Stuart and Humphries 1996). From a
numerical analysis point of view, the discretization of a differential equation
is primarily meant to trace the solution flow with reliable and reasonable
accuracy. From a dynamical system of view, however, the analysis of a
sequential process seeks to differentiate the intrinsic geometric structure.
There are considerable overlaps of these two disciplines, but there is also a
significant difference in between as Guckenheimer (2002) puts it this way,

“The tension between geometric and more traditional analysis of numerical inte-
gration algorithms can be caricatured as the interchange between two limits. The
object of study is systems of ordinary differential equations and their flows. Numer-
ical solution of initial value problems for systems of ordinary differential equations
discretizes the equations in time and produces sequences of points that approximate
solutions over time intervals. Dynamical systems theory concentrates on questions
about long-time behavior of the solution trajectories, often investigating intricate
geometry in structures formed by the trajectories. The two limits of (i) discretiz-
ing the equations with finer and finer resolution in time and (ii) letting time tend
to infinity do not commute. Classical theories of numerical analysis give little in-
formation about the limit behavior of numerical trajectories with increasing time.
Extending these theories to do so is feasible only by making the analysis specific to
classes of systems with restricted geometric properties. The blend of geometry and
numerical analysis that is taking place in current research has begun to produce a
subject with lots of detail and richness.”

Perhaps a simple example can best demonstrate the above points. Con-
sider the task of solving the logistic equation,

dx

dt
= x(1 − x), x(0) = x0, (2.4)

by the Euler method,

xk+1 = xk + ǫxk(1 − xk), (2.5)

with step size ǫ. The exact solution of (2.4) is given by

x(t) =
x0

x0 + e−t(1 − x0)
, (2.6)

which converges to the equilibrium x(∞) = 1 with any initial value x0 6=
0. Traditional numerical analysis concerns and proves the convergence of
xn to x(t) at each fixed t in the sense that n → ∞ but t = nǫ. With
n = ⌈90

ǫ ⌉ and 0 < ǫ ≤ 3, we plot the absolute error |xn − x(nǫ)| at the
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Figure 2.2. Euler iterations for the logistic equation.

right graph in Figure 2.2. The drawing for ǫ between approximately 0.5 and
1.5 is omitted because of the logarithm at machine zero. Note that even at
ridiculously large step sizes the errors follow the theoretic estimate O(ǫ). On
the other hand, with each fixed ǫ, if we iterate the Euler steps 5000 times,
then the sequence {xk} exhibits period doubling when ǫ is larger than 2.
The left graph in Figure 2.2 shows the limit points, as a function of ǫ, of
the corresponding sequence {xk}. The so called Feigenbaum diagram clearly
indicates a cascade of period doubling as ǫ increases which eventually leads
to numerical chaos. Note in particular that the equilibrium x(∞) = 1 for
(2.4) is no longer an attractor to the discrete dynamical system (2.5) when
ǫ is sufficiently large. This equilibrium of the original differential equation
does not even appear in the Feigenbaum diagram for large ǫ values. In
contrast, implicit schemes such as

xk+1 = xk + ǫxk(1 − xk+1), (2.7)

or

xk+1 = xk + ǫxk+1(1 − xk+1), (2.8)

converges to the equilibrium x(∞) = 1 for any step size ǫ.
With this lesson in mind, we must be careful in discerning the limiting

behavior of an iterative algorithm which is designed originally by a numerical
practitioner to solve a specific problem and that of a discrete approximation
of a differential system which is formulated to simply mimic an existing
iterative algorithm. Likewise, we must also be discerning the asymptotic
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behavior of a differential system which is developed originally from a specific
realization process and that of its discrete approximation which becomes an
iterative scheme.

2.2. Pseudo Transient Continuation

It might be worthy to illustrate a general mechanism for advancing a special
continuous system. This idea is not the only way to discretize a continuous
system and does not work for every kind of differential system, but it illus-
trates an interest view on how the trajectory of a continuous system can
be approximately tracked so as to find the equilibrium point by using the
numerical ODE techniques in a somewhat nontraditional way.

We shall see in Section 7.3 that it is often the case in many applications
that the solution x∗ is realized as the limit point,

x∗ = lim
t→∞

x(t), (2.9)

where x(t) is the solution to the gradient flow

dx

dt
= −∇F (x), x(0) = x0, (2.10)

with respect to a specified smooth objective function F : R
n → R. At

the first thought, we should be able to find x∗ by solving the first order
optimality condition

∇F (x) = 0,

with some general-purpose Newton-like iterative methods. Such an ap-
proach, however, ignores the gradient property of ∇F and may locate a
solution which is different from x∗ and even could be dynamically unstable.
Employing some existing ODE integrators to carefully trace the trajectory
x(t) is another way of finding x∗. As reliable as this approach might be, it
requires expensive computation at the transient state which is not needed
for computing x∗.

One feasible discretization of (2.10) is as follows. Assuming that an ap-
proximate solution xk has already been computed, one implicit Euler step
with step size ǫk to (2.10) yields a nonlinear equation,

xk+1 = xk − ǫk∇F (xk+1), (2.11)

for the next step xk+1. Instead of solving (2.11) to high precision as what
an ODE integrator normally will do, we perform the correction by only one
Newton iteration starting at xk and accept the outcome as xk+1. The idea
is to stay nearby the true trajectory, but not to strive for accuracy. It is not
difficult to see that one Newton step for (2.11) leads to the iterative scheme,

xk+1 = xk −

(
1

ǫk
In + ∇2F (xk)

)−1

∇F (xk). (2.12)
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This scheme is a special implicit upwind method which has been applied
successfully for computing steady state solutions in the PDE community
(Mulder and van Leer 1985). Note that for small values of ǫk the scheme
(2.12) behaves like a steepest descent method whereas for large values of
ǫk it behaves like a Newton iteration. Taking into account the property of
∇F (x) which should have small norm near the optimal point x∗, the so
called “switched evolution relaxation” strategy for selecting the step sizes,
namely,

ǫk+1 = ǫk
‖∇F (xk)‖

‖∇F (xk+1)‖
, (2.13)

seems to be able to capture the characteristics of being relatively large at
the initial phase and small at terminal phase of the iteration. The method
described above is referred to as pseudo-transient continuation in (Kelley
and Keyes 1998) where convergence theory and implementation issues are
also discussed. For a review of its applications, see the recent paper by
Kelley, Liao, Qi, Chu, Reese and Winton (2007).

In the subsequent sections of this paper, we shall review various kinds of
numerical algorithms, especially those related to linear algebra problems,
and explore the possibility of recasting them as dynamical systems. Not
only we want to establish the relationship for the sake of theoretical interest,
but also we wish to gain some insights via this way of interpretation and
to develop some new algorithms. A few of these ideas have already been
reported in an earlier review by Chu (1988). It is hope that this paper will
bring up to date some more recent developments advanced in the past two
decades and point out some new areas for research.

3. Dynamical Systems for Linear Equations

Iterative methods for linear systems have their significant roles in history and
in applications. This class of methods has come a long way with a dazzling
array of developments. See, for example, the various “templates” discussed
in the book by Barrett, Berry, Chan and et al. (1994). The research is
still evolving even to this date. Current techniques ranges from the inge-
nious acceleration of classical iterative schemes (Hageman and Young 1981)
to the effective Krylov subspace approximation (van der Vorst 2003), to
the more geometrically motivated multigrid (Briggs 1987, Bramble 1993)
or domain decomposition approaches (Toselli and Widlund 2005). Some
favorites of practitioners includes the preconditioned conjugate gradient
method (PCG) (Hestenes and Stiefel 1952), the generalized minimum resid-
ual method (GMRES) (Saad and Schultz 1986), the quasi-minimal residual
method (QMR) (Freund and Nachtigal 1991), and so on. It is impossible to
discuss the dynamics of these methods one by one in this presentation. We
outline briefly only two principle ideas in this section.
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3.1. Stationary Iteration

Most classical iterative methods, such as the Jacobi, the Gauss-Seidel, or
the SOR methods, for the linear system,

Ax = b, (3.1)

where A ∈ R
n×n is nonsingular and b ∈ R

n, are one-step stationary sequen-
tial processes of the form,

xk+1 = Gxk + c, k = 0, 1, 2, . . . . (3.2)

The matrix G ∈ R
n×n, called the iteration matrix, plays a crucial role in

the convergence of {xk}k in this scheme. Indeed, a sufficient and necessary
condition for the convergence of (3.2) from any given starting value x0 to the
unique solution x∗ of (3.1) is that the spectral radius ρ(G) is strictly less than
one (Varga 2000). Extensive efforts have been taken on the construction of
G to ensure convergence. This usually is done as follows: At the fixed point
x∗, we see the relationship,

G = I −K−1A, (3.3)

c = K−1b,

for some nonsingular matrix K. Because A is split by K in the sense that,

A = K −KG,

K is called a splitting matrix of A. The attention in designing an effective
iterative method is thus turned to the selection of a splitting matrix K
of A so that ρ(I − K−1A) < 1 while K−1 is relatively easy to compute.
Mathematical theory developed for this traditional approach can be found
in the seminal book by Varga (2000).

It is seen trivially that the iterative scheme (3.2) is equivalent to one Euler
step with unit step size applied to the differential system,

dx

dt
= f(x;K) := −K−1(Ax − b). (3.4)

whose analytic solution is given by

x(t) = e−K
−1At(x0 −A−1b) +A−1b. (3.5)

For convergence, however, there is a fundamental difference between the
difference equation (3.2) and the differential equation (3.4) in the condition
to be imposed on the splitting matrix K. The concern in (3.2) is to make
ρ(I − K−1A) as small as possible. Indeed, an ideal K would be such that
the eigenvalues of K−1A are clustered around the real value λ = 1. Of
course, the obvious choice K = A is not practical because computing A−1

is precisely the point we want to circumvent by doing iteration. In contrast,
the concern in (3.4) is to make the real part of eigenvalues of positive and
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large for fast convergence to the limit point x∗. It might also be desirable to
keep the eigenvalues of K−1A clustering to avoid stiffness or high oscillation.

All of these requirements imposed on eigenvalues of K−1A in either case
can be met by employing techniques for multiplicative inverse eigenvalue
problems which are discussed in the book by Chu and Golub (2005). For
specific applications, finding the most suitable preconditioner has been a
major research effort since it can significantly improve the efficiency of an
iterative method. In practice, however, preconditioning is an inexact science
because different preconditioners work better for different kinds of problems.
To stay within the theme of this article, we shall not elaborate on the choice
of K, but assume that it is somehow given already.

The question now is how to integrate (3.4) so as to reach its equilibrium
point quickly. Certainly there are various ways to discretize the differential
system (3.4), including the pseudo transient continuation method described
earlier. There are also many different choices of the splitting matrix K,
including an obvious choice K−1 = A⊤ which leads to a gradient flow

dx

dt
= −A⊤(Ax − b), (3.6)

for the objective function f(x) = 1
2‖Ax − b‖2

2, that works even when A is
a rectangular matrix. Once a decision is made, what is the dynamics of the
resulting iterative map?

We shall describe how the discretization of (3.4) can be related to the
Krylov subspace method in the next section. At present, it might be appro-
priate to recall two scenarios already described in (Chu 1988) that demon-
strate the “tension” referred to by Guckenheimer (2002) between geometric
and more traditional analysis of numerical integration algorithms.

First, suppose that the trapezoidal rule with step size ǫ is applied to (3.4).
We obtain an iterative scheme,

xk+1 =
(
I +

ǫ

2
K−1A

)−1(
I −

ǫ

2
K−1A

)
xk+ǫ

(
I +

ǫ

2
K−1A

)−1
K−1b, (3.7)

which makes an interesting comparison with the analytic solution,

x(t+ ǫ) = e−ǫK
−1Ax(t) +

∫ t+ǫ

t
e(t+ǫ−u)A(K−1b) du. (3.8)

Specifically, the iteration matrix
(
I + ǫ

2K
−1A

)−1(
I − ǫ

2K
−1A

)
, being the

(1, 1)-pair Padé approximation, agrees with the exponential matrix e−ǫK
−1A

up to the ǫ2 term in the series expansion. Likewise, the second term in (3.7)
agree with the integral in (3.8) to the same order of accuracy. Though it
might not be practical for real computation, the iterative scheme (3.7) by
the trapezoidal rule traces the solution curve x(t) closely with small step
size ǫ on one hand and converges to x∗ for any step size ǫ on the other hand.
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Secondly, recall that the well known polynomial acceleration methods
applied to (3.2) usually assume a three-term recursive relationship,

x1 = ǫ1(Gx0 + c) + (1 − ǫ1)x0,

xk+1 = αk+1 [ǫk+1(Gxk + c) + (1 − ǫk+1)xk] + (1 − αk+1)xk−1, (3.9)

with some properly defined real number αk and ǫk (Hageman and Young
1981, Chapters 4-6). Note that the scheme (3.9) amounts to a two-step
sequential process. It is not difficult to rewrite the recursive relationship as,

x1 = x0 + ǫ1f0,

xk+1 = αk+1xk + (1 − αk+1)xk−1 + ǫk+1αk+1fk, (3.10)

with fk := f(xk;K) which is the vector field in (3.4). This identification
offers an interesting interpretation, that is, the polynomial acceleration pro-
cedure (3.9) can be regarded as the application of a sequence of explicit two-
step methods (3.10) to the differential system (3.4) with step size ǫk+1. Be
cautious, however, of the subtle difference that the two-step method (3.10)
has a low order of accuracy (of order one, indeed) if regarded as an ODE
method but has a faster rate of convergence (with appropriately selected
step size ǫk) to the equilibrium x∗ if regarded as an iterative scheme.

3.2. Krylov Subspace Methods

We have seen how a basic iterative system (3.2) motivates the continuous
system (3.4) which now we rewrite as

dx

dt
= K−1r, (3.11)

with r := b − Ax denoting the residual vector. Instead of considering the
iterative scheme,

xk+1 = xk + ǫkK
−1rk, (3.12)

as one Euler step with variable step size ǫk, we interpret (3.12) as a line
search in the K−1rk direction for a given K−1. In this context, we can even
put aside the concern of requiring eigenvalues of K−1A to reside in the right
half of the complex plane. If the search is intended to minimize the size of
the residual vector, say, r⊤k+1rk+1, then the optimal step size is given by

ǫk =
〈AK−1rk, rk〉

〈AK−1rk, AK−1rk〉
, (3.13)

where 〈u,v〉 := u⊤v stands for the inner product. If A is symmetric and
positive definite and rk+1A

−1rk+1 is to be minimized, then the optimal step
size is given by

ǫk =
〈K−1rk, rk〉

〈AK−1rk,K−1rk〉
. (3.14)
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In the special case K = I, the two step size selection strategies (3.13)
and (3.14) correspond precisely to the ORTHOMIN(1) and steepest descent
methods (Greenbaum 1997), respectively.

We can also adopt a two-step sequential process similar to the accelerator
(3.10) except that conventionally we prefer to write the scheme as

xk+1 = xk + ǫk
[
K−1rk + γk(xk − xk−1)

]
, (3.15)

with step size ǫk. Such a scheme, if regarded as an ODE method for the
differential system (3.11), would have low order of accuracy. However, by
defining p0 = K−1r0 and

pk := K−1rk + γk(xk − xk−1) = K−1rk + βkpk−1, (3.16)

with βk := ǫk−1γk, we see an interesting non-stationary iteration embedded
in (3.15), that is,

xk+1 = xk + ǫkpk,

rk+1 = rk − ǫkApk,

which has profound consequences. In particular, under the assumption that
A is symmetric and positive definite and K is symmetric, it can be verified
that the iterative scheme (3.15) with the specially selected scalars,

ǫk =
〈pk, rk〉

〈Apk,pk〉
, (3.17)

βk+1 = −
〈K−1rk+1, Apk〉

〈Apk,pk〉
, k = 0, 1, . . . (3.18)

corresponds precisely to the well known preconditioned conjugate gradient
method with K−1 as the preconditioner (Greenbaum 1997). Among the
many nice properties of the conjugate gradient method, the most significant
one is that the sequence {xk}k converges in exact arithmetic to the equi-
librium point x∗ in at most n iterations. Such a phenomenon of reaching
convergence in only a finite number of steps (by a somewhat laughably inac-
curate method as far as solving (3.11) is concerned) is perhaps unexpected
from a numerical ODE point of view.

There is a variety of different formulations of the Krylov subspace meth-
ods (van der Vorst 2003). We remark that quite a few of them can be derived
in a similar spirit, but space limitation prohibits us from giving the details
here. Referring to the diagram in Figure 1.1, the lesson we have learned
is that from a very basic discrete dynamical system such as (3.2) we can
arrive at a very general continuous dynamical system such as (3.4). Instead
of tracing the continuous dynamics by some very refined numerical ODE
methods, we could use the system as a guidepost to draw up some general
procedures such as (3.10) or (3.15). These discrete procedures roughly solves
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the continuous system, but not with great accuracy. However, upon aptly
tuning the parameters which masquerade as the step sizes in the procedures,
we often can achieve fast convergence to the equilibrium point of the contin-
uous system, eventually accomplishing the goal of the original basic discrete
dynamical system.

4. Control Systems for Nonlinear Equations

The dynamical system (3.11) for linear equations Ax = b, where K is
interpreted as a splitting matrix or a preconditioner of A, is nothing but a
special case of a much more general setting. The following approach sets
forth a framework from which many new algorithms can be derived.

The notion that many important numerical algorithms can be interpreted
via the system and control theory has long been conceived in the minds
of researchers. In the seminal book by Tsypkin (1971) and the follow-up
volume (Tsypkin 1973), for example, it was advocated that the gradient
dynamical systems “cover many iterative formulas of numerical analysis”.
Following the ideas suggested by Bhaya and Kaszkurewicz (2006), we cast
the various numerical techniques for finding zero(s) of a given differentiable
function,

g : R
n → R

n,

under an input-output control framework with different control strategies.
Our point is, again, a comparison of similarities between continuous and
discrete dynamical systems.

4.1. Continuous Control

Consider the basic model,

dx(t)

dt
= u(t), (4.1)

y(t) = −r(t),

where the state variable x(t) is controlled by u(t) while the output variable
y(t) is observed from the residue function,

r(t) = −g(x(t)).

One obvious approach is to employ both the state and the output as a
feedback to estimate the control strategy, that is,

u = φ(x, r), (4.2)

based on some properly selected φ. Different choices of φ can be used to
design the control and, hence, leads to various algorithms. Of course, it is
often that case that the choice of the control strategy φ depends on what cost



Linear Algebra Algorithms as Dynamical Systems 15

function V (x(t),u(t)) is to be optimized. In turn, the cost function often
plays the role as a Liapunov function for the dynamical system, Summarized
in Table 4.1 are just a few possible choices of the control u and the derivatives
of the associated cost functions (Bhaya and Kaszkurewicz 2006). Notably
the first case in the table is the well known continuous Newton method
(Hirsch and Smale 1979, Smale 1977).

Table 4.1. Control strategies and the associated dynamical systems

φ(x, r) dV
dt

dx
dt

g′(x)−1r −‖r‖2
2 −g′(x)−1g(x)

g′(x)⊤r −‖g′(x)⊤r‖2
2 −g′(x)⊤g(x)

g′(x)−1sgn(r) −‖r‖1 −g′(x)−1sgn(g(x))

sgn(g′(x)⊤r) −‖g′(x)⊤r‖1 −sgn(g′(x)⊤g(r))

g′(x)⊤sgn(r) −‖g′(x)⊤sgn(r)‖2
2 −g′(x)⊤sgn(g(x))

It is not difficult to verify that the cost functions are V (t) = 1
2‖r(t)‖2

2

in the first four cases and V (t) = ‖r(t)‖1 in the last case, respectively. Be
aware of the fact that the vector fields for x(t) are only piecewise continuous
in the last three cases. A discretization of the differential system may not
be trivial, which we will draw a distinct line from the discrete control in the
next section. Regardless of the possible non-smoothness in the trajectory
x(t), it is evident that the choice of the control u(t) does make the cost
function V (t) in all cases to decrease in t and, if g′(x(t)) is nonsingular all
the way, the residual function r(t) to converge to zero.

4.2. Discrete Control

An Euler analogue of (4.1) is the discrete input-out control system,

xk+1 = xk + uk, (4.3)

where the control uk follows the feedback law,

uk = ǫkφ(xk, rk), (4.4)

with rk = −g(xk). To estimate the step size ǫk, observe the informal Taylor
series expansion,

rk+1 ≈ rk − ǫkg
′(xk)φ(xk, rk). (4.5)
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The step size that best reduce the Euclidean norm of the vector on the right
side of (4.5) is given by the expression,

ǫk =
〈g′(xk)φ(xk, rk), rk〉

〈g′(xk)φ(xk, rk),g′(xk)φ(xk, rk)〉
. (4.6)

We have already seen a special case of (4.6) in (3.13) when the equation
g(x) = Ax− b is linear and the control φ(x, r) = K−1r is employed, which
is the ORTHOMIN(1) method. Another special case corresponding to the
choice of control φ(x,r) = g′(x)−1r leads to ǫk = 1, which of course is the
classical Newton iteration. Interesting enough, the various choices of φ(x, r)
described in Table 4.1 together with the associated ǫk defined in (4.6) set
forth different zero-finding iterative schemes some of which perhaps are new.
We do not think that all convergence properties of these schemes have been
well understood.

Be cautious that the approximation in (4.5) is not necessarily true in
general. The increment uk from xk to xk+1, for instance, may not be small
enough to warrant the expansion of g(xk+1) at xk. The approximation is
in jeopardy. The step size ǫk defined in (4.6) therefore does not necessarily
decrease the magnitude of the residual function r(x). This is precisely the
dividing line between a discrete dynamical system which often converges
only locally and the continuous dynamical system which converges globally.
The well known convergence behavior of the classical Newton iteration and
the continuous Newton algorithm serves well to exemplify our points —
The classical Newton iteration with ǫk = 1 does not necessarily give rise to
a descent step for the residual function r(x) whereas the continuous Newton
flow always does.

It is certainly possible to adopt models more sophisticated than (4.1) or
(4.3). For example, the two-step scheme,

xk+1 = xk + ǫk [φ(xk, rk) + γk(xk − xk−1)] , (4.7)

is analogous to (3.15) and can be converted in to a nonlinear conjugate
gradient method (Daniel 1967, Savinov 1983, Yabe and Takano 2004). We
shall not elaborate more details about zero-finding algorithms here, but we
hope the above discussion has shed some light on how a realization process,
either continuous or discrete, can be developed either from or for a dynam-
ical system in the way suggested in Figure 1.1. There seems to be a rich
interpretation of the analogy between a discrete scheme and its continuous
counterpart. It would be interesting to see whether further consideration
along this line, such as higher order or multiple step processes, can develop
into some new numerical algorithms.
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5. Lax Dynamical Systems and Isospectrality

One classical problem of fundamental importance in many critical applica-
tions is to find the spectral decomposition,

A0 = U0Λ0U
⊤
0 , (5.1)

of a given real-valued symmetric matrix A0. In the factorization, U0 is
an orthogonal matrix composed of eigenvectors of A0 and Λ is the diagonal
matrix of the corresponding eigenvalues. Currently, one of the most effective
techniques for eigenvalue computation is by an iterative process called the
QR algorithm (Golub and Van Loan 1996). The algorithm performs well
due to the working of several ingenious components together, one of which
is the employment of some suitable shift strategies that greatly improve
the convergence behavior. Viewing the shifts as feedback control variables,
some studies have been made in (Helmke and Wirth 2000, Helmke and
Wirth 2001) to analyze the controllability of the inverse power method. So
far as we know, however, modeling the shift strategies used in a practical QR
algorithm by a dynamical system is still an open question. For simplicity,
we demonstrate only the basic QR algorithm with no shift.

Recall the fact that any matrix A enjoys the QR decomposition:

A = QR,

where Q is orthogonal and R is upper triangular. The basic QR scheme
defines a sequence of matrices {Ak} via the recursion relationship (Francis
1961/1962):

{
Ak = QkRk,
Ak+1 = RkQk.

(5.2)

The iteration warrants the fact that,

Ak+1 = QTkAkQk, (5.3)

showing not only the isospectrality of Ak to A0, but also the mechanism
of orthogonal congruence transformations applied to A0. It can be proved
that the sequence {Ak} converges to a diagonal matrix and, hence, the
decomposition (5.1) is realized through the iterative scheme (5.2). At the
first glance one must be curious at what makes the swapping of Qk and Rk
in the multiplications of (5.2) to work for the algorithm. Indeed, there is
a much deeper theory involved. Referring to the diagram in Figure 1.1, we
now identify a differential system to which the QR algorithm corresponds
not as a discrete approximation but rather as a time-1 sampling.
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5.1. Isospectral Flow

Consider the initial value problem:

dX(t)

dt
:= [X(t), k1(X(t))], X(0) := X0, (5.4)

where k1 : R
n×n → R

n×n is some selected matrix-valued function to be
specified later and

[A,B] := AB −BA (5.5)

denotes the Lie commutator (bracket) operation between matrices A and B.
We shall refer to (5.4) as a general Lax dynamical system with the Lax pair
(X, k1). Associated with (5.4), we define two parameter dynamical systems:

dg1(t)

dt
:= g1(t)k1(X(t)), g1(0) := I, (5.6)

and
dg2(t)

dt
:= k2(X(t))g2(t), g2(0) := I, (5.7)

with the property that

k1(X) + k2(X) = X. (5.8)

The following facts are useful but easy to prove and have been established
in an early paper by Chu and Norris (1988).

Theorem 1. For any t within the interval of existence, the solutions X(t),
g1(t), and g2(t) of the systems (5.4), (5.6), and (5.7), respectively, are related
to each other by the following three properties:

1 (Similarity Property)

X(t) = g1(t)−1X0g1(t) = g2(t)X0g2(t)−1. (5.9)

2 (Decomposition Property)

exp(tX0) = g1(t)g2(t). (5.10)

3 (Reversal Property)

exp(tX(t)) = g2(t)g1(t). (5.11)

The implication of Theorem 1 is quite remarkable. First, it shows that
eigenvalues are invariant. For this reason, X(t) is called an isospectral flow.
Secondly, let the product g1(t)g2(t) in (5.10) be called the abstract g1g2
decomposition of exp(tX0) because at present we do not know the individual
structure, if there is any, of the parameter matrices g1(t) or g2(t). By setting
t = 1 in both (5.10) and (5.11), we see the relationship,

{
exp(X(0)) = g1(1)g2(1),
exp(X(1)) = g2(1)g1(1).

(5.12)
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Since the dynamical system for X(t) is autonomous, it follows that the
phenomenon characterized by (5.12) will occur at every integer time within
the interval of existence for these initial value problems. Corresponding to
the abstract g1g2 decomposition, the above iterative process (5.12) for all
feasible integers will be called the abstract g1g2 algorithm. It is thus seen
that the curious iteration in the QR algorithm is completely generalized
and abstracted via the mere splitting (5.8) of the identity map. Choosing a
different splitting leads to a different algorithm.

In particular, let any given matrix X be decomposed as

X = Xo +X− +X+,

where Xo, X−, and X+ denote the diagonal, the strictly lower triangular,
and the strictly upper triangular parts of X, respectively. Define

k1(X) = Π0(X) := X− −X−⊤
. (5.13)

The resulting Lax dynamical system,

dX(t)

dt
= [X(t),Π0(X(t))], X(0) = X0, (5.14)

is known as the Toda lattice (though initially the lattice is referred to only
the case when X0 is symmetric and tridiagonal). It is important to note that
the matrix k1(X(t)) in the Toda lattice is skew-symmetric and thus g1(X(t))
is orthogonal for all t. Furthermore, k2(X(t)) is upper triangular and thus
so is g2(X(t)). In other words, the abstract g1g2 decomposition of exp(X)
is precisely the QR decomposition of exp(X). It follow that the sequence
{X(k)} by sampling the solution of the Toda flow (5.14) at integer times
gives rise to exactly the same iterates as the QR algorithm (5.2) applied to
the matrix A0 = exp(X0).

The connection between the QR algorithm and the Toda lattice was first
discovered by Symes (1981/82) when studying the asymptotic behavior of
momenta of particles in a non-periodic Toda lattice. The same relationship
was found later to be also closely related to the quotient-difference algorithm
developed much earlier by Rutishauser (1954).

In contrast to the association between a discrete system and a continuous
system described earlier in Chapters 3 and 4 which perhaps can be best
characterized as “mimicry”, the correspondence between the QR algorithm
and the Toda lattice exhibits a new type of involvement, namely, the re-
sult of an iterative scheme is entirely “embedded” in the solution curve of
a continuous dynamical system or, equivalently, the solution curve of a dif-
ferential equation smoothly “interpolates” all points generated by a discrete
dynamical system. Because of this close relationship, the evolution of X(t)
that starts from a symmetric initial value X0 and converges isospectrally to
a limit point which is a diagonal matrix can almost be expected without the
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need of any extra inculcation by what we already know about the dynamics
of the QR algorithm, and vice versa (Deift, Nanda and Tomei 1983).

It is important to point out that, strictly speaking, the QR algorithm
applied to a nonsymmetric matrix A0 with complex eigenvalues does not
converge to any fixed limit point at all in the conventional mathematical
term. The iterates from the QR algorithm only pseudo-converge to a block
upper triangular form with at most 1×1 or 2×2 blocks along the main diag-
onal. Such a structure is a necessity when dealing with complex-conjugate
eigenvalues of a real-valued matrix by real arithmetic. For later reference,
we shall refer to any matrix with this kind of structure as an upper qu-
asitriangular matrix. We stress again that the QR algorithm (and many
other algorithms) produces only this “form”, but not any fixed matrix, in
its limiting behavior.

Likewise, the Toda flow applied to nonsymmetric matrix X0 does not have
any asymptotically stable equilibrium point in general. Rather, the flow
converges to an upper quasitriangular form where each of the 2 × 2 blocks
actually represents an ω-limit cycle. Now that we know the Toda flow inter-
polates the iterates of the QR algorithm, the limit cycle behavior of the Toda
flow offers a nice theoretical explanation of the pseudo-convergence behavior
of the QR algorithm. Without causing ambiguity, we shall refer to hence-
forth such a limiting behavior as “convergence to an upper quasitriangular
matrix”.

5.2. Complete Integrability

The Lax dynamical system (5.4) actually arises in a much broader area
of applications. Consider the one-dimensional Korteweg-de Vries (KdV)
equation,

∂u

∂t
+ 6u

∂u

∂x
+
∂3u

∂x3
= 0, (5.15)

for u = u(x, t). It is a classical result that the KdV equation is completely
integrable in the sense there are infinitely many conserved quantities or
constants of motion. Lax (1968) proved that the KdV equation is precisely
the compatibility condition,

dL

dt
= [B,L], (5.16)

for the pair of differential operators,

Lψ :=
∂2ψ

∂x2
+ uψ, (5.17)

Bψ := −4
∂3ψ

∂x3
− 6u

∂ψ

∂x
− 3

∂u

∂x
ψ. (5.18)
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In other words, by recognizing the fact that
[
∂
∂x , x

]
ψ = ∂(xψ)

∂x − x∂ψ∂x = ψ as
the identity of differential operator,

[
∂

∂x
, x

]
= id,

the equation (5.16) holds if and only if u satisfies (5.15). The eigenvalues
λ ∈ R of the one-dimensional Schrödinger equation,

Lψ = λψ, (5.19)

∂ψ

∂t
= Bψ, (5.20)

for the wave function ψ = ψ(x, t;λ) with u(x, t) as its potential constitutes
precisely the integrals of the KdV equation. The second equation (5.20)
characterizes how the wave function evolves in time. The pair of operators
(L,B) is referred to as a Lax pair.

Under the assumption that λ is invariant over t, note that the two equa-
tions (5.19) and (5.20) are sufficient to imply the compatibility condition
(5.16) when acting on the eigenfunction ψ of the operator L. This is true
regardless how the operators L and B are defined. In terms of the nota-
tion adopted in our preceding section, we may interpret the Lax pair as
(X, k2(X)) where

dX

dt
= [k2(X),X], (5.21)

dψ

dt
= k2(X)ψ, (5.22)

and ψ(t) tells how the eigenvector corresponding to the invariant eigenvalue
λ varies in time.

We have seen that sampling the solution flow X(t) at integer times gives
rise to an iterative scheme, such as the QR algorithm. The question now is
whether an effective discretization can be derived to handle the integration
of the equation (5.21) directly.

It has to be pointed out that a central theme in the game of engaging
dynamical systems such as (5.21) is to maintain isospectrality. Nonethe-
less, Calvo, Iserles and Zanna (1997) proved that most of the conventional
numerical ODE methods, in particular, the multistep and the Runge-Kutta
schemes, simply cannot preserve isospectral flows. One remedy is to perform
numerical integration over one of the parameter dynamical systems (5.6) or
(5.7) and then employ the similarity property (5.9) to reclaim X(t). Solv-
ing the parameter dynamical system still requires the preservation of some
structures, but can be handled more easily. In the case of (5.14), for exam-
ple, the flow g1(X(t)) of orthogonal matrices can be tracked by orthogonal
integrators developed in (Dieci, Russell and Van Vleck 1994). Approaches
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such as this is following the paradigm of discretization from the numerical
analysis point of view. We want to emphasize that there is more beyond this
traditional way of thinking. The Toda lattice itself has more structure that
a completely different perspective of discretization could be, and should be,
taken into account.

Two separate but related approaches that suggest integrable discretization
of the Toda lattice (for symmetric and tridiagonal matrices) are outlined in
Sections 5.3 and 5.4. We shall present the theory in these two sections, but
refrain ourselves from discussing the actual implementation since eigenvalue
computation is a subject well developed. Even so, the facts we are about
to introduce that the solution to the Toda lattice and, hence, the iterates
generated by the QR algorithm can be represented in “closed form” strongly
suggest that an appropriate discretization can make the computation very
effective. In Chapter 6, we will have a chance to exploit these ideas further
and describe in details an integrable discretization for the more complicated
singular value decomposition.

5.3. Orthogonal Polynomials, Moments and Measure Deformation

The first approach makes an interesting connection between the solution of
(5.14) when X0 is tridiagonal and orthogonal polynomials, which sheds light
on the notion of integrable discretization. In particular, we shall represent
the solution to the Toda lattice in terms of moments associated with a
specific measure.

Recall that a set of orthogonal polynomials {pk(x)}k defined by a positive
measure µ(x) over R, that is,

∫
pk(x)pℓ(x) dµ(x) = δk,ℓ, k, ℓ = 0, 1, . . .

always satisfies a three-term recurrence relationship,

xpk(x) = akpk+1(x) + bkpk(x) + ak−1pk−1(x), k = 1, 2, . . . (5.23)

with p−1(x) ≡ 0 and p0(x) ≡ 1. This recurrence can be neatly written in a
semi-infinite matrix form,




b0 a0 0
a0 b1 a1 0
0 a1 b2 a2 0

. . .
. . .

. . .
. . .

. . .




︸ ︷︷ ︸
J




p0(x)
p1(x)
p2(x)

...


 = x




p0(x)
p1(x)
p2(x)

...


 . (5.24)

Indeed, there is a one-to-one correspondence between the measure µ and the
coefficient matrix J defined above (Aptekarev, Branquinho and Marcellán
1997). This is closely related to the classical moment problem. Let the
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moments corresponding to µ be denoted by

sj :=

∫
xj dµ(x), j = 0, 1, . . . . (5.25)

Define further the so called Hankel determinants,

Hk := det




s0 s1 . . . sk−1

s1 s2 sk
...

...
sk−1 sk . . . s2k−2


 . (5.26)

It is known the monic orthogonal polynomials {p̃k(x)}k associated with
{pk(x)}k are given by (Akhiezer 1965, Szegö 1975)

p̃k(x) =
1

Hk
det




s0 s1 . . . sk
s1 s2 sk+1
...

...
sk−1 sk . . . s2k−1

1 x . . . xk



. (5.27)

If we write p̃k(x) as

p̃k(x) = xk + c
(k)
1 xk−1 + . . .+ c

(k)
k−1x+ c

(k)
k ,

then its coefficients are given by

c
(k)
j =

(−1)j

Hk
det




s0 . . . sk−j−1 sk−j+1 . . . sk
s1 sk+1
...

...
...

...
sk−1 . . . s2k−j−2 s2k−j . . . s2k−1


 . (5.28)

Corresponding to (5.23), the recurrence relationship for {p̃k(x)}k becomes

xp̃k(x) = p̃k+1 + bkp̃k(x) + a2
k−1p̃k−1(x), (5.29)

By comparing the corresponding coefficients, we conclude that

a2
k =

HkHk+2

H2
k+1

, (5.30)

bk = c
(k)
1 − c

(k+1)
1 . (5.31)

This is a classical result connecting all three entities of the measure µ(x),
the moments sj(x) and the orthogonal polynomials pk(x) together.

Suppose now that the coefficients in J are time dependant. Then the
corresponding measure µ is also time dependent. Finding the relationship,

J(t) ↔ µ(x; t),



24 Moody T. Chu

allows us to write the coefficients of the orthogonal polynomials {pk(x; t)}k in
terms of the corresponding moments sj(t). In general, this is a fairly difficult
task. Only very few cases are known to have exact solutions among which
one is the J(t) associated with the Toda lattice (Aptekarev et al. 1997).

The relationship is most conspicuous in the semi-infinite Toda lattice. By
identifying (the symmetric and tridiagonal matrix) X(t) with the tridiago-
nal matrix J in (5.24), the entries in the differential system (5.14) can be
expressed as the system,

dak
dt

= ak(bk+1 − bk), (5.32)

dbk
dt

= 2(a2
k − a2

k−1), (5.33)

with a−1 ≡ 0. This differential system characterizes how X(t) or, equiv-
alently, the family of polynomials varies in time. We just need a measure
that can ensure the orthogonality of these polynomials. It turns out that the
corresponding one-parameter deformation of the measure that can introduce
the desirable orthogonality has been shown by Moser (1975) to be

dµ(x; t) := etxdµ(x; 0). (5.34)

Equipped with this measure, we can easily calculate the solution to the
Toda lattice. That is, the entries ak(t) and bk(t) of X(t) can be calculated
via (5.30) and (5.31), once the moments given by the integrals (5.25) are
computed. In fact, note that with this measure (5.34) we even enjoy the
recursion relationship,

dsℓ
dt

= sℓ+1, ℓ = 0, 1, . . . . (5.35)

Since these moments are computable in analytic form, we may say that the
solution to the Toda lattice (of symmetric and tridiagonal matrices) and
hence the iterates by the QR algorithm are now characterized in closed
form. In this sense, we have obtained a discretization while maintaining the
complete integrability.

It is informative to depict the relationship just described for the Toda
lattice as solid lines in Figure 5.3. We stress that the commuting diagram
composed of the top four boxes holds in general. That is, the coefficients
of the orthogonal polynomials corresponding to a given measure can be
expressed in terms of Hankel determinants of the corresponding moments.
For the Toda lattice where the coefficients {ak}k and {bk}k are governed
by the differential system (5.32) and (5.33), respectively, the commuting
diagram comprised of the left five boxes indicates how the inverse problem is
solved. An efficient calculation of the Hankel determinants is all we need for
an effective eigenvalue computation. This modus operandi is very different
from the orthogonal integrator approach mentioned earlier.
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orthogonal polynomialmeasure

moments

three-term recurrence

three-term recurrence

mesaure deformation
mesaure deformation

time dependent coeff.
time dependent coeff.

SVD Alg.
QR Alg.

µ(x) {p̃k(x)}k

sj =
∫

xjdµ(x)

Hankel determinants

Toda
Lotka-Volterra

xp̃k = p̃k+1 + bkp̃k + a2
k−1p̃k−1

xp̃k = p̃k+1 + a2
k−1p̃k−1

(5.32) and (5.33)
(6.3)

dµ(x; t) = etxdµ(x)
dµ(x; t) = etx2

dµ(x)

Figure 5.3. Integrable discretization of Toda lattice (solid line) and Lotka-Volterra
equation (dashed line) via Hankel determinants.

We mention in passing that a similar relationship also holds for the sin-
gular value decomposition. Specifically, there is a dynamical system whose
solution is related to the singular value decomposition (for bidiagonal ma-
trices) in the same way as the Toda lattice to the QR decomposition (for
symmetric and tridiagonal matrices). This dynamical system, known as the
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Lotka-Volterra equation, will be specified in Chapter 6. Analogous to the
Toda lattice, the solution to the Lotka-Volterra equation can be expressed
in terms of moments and Hankel determinants associated with a special
measure,

dµ(x; t) = etx
2

dµ(x). (5.36)

For completion and comparison, such a relationship depicted as dotted lines
is also included in Figure 5.3, but we shall omit the details here. Readers
are referred to the paper by Nakamura (2004) for an overview of this sub-
ject. The book (Nakamura 2006) contains a lot more details and interesting
historic notes, but is written (for now) in Japanese.

In most linear algebra applications, we are perhaps more interested in
a finite dimensional matrix. This can be done by truncating the infinite
dimensional coefficient matrix J into an n × n matrix L. Then (5.24) is
reduced to the equation,



b0 a0 0
a0 b1 a1 0
0 a1 b2 a2 0

. . .
. . .

. . .

an−2

0 an−2 bn−1




︸ ︷︷ ︸
L




p0(x)
p1(x)
p2(x)

...

pn−1(x)




+




0
0
0
...

an−1pn(x)




= x




p0(x)
p1(x)
p2(x)

...

pn−1(x)




.

Clearly, λ is a root of the polynomial pn(x) if and only if λ is an eigenvalue
of the finite-dimensional tridiagonal matrix L. Other than this requirement
of special values for λ, this finite-dimensional eigenvalue problem remains
to be a segment of the semi-infinite system (5.24). As far as the evolution
of the entries of L is concerned, it is the same as those of J so long as
λ is time invariant. This isospectrality is precisely what is being entailed
in the one-dimensional Schrödinger equation (5.19). Under the condition
of isospectrality throughout the evolution, the theory developed above for
the semi-infinite Toda lattice remains applicable to the finite-dimensional
eigenvalue problem. In particular, the solution to the finite-dimensional
Toda lattice can still be represented in terms of moments.

5.4. Tau Functions and Determinantal Solution

The second approach utilizes the notion of τ functions originally introduced
by the “Kyoto school” as a central element in the description of the soliton
theory for the Kadomtsev-Petviashvili or Hirota-Miwa hierarchies (Date,
Kashiwara, Jimbo and Miwa 1983, Hirota, Tsujimoto and Imai 1993, Pöppe
1989). We limit our attention in this section to the basic idea applied to the
Toda lattice only.
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With the change of variable,

ck(t) := a2
k

(
t

2

)
, (5.37)

the off-diagonal entries in the Toda lattice (5.32) can be expressed as a
second-order but self-contained equation,

d2 ln ck
dt2

= ck+1 − 2ck + ck−1. (5.38)

If we impose another sequence of new variables {τk(t)}k implicitly via the
relationship,

ck =
τk+1τk−1

τ2
k

, (5.39)

then naturally we have

ln ck = ln τk+1 − 2 ln τk + ln τk−1. (5.40)

Upon comparison of (5.38) and (5.40), a compatibility condition is that

ck =
d2 ln τk
dt2

, (5.41)

or, equivalently, that {τk}k must satisfy the Hirota bilinear form,

τk
d2τk
dt2

−

(
dτk
dt

)2

= τk−1τk+1, (5.42)

with τ0 ≡ 1. The bilinear form (5.42) is sufficient for generating a sequence
{τk(t)}k of solution recursively. For example, starting with an arbitrary
initial value τ1(t) = φ(t) that is infinitely differentiable, we obtain

τ2(t) = φ
d2φ

dt2
−

(
dφ

dt

)2

,

τ3(t) = −

(
d2φ

dt2

)3

+ φ

(
d2φ

dt2

)
d4φ

dt4
−

(
dφ

dt

)2 d4φ

dt4

+2

(
dφ

dt

)(
d2φ

dt2

)
d3φ

dt3
− φ

(
d3φ

dt3

)2

,

and so on. Obviously, the expression for τk(t) becomes more and more
involved when k gets higher. The beauty of the τ functions is that there is
a much better representation for τk(t) in general.
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From a given φ(t), define the Hankel determinant Ĥk(t) by

Ĥk(t) := det




φ φ(1) . . . φ(k−1)

φ(1) φ(2) φ(k)

...
...

φ(k−1) φ(k) . . . φ(2k−2)


 , (5.43)

where for simplicity we adopt the abbreviation,

φ(ℓ) =
dℓφ

dtℓ
, ℓ = 1, 2, . . . .

Let Ĥk

[
i
j

]
denote the determinant of the submatrix by deleting the ith

row and the jth column from the matrix defining Ĥk. Observe that

dĤk

dt
= Ĥk+1

[
k + 1
k

]
, (5.44)

d2Ĥk

dt2
= Ĥk+1

[
k
k

]
. (5.45)

On the other hand, recall the Sylvester determinant identity (Horn and
Johnson 1990),

Ĥk+1Ĥk−1 = det




Ĥk+1

[
k + 1
k + 1

]
Ĥk+1

[
k + 1
k

]

Ĥk+1

[
k

k + 1

]
Ĥk+1

[
k
k

]


 . (5.46)

All together, we see that Ĥk(t) satisfies precisely the differential equation
(5.42). As a consequence, we have obtained a closed form solution for ck(t)
via (5.39) where τk(t) is given by

τk(t) = det




φ φ(1) . . . φ(k−1)

φ(1) φ(2) φ(k)

...
...

φ(k−1) φ(k) . . . φ(2k−2)


 . (5.47)

The existence of a determinantal solution to the Toda lattice provides
insightful information for the discretization of integrable systems (Iwasaki
and Nakamura 2006). With appropriate discretization, for example, it can
be shown that the above formula leads to the Rutishauser qd algorithm
(Nakamura 2004, Rutishauser 1954). Instead of detailing here how this can
be done for the eigenvalue computation which is a well studied subject,
we shall demonstrate a similar application to the much more sophisticated
singular value decomposition in the next section.
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6. Lotka-Volterra Equation and Singular Values

Given a rectangular matrix A0 ∈ R
m×n with m ≥ n, the singular value

decomposition (SVD) of A0 is a factorization of the form,

A0 = U0Σ0V
⊤
0 , (6.1)

where U0 ∈ R
m×m and V0 ∈ R

n×n are unitary matrices and Σ0 ∈ R
m×n is a

diagonal matrix with nonnegative diagonal entries. The notion of SVD has
been a powerful tool for matrix analysis and has been a centerpiece in many
areas of applications (Golub and Van Loan 1996, Horn and Johnson 1990).

The use of the SVD or ideas associated with it have a rich history. In the
interesting treatise (Stewart 1993), the early history of the SVD has been
traced back to Beltrami in 1873 and Jordan in 1874. Before the high speed
digital computers became available, the notion of the SVD could only be
approximated (Chu and Funderlic 2002, Horst 1965). Today, there are a
number of highly efficient ways to compute the SVD (Demmel, Gu, Eisen-
stat, Slapničar, Veselić and Drmač 1999). Some are perhaps more improved
and possibly more accurate than others (Demmel and Kahan 1990). In this
section, we consider only the basic and conventional approach proposed by
Golub and Kahan (1965).

A standard practice in the SVD computation consists of two phases. First,
two orthogonal matrices P1 and Q1 are found such that B0 = P⊤

1 A0Q1 is
in bidiagonal form. This step of reduction can be done directly. Then an
iterative procedure is employed to compute the SVD of B0. This main step
of iteration is mathematically equivalent to the QR algorithm applied to the
tridiagonal matrix B⊤

0 B0, except that the product B⊤
0 B0 is never formed

explicitly. Needless to say, extra tactics such as implicit-shift could be added
to the iterative process to increase the efficiency in computation.

6.1. SVD Flow

In view of how the Toda lattice is related to the QR algorithm, Chu (1986b)
proposed a peculiar continuous dynamical system of the form,

dB

dt
= BΠ0(B⊤B) − Π0(BB⊤)B, B(0) = B0, (6.2)

where Π0 is the operator defined in (5.13), and proved that the sequence
{B(ℓ)}ℓ produced by B(t) corresponds to the iterates produced by the
Golub-Kahan SVD algorithm. One special feature of (6.2) is that B(t)
stays bidiagonal for all t. What else can we make use of this SVD flow?

Without loss of generality, we shall assume henceforth that B0 is an n×n
matrix. By denoting

B(t) := diag

{
b2(t) . . . b2n−2(t)

b1(t) b3(t) . . . b2n−1(t)

}
,
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and defining

u2k−1(t) := b22k−1

(
t

2

)
,

u2k(t) := b22k

(
t

2

)
,

the differential system (6.2) can be condensed into the expression,

duk
dt

= uk(uk+1 − uk−1), k = 1, 2, . . . , 2n − 1, (6.3)

with u0(t) ≡ 0 and u2n(t) ≡ 0, which is known as the continuous-time finite
Lotka-Volterra equation.

The dynamical system (6.3) is Hamiltonian, that is, it can be written in
the form of Hamilton’s equations (Deift, Demmel, Li and Tomei 1991). The
system is also integrable and enjoys a determinantal solution which can be
derived from the theory of τ functions as follows.

Define a change of variable by

uk =
τk+2τk−1

τk+1τk
. (6.4)

Clearly, we have

d ln uk
dt

=
d

dt
ln
τk+2

τk+1
−
d

dt
ln

τk
τk−1

. (6.5)

A comparison between (6.3) and (6.5) suggests that a compatibility condi-
tion could be

τk+2τk−1

τk+1τk
=

d

dt
ln
τk+1

τk
, (6.6)

which is equivalent to

dτk
dt
τk+1 − τk

dτk+1

dt
+ τk−1τk+2 = 0. (6.7)

The differential equation (6.7) can be used to generate τk(t) recursively.
Assuming starting values τ−1 ≡ 0, τ0 ≡ 1, τ1(t) = 1 and τ2(t) = ψ(t), we
obtain from (6.7),

τ3 =
dψ

dt
,

τ4 = det

[
ψ ψ(1)

ψ(1) ψ(2)

]
,

and in general it can be proved that (Tsujimoto 1995),

τ2k−1 = Hk−1,1, (6.8)

τ2k = Hk,0, (6.9)
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where

Hk,j(t) := det




ψ(j) ψ(j+1) . . . ψ(j+k−1)

ψ(j+1) ψ(j+2) . . . ψ(j+k)

...
...

...

ψ(j+k−1) ψ(j+k) ψ(j+2k−2)


 , j = 0 or 1, (6.10)

is the determinant of a k × k Hankel matrix and

H−1,j(t) ≡ 0, H0,j(t) ≡ 1, Hn+1,j(t) ≡ 0. (6.11)

The general solution to the Lotka-Volterra equation, therefore, is given by
the formula (Tsujimoto, Nakamura and Iwasaki 2001),

u2k−1(t) =
Hk,1(t)Hk−1,0(t)

Hk,0(t)Hk−1,1(t)
, (6.12)

u2k(t) =
Hk+1,0(t)Hk−1,1(t)

Hk,1(t)Hk,0(t)
, k = 1, 2, . . . , n, (6.13)

By assuming that all the derivatives of ψ are obtainable from elementary
calculus, it is true in principle that all these Hankel determinants can be
calculated algebraically. Since all quantities involved in (6.12) and (6.13)
are now in the analytic form, we may say that the SVD flow and, hence, the
iterates from the SVD algorithm are representable in closed form.

This determinantal solution for the continuous Lotka-Volterra equation
can be utilized to effectuate numerical computation. Indeed, it motivates
the notion of integrable discretization of (6.3) which we consider in the next
section.

6.2. Integrable Discretization

A key step in the integrable discretization of the Lotka-Volterra equation
(6.3) is a particular Euler-type scheme of the form (Hirota et al. 1993),

u
[ℓ+1]
k = u

[ℓ]
k + δ

(
u

[ℓ]
k u

[ℓ]
k+1 − u

[ℓ+1]
k u

[ℓ+1]
k−1

)
, (6.14)

where u
[ℓ]
k represents the approximation solution of uk(t) at t = ℓδ with

boundary conditions u
[ℓ]
0 ≡ 0 and u

[ℓ]
2n ≡ 0 for all ℓ. Be aware of the notation

that the superscript [ℓ+1] in brackets indicates the advance in time by a step
of size δ whereas the subscript k+1 indicates the (k+ 1)-th bidiagonal entry
of the matrix B(t).

In hindsight, the scheme (6.14) appears to be simply a mixture of both ex-
plicit and implicit Euler methods. The matter of fact is that it takes consid-
erable insight to get the right combination so that, similar to the continuous
case, the discrete Lotka-Volterra equation (6.14) still enjoys a determinantal
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solution. Specifically, we claim without proof that the solution to the finite
difference equation (6.14) is given by (Iwasaki and Nakamura 2002),

u
[ℓ]
2k−1 =

H̃
[ℓ]
k,1H̃

[ℓ+1]
k−1,0

H̃
[ℓ]
k,0H̃

[ℓ+1]
k−1,1

, (6.15)

u
[ℓ]
2k =

H̃
[ℓ]
k+1,0H̃

[ℓ+1]
k−1,1

H̃
[ℓ]
k,1H̃

[ℓ+1]
k,0

, k = 1, 2, . . . , n, (6.16)

where H̃
[ℓ]
k,j is the Hankel determinant defined by

H̃
[ℓ]
k,j = det




ψ̃
[ℓ]
j ψ̃

[ℓ+1]
j . . . ψ̃

[ℓ+k−1]
j

ψ̃
[ℓ+1]
j ψ̃

[ℓ+2]
j . . . ψ̃

[ℓ+k]
j

...
...

...

ψ̃
[ℓ+k−1]
j ψ̃

[ℓ+k]
j ψ̃

[ℓ+2k−2]
j



, j = 0 or 1, (6.17)

with boundary conditions,

H̃
[ℓ]
−1,j ≡ 0, H̃

[ℓ]
0,j ≡ 1, H̃

[ℓ]
n+1,j ≡ 0, (6.18)

in which {ψ̃
[ℓ]
0 }ℓ is a given initial sequence and ψ̃

[ℓ]
1 is the quotient difference

defined by

ψ̃
[ℓ]
1 :=

ψ̃
[ℓ+1]
0 − ψ̃

[ℓ]
0

δ
. (6.19)

The knowledge of a solution u
[ℓ]
k in the form of (6.15) and (6.16) enables to

gain considerable insight onto its asymptotical behavior as ℓ goes to infinity.
We shall skip that part of discussion in this paper, but rather pay more
attention to a possible numerical implementation for the remaining of this
section.

We modify (6.14) to the more general variable-step scheme,

u
[ℓ+1]
k

(
1 + δ[ℓ+1]u

[ℓ+1]
k−1

)
= u

[ℓ]
k

(
1 + δ[ℓ]u

[ℓ]
k+1

)
, (6.20)

refer to hereafter as the vdLV scheme. In a series of extensive studies
(Tsujimoto et al. 2001, Iwasaki and Nakamura 2002, Iwasaki and Nakamura
2004, Iwasaki and Nakamura 2006), the vdLV scheme has been implemented
as an alternative means for the SVD computation. Numerical experiments
show its strong competitiveness with existing SVD software packages. We
briefly outline the ideas below, which also sets another example of Figure 1.1
on how a differential system might be carefully discretized and implemented
to become an effective algorithm.
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It will be most convenient if we present the interrelationships in matrix
form, even though the actual computation should involve only a few scalars.
For each ℓ, define two sequences of scalars,

q
[ℓ]
i :=

1

δ[ℓ]

(
1 + δ[ℓ]u

[ℓ]
2i−2

)(
1 + δ[ℓ]u

[ℓ]
2i−1

)
, i = 1, . . . , n, (6.21)

e
[ℓ]
j := δ[ℓ]u

[ℓ]
2j−1u

[ℓ]
2j , j = 1, . . . n− 1, (6.22)

and assemble them into two n× n bidiagonal matrices,

L[ℓ] :=




q
[ℓ]
1 0 0

1 q
[ℓ]
2

. . .

. . .

1 q
[ℓ]
n




, (6.23)

R[ℓ] :=




1 e
[ℓ]
1

0 1
. . .

. . .

e
[ℓ]
n−1
1



. (6.24)

From the relationship (6.20), it is readily verifiable that the matrix equation,

L[ℓ+1]R[ℓ+1] = R[ℓ]L[ℓ] −

(
1

δ[ℓ]
−

1

δ[ℓ+1]

)
In, (6.25)

holds for all ℓ. It should not be a surprise to discover that the above formula-
tion corresponds to the so called progressive qd algorithm already described
in (Rutishauser 1954, Rutishauser 1960).

As a matter of fact, the equation (6.25) is even more closely related to the
so called differential quotient-difference algorithm with shift (dqds) proposed
by Fernando and Parlett (1994) and implemented in (Parlett and Marques
2000). More specifically, if we abbreviate the left-hand side of the vdLV
scheme in (6.20) as

w
[ℓ]
k := u

[ℓ]
k

(
1 + δ[ℓ]u

[ℓ]
k−1

)
, (6.26)

and introduce the tridiagonal matrix Y [ℓ] defined by

Y [ℓ] := L[ℓ]R[ℓ] −
1

δ[ℓ]
In, (6.27)
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then we find from (6.20) that Y [ℓ] can be expressed in the form,

Y [ℓ] =




w
[ℓ]
1 w

[ℓ]
1 w

[ℓ]
2 0 0

1 w
[ℓ]
2 + w

[ℓ]
3 w

[ℓ]
3 w

[ℓ]
4

. . .

. . .

. . .

0 w
[ℓ]
2n−3w

[ℓ]
2n−2

0 1 w
[ℓ]
2n−2 + w

[ℓ]
2n−1




, (6.28)

and that the relationship,

Y [ℓ+1] = R[ℓ]Y [ℓ]R[ℓ]−1
, (6.29)

holds for all ℓ. Clearly, all matrices in the sequence {Y [ℓ]}ℓ are isospectral.
To connect back to our original goal of computing the singular values, ob-

serve that w
[ℓ]
k > 0 so long as u

[0]
k > 0 and δ[ℓ] > 0, which can easily be

achieved. We thus can symmetrize the tridiagonal matrix Y [ℓ] by a diagonal
similarity transformation,

Y
[ℓ]
S := D[ℓ]−1

Y [ℓ]D[ℓ], (6.30)

with

D[ℓ] := diag

{
n−1∏

i=1

√
w

[ℓ]
2i−1w

[ℓ]
2i ,

n−1∏

i=2

√
w

[ℓ]
2i−1w

[ℓ]
2i , . . . ,

√
w

[ℓ]
2n−3w

[ℓ]
2n−2, 1

}
.

Again, it is easy to check that the positivity of w
[ℓ]
k guarantees that Y

[ℓ]
S

enjoys a Cholesky decomposition

Y
[ℓ]
S = B[ℓ]⊤B[ℓ], (6.31)

with

B[ℓ] :=




√
w

[ℓ]
1

√
w

[ℓ]
2

0

√
w

[ℓ]
3

√
w

[ℓ]
4

. . .

. . .

√
w

[ℓ]
2n−3

√
w

[ℓ]
2n−2√

w
[ℓ]
2n−1




.(6.32)
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The above recurrence relationships, all derived from an integrable discretiza-
tion (6.20) of the Lotka-Volterra equation (6.3), have useful application to
the SVD computation. We summarize the discussion thus far in the follow-
ing theorem.

Theorem 2. Given the boundary conditions u
[ℓ]
0 ≡ 0 and u

[ℓ]
2n ≡ 0, let the

sequence {u
[ℓ]
k }ℓ be generated by the scheme (6.20). Then the singular values

of the bidiagonal matrices {B[ℓ]}ℓ which is defined in (6.32) with its entries

{w
[ℓ]
k }ℓ given by (6.26) are invariant in ℓ.

For our application, we are interested in computing the singular values of
a given matrix B0. Thus, we need to make sure that the initial values for
the iterative scheme (6.20) should be

u
[0]
k :=

bk(0)2

1 + δ[0]u
[0]
k−1

, k = 1, 2, . . . , 2n− 1. (6.33)

The calculation of u
[ℓ+1]
k proceeds in the fashion depicted in Figure 6.4 where

the quantity,

v
[ℓ]
k := u

[ℓ]
k

(
1 + δ[ℓ]u

[ℓ]
k+1

)
, (6.34)

is an intermediate value listed for convenience, but has a better usage later.
The bold-faced arrows point to the input and output in one step of the
calculation. The shaded region indicates the array of initial values and
progresses downward as ℓ increases. In the meantime, it is important to
note that the boundary conditions from the two vertical boxes on the sides
of Figure 6.4 help to make the computation explicit in ℓ.

Convergence theory and stability analysis of the vdLV scheme are well
established in the series of papers referred to earlier and, in particular, the
book (Nakamura 2006). It has been proved, for example, that with the initial

values (6.33) and any step sizes δ[ℓ] > 0, the sequence {u
[ℓ]
1 , u

[ℓ]
3 , . . . , u

[ℓ]
2n−1}ℓ

converges to the squares of singular values of B0 in descending order while

u
[ℓ]
2k converges to 0 for all k as ℓ goes to infinity. The vdLV scheme (6.20)

enjoys additional nice features such as no subtraction is involved and all
quantities are bounded by ‖B0‖, implying its numerical stability.

What we have shown thus far is that the Lotka-Volterra equation gives
rise to, on one hand, the iterates of the standard SVD algorithm when its
solution is sampled at integer times and, on the other hand, an entirely
different iterative scheme when the differential system is discretized under
some proper conditions. The relationship (6.25) indicates that the vdLU
scheme is algebraically equivalent to the dqds with the shift,

s :=
1

δ[ℓ]
−

1

δ[ℓ+1]
. (6.35)
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Figure 6.4. Computing u
[ℓ+1]
k .

However, up to this point, we have not given any clear strategy on how
the step size δ[ℓ] should be selected in the vdLV scheme. In the case of
constant step size δ[ℓ] ≡ δ, Iwasaki and Nakamura (2002) have shown that
the convergence is linear with asymptotic convergence factor given by,

α = max
k=1,...n

σk+1 + 1
δ

σk + 1
δ

,

where σ1 ≥ σ2 ≥ σn−1 are the singular values of B0. It implies that larger
step sizes might reduce the value of α to a certain extent. Linear convergence
with the built-in shift (6.35) certainly cannot make the vdLV algorithm
efficient enough.

Strictly speaking, the shift (6.35) has never entered into the matrix B[ℓ]

effectually. In the case of constant step size, s = 0. In the case of variable
step size, the effect of s is depreciated as δℓ] is increased. The true shift that
is really needed should be of the form,

B
[ℓ]⊤

B
[ℓ]

= B[ℓ]⊤B[ℓ] − θ[ℓ]2, (6.36)
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while we keep the bidiagonal form,

B
[ℓ]

:=




√
w

[ℓ]
1

√
w

[ℓ]
2

0

√
w

[ℓ]
3

√
w

[ℓ]
4

. . .

. . .

√
w

[ℓ]
2n−3

√
w

[ℓ]
2n−2√

w
[ℓ]
2n−1




.(6.37)

Upon comparing the entries, we find the nonlinear relationship that

w
[ℓ]
2k + w

[ℓ]
2k+1 = w

[ℓ]
2k + w

[ℓ]
2k+1 − θ[ℓ]2, (6.38)

w
[ℓ]
2k−1w

[ℓ]
2k = w

[ℓ]
2k−1w

[ℓ]
2k, k = 0, . . . , n− 1, (6.39)

with w
[ℓ]
0 = w

[ℓ])
0 ≡ 0. Though nonlinear, this relationship is a bijection

correspondence between
(
w

[ℓ]
1 , . . . , w

[ℓ]
2n−1

)
and

(
w

[ℓ]
1 , . . . , w

[ℓ]
2n−1

)
. The non-

linear map in (6.38) and (6.39) can easily be carried out by recurrence for
computation, starting at the vertical box on the left with zero boundary
conditions and progressing to the right as indicated in Figure 6.5.
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0 w
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Figure 6.5. Updating w
[ℓ]
k to w

[ℓ]
k with shift (dashed line (6.38); solid line (6.39)).

Recall that

v
[ℓ]
k = w

[ℓ+1]
k ,

by definitions in (6.26) and (6.34) and that

u
[ℓ+1]
k =

w
[ℓ+1]
k

1 + δ[ℓ+1]u
[ℓ+1]
k−1

,



38 Moody T. Chu

by the vdLV scheme (6.20). The modified scheme with shift becomes

u
[ℓ+1]
k =

w
[ℓ+1]
k

1 + δ[ℓ+1]u
[ℓ+1]
k−1

, (6.40)

The diagram in Figure 6.4 is therefore modified to become Figure 6.6. Be
aware of the possible “psychological illusion” perceived in Figure 6.6. It

does appear that the emphasis is on the computation of u
[ℓ+1]
k . However, the

diagram can also be interpreted as a path to advance w
[ℓ]
k and w

[ℓ]
k to w

[ℓ+1]
k

and w
[ℓ+1]
k , respectively, whereas u

[ℓ]
k should be regarded as an intermediate

value for convenience.
To stay within the theme of this article, we shall stop short of giving more

detailed shift strategies and convergence analysis which are available in the
literature. Be sufficient to say that numerical experiments seem to suggest
that the resulting algorithm is competitive in both speed and accuracy with
existing SVD packages (Nakamura 2006).

We wish to have accomplished two goals in the verbose discussion of the
past two sections: First, powerful discrete dynamical systems such as the
QR algorithm and the SV D algorithm, do have their continuous counter-
parts, namely, the Toda lattice and the Lotka-Volterra equation, which often
arise from seemingly rather distinct fields of disciplines. We think that it is
truly remarkable that diverse skills through soliton theory, integrable sys-
tems, continuous fractions, τ functions, orthogonal polynomials, Sylvester
identity, moments, and Hankel determinants can all play together, intertwine
with each other, and eventually lead to the fact abstractly, but literally, that
the eigenvalues and the singular values of a given matrix can be expressed
as the limit of some closed form formulas! We wish to have offered complete
particulars on the determinantal solutions to the Toda lattice and the Lotka-
Volterra equation which we know are tied to the eigenvalues and singular
values of the underlying matrix. Secondly, via a rather thorough description
of the vdLV scheme, we wish to have demonstrated our point in Figure 1.1
that a careful discretization of a continuous dynamical system may indeed
lead to an effective numerical algorithm. By a “careful discretization”, it
is important to note that the discrete scheme (6.20) maintains it complete
integrability which in the limit is the same integrability as that of the orig-
inal Lotka-Volterra equation. Structure preserving discretization seems to
be the key of success here, though a great many details such as shift strate-
gies and implementation tactics also demand considerable attention. It is
interesting to note the route we have taken, from the classical Golub-Kahan
algorithm to the Lotka-Volterra equation, to the vdLV scheme, to the dqds
algorithm, and then to a brand new method, for computing the singular
value decomposition.
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Figure 6.6. Computing u
[ℓ+1]
k with shift.

7. Dynamical Systems as Group Actions

Linear transformation is one of the simplest, yet most profound, ways to
describe the relationship between two vector spaces. Over linear subspaces
with countable basis, linear transformations can be conveniently represented
by matrices. It is often desirable to represent a linear transformation as
characteristic as possible, leading to the notion of identifying a matrix by
its canonical form. The canonical form, most frequently expressed in terms
of matrix decomposition, often can facilitate discussions that, otherwise,
would be complicated and involved. For years researchers have taken great
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effort to describe, analyze, and modify algorithms to reduce a matrix to its
canonical form.

Many types of canonical forms exist in the literature. Those feasible for
numerical computation include the spectral decomposition for symmetric
matrices, the singular value decomposition for rectangular matrices, and
the Schur decomposition for general square matrices (Golub and Van Loan
1996, Horn and Johnson 1990). The Jordan canonical form, perhaps the
most fundamental and classical in matrix theory, is generally considered as a
“taboo” for numerical computation because it is hard to distinguish between
eigenvalues that are repeated exactly and eigenvalues that are clustered
closely together (Beelen and Van Dooren 1990, Golub and Wilkinson 1976).
It is worthy to mention the notion of pejorative manifold proposed in an
unpublished paper by Kahan (1972). It is argued that multiple roots are well
behaved under perturbation when the multiplicity structure is preserved.
Loosely speaking, it suggests that problems which are sensitive to arbitrary
perturbation might be less sensitive to structured perturbation. Exploiting
this idea, Zeng and Li (2007) have recently proposed an interesting approach
to tackle the Jordan decomposition. Thus far, most matrix decomposition
are processed through iterative procedures of which the success is evidenced
by the many available discrete methods. Our goal in this section is to recast
some of those iterative schemes as dynamical systems via group actions.

We need to adjust our mind-set before continuing — The meaning of a
canonical form should be understood with a much broader scope than just
matrix factorizations. We read upon a question of similar spirit in the book
by Arnold (1988),

“What is the simplest form to which a family of matrices depending smoothly on
the parameters can be reduced by a change of coordinates depending smoothly on
the parameters?”

Obviously, essential in any answer to this question are a qualification of the
simplest form and a mechanism by which the coordinates are continuously
changed. Before being specific about the qualification and the mechanism,
we may categorically characterize the proposed procedure, whether it is
discrete or continuous in nature, as a realization process. The canonical
form or the simplest form that the process intends to realize ultimately
should be interpreted broadly as any “mode” from which we gain the agility
to think and draw conclusions. Some useful modes as well as the mechanisms
to realize these modes will be exemplified in the subsequent discussion.

The precise meaning will become clear later, bur for now we hastily
point out that, as a whole, the procedures of finding the simplest form
in most applications appear to follow the orbit of a certain matrix groups
action on the underlying matrix. This connection should not come as
a surprise because the representation of a group by it homomorphisms
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into bijective linear maps over a certain vector space is a well known fact
(Curtis 1984, Shaw 1982, Smirnov 1970). For groups whose elements de-
pend on continuously varying parameters, so do the corresponding matrix
representations. The obvious advantage of this tie is that we have the group
structure on one side and the matrix structure on the other side. A matrix
group, that is, a subset of nonsingular matrices which are closed under ma-
trix multiplication and inversion, does from a Lie group (Howe 1983). The
well developed Lie theory therefore lends us greater advantages over merely
iterations without this structure.

The question to ask then becomes what canonical form a matrix or a
family of matrices can be linked to by the orbit of a group action. The choice
of the group, the definition of the action, and the targets intended to reach
will effectuate the various paths of transitions and, thus, the algorithms. An
earlier work along this line of thinking can be found in (Della-Dora 1975).
We will try to expound the various aspects of the recent development and
applications in this direction. Some newly developed dynamical systems
seem able to offer promising channels to tackle some linear algebra problems
that, otherwise, are difficult to solve by iterative means.

7.1. Group Actions and Canonical Forms

In a dynamical system, the state variable gets evolved in accordance to a
certain rule. How the rule of transition is defined determines the dynamical
behavior. The emphasis of this section is on a specific rule characterized by
group actions.

Given a group G and a set V, a group action of G on V refers a map
µ : G× V −→ V satisfying the associative law,

µ(gh,x) = µ(g, µ(h,x)), g, h ∈ G, (7.1)

and the identity property,

µ(e,x) = x, (7.2)

where e is the identity element in G, for all x ∈ V. Given a fixed x ∈ V, the
orbit of x associated to an action µ of G is defined to be the set,

OrbG(x) := {µ(g,x)|g ∈ G}. (7.3)

For our applications, we are interested in using matrix groups and various
actions to help transform a given matrix into an appropriate canonical form.
The transformation is to take place along the associated orbit of the given
matrix. To get this idea going, we need four components working together
— a group that characterizes the coordinates to be used, an action that
constraints the transformations to be allowed, a canonical form that sets
the goal to be reached, and a rule that delineates the path to be followed.
Each of these four components affects the final result.
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For demonstration, Table 7.2 is a short list of matrix groups complied
from the books (Baker 2002, Chu and Golub 2005, Curtis 1984). We remark
that the automorphism group GM associated with a non-degenerate bilinear
form 〈x,y〉M = x⊤My contains as special cases the orthogonal group and
the symplectic group (Mackey, Mackey and Tisseur 2003).

Table 7.3 typifies some group actions that have been commonly used in
numerical linear algorithm algorithms. Traditionally, numerical analysts
prefer to use the orthogonal group for actions because of its cost efficiency
and numerical stability. Such a restriction, however, could have limited the
canonical forms that we otherwise would be able to reach by different groups.

Table 7.4 makes evident of the wide scope of canonical forms that the
group actions can or wish to accomplish, ranging from a typical structure
with a specified pattern of zeros, such as a diagonal, tridiagonal, or triangular
matrix, to a matrix with a specified construct, such as Toeplitz, Hamiltonian,
stochastic, or other linear varieties, to a matrix with a specified algebraic
constraint, such as low rank or nonnegativity.

With the group, action and orbit in place, finally we need a properly
defined dynamical system, either continuous or discrete, so that its integral
curves or iterates stay on the specified orbit and connect one state to the next
state. The Toda lattice and the Lotka-Volterra equation discussed earlier
serve as typical examples in this regard, although in both cases the group
actions are built into the dynamical systems and are not exploited explicitly.
We shall develop a general framework of the projected gradient approach in
the next section to help to construct other useful dynamical systems. The
projected gradient flows from continuous group actions often are easy to
formulate and analyze, and sometimes are able to tackle problems that are
seemingly impossible to resolve by conventional discrete methods.

An area that has been active for research and remains widely open for
further work is to develop effectively numerical algorithms that can trace
dynamical systems arising from various group actions. We note that there
are many new techniques developed recently for dynamical systems on Lie
groups, including the RK-MK methods (Engø 2003, Munthe-Kaas 1998),
Magnus and Fer expansions (Blanes, Casas, Oteo and Ros 1998, Zhang
and Deng 2005) and so on. A good collection of Lie structure preserving
algorithms and pertaining references can be found in the seminal review
paper by Iserles, Munthe-Kaas, Nørsett and Zanna (2000) and the book
by Hairer, Lubich and Wanner (2006). These new geometric integration
techniques certainly can benefit the computations needed for the projected
gradient flow, but still we are seeking a method that also takes into account
the descent property of a gradient flow. For a gradient flow where finding its
stable equilibrium point is the ultimate goal of computation, recall that the
pseudo transient continuation described in Section 2.2 has been suggested
as a possible numerical method.
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Table 7.2. Examples of classical matrix groups over R.

Group Subgroup Notation Characteristics

General linear Gl(n) {A ∈ Rn×n| det(A) 6= 0}

Special linear Sl(n) {A ∈ Gl(n)| det(A) = 1}

Upper triangular U(n) {A ∈ Gl(n)|A is upper triangular}

Unipotent Unip(n) {A ∈ U(n)|aii = 1 for all i}

Orthogonal O(n) {Q ∈ Gl(n)|Q⊤Q = I}

Generalized orthogonal OS(n) {Q ∈ Gl(n)|Q⊤SQ = S},
S is a fixed symmetric matrix

Symplectic Sp(2n) OJ (2n), J :=

[
0 I

−I 0

]

Lorentz Lor(n, k) OL(n+ k),
L := diag{1, . . . , 1︸ ︷︷ ︸

n

,−1, . . .− 1︸ ︷︷ ︸
k

}

Affine Aff(n)

{[
A t
0 1

]
| A ∈ Gl(n), t ∈ Rn

}

Translation T rans(n)

{[
I t
0 1

]
| t ∈ Rn

}

Isometry Isom(n)

{[
Q t
0 1

]
| Q ∈ O(n), t ∈ Rn

}

Product of G1 and G2 G1 ×G2 {(g1, g2)|g1 ∈ G1, g2 ∈ G2},
(g1, g2) ∗ (h1, h2) := (g1h1, g2h2),
G1 and G2 are given groups

Automorphism GM {A ∈ Gl(n)|〈Ax, Ay〉M = 〈x,y〉M },
〈x,y〉M = x⊤My
M is a give matrix
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Table 7.3. Examples of group actions and their applications.

Set V Group G Action µ(g,A) Application

Rn×n Any subgroup g−1Ag conjugation

Rn×n O(n) g⊤Ag orthogonal similarity

R
n×n × . . .× R

n×n

︸ ︷︷ ︸
k

Any subgroup (g−1A1g, . . . , g
−1Akg) simultaneous reduction

S(n) × SPD(n) Any subgroup (g⊤Ag, g⊤Bg) symm. positive definite
pencil reduction

Rn×n × Rn×n O(n) ×O(n) (g⊤1 Ag2, g
⊤
1 Bg2) QZ decomposition

Rm×n O(m) ×O(n) g⊤1 Ag2 singular value decomp.

Rm×n × Rp×n O(m) ×O(p) × Gl(n) (g⊤1 Ag3, g
⊤
2 Bg3) generalized

singular value decomp.

7.2. Projected Gradient Flows

The idea of projected gradient flows stems from the constrained least squares
approximation to a desirable canonical form. From a given matrix A in a
subset V of matrices of fixed sizes, the constraint on the variable is that the
transformation of A must be limited to the orbit OrbG(A) determined by a
prescribed continuous matrix group G and a group action µ : G× V −→ V.
The objective function itself is built with two additional limitations. One is
a differentiable map f : V −→ V designed to regulate a certain “inherent”
properties such as symmetry, diagonal, isospectrality, low rank, or other
algebraic conditions. The other is a projection map P : V −→ P where P

denote the subset of matrices in V carrying a certain desirable structure, that
is, the canonical form. The set P could be a singleton, an affine subspace,
or a cone, or other geometric entities. Consider the functional F : G −→ R

where

F (Q) :=
1

2
‖f(µ(Q,A)) − P (µ(Q,A))‖2

F . (7.4)

The goal is to minimize F over the group G. The meaning of this constrained
minimization is that, while staying in the orbit of A under the action of µ
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Table 7.4. Examples of canonical forms used in practice.

Canonical form Also know as Action

Bidiagonal J Quasi-Jordan Decomp., P−1AP = J ,
A ∈ Rn×n P ∈ Gl(n)

Diagonal Σ Sing. Value Decomp., U⊤AV = Σ,
A ∈ Rm×n (U, V ) ∈ O(m) ×O(n)

Diagonal pair (Σ1,Σ2) Gen. Sing. Value Decomp., (U⊤AX, V ⊤BX) = (Σ1,Σ2),
(A,B) ∈ Rm×n × Rp×n (U, V,X) ∈ O(m) ×O(p) × Gl(n)

Upper quasi-triangular H Real Schur Decomp., Q⊤AQ = H ,
A ∈ Rn×n Q ∈ O(n)

Upper quasi-triangular H Gen. Real Schur Decomp., (Q⊤AZ,Q⊤BZ) = (H,U),
Upper triangular U A,B ∈ Rn×n Q,Z ∈ O(n)

Symmetric Toeplitz T Toeplitz Inv. Eigenv. Prob., Q⊤diag{λ1, . . . , λn}Q = T ,
{λ1, . . . , λn} ⊂ R is given Q ∈ O(n)

Nonnegative N ≥ 0 Nonneg. inv. Eigenv. Prob., P−1diag{λ1, . . . , λn}P = N ,
{λ1, . . . , λn} ⊂ C is given P ∈ Gl(n)

Linear variety X Matrix Completion Prob., P−1{λ1, . . . , λn}P = X ,
with fixed entries {λ1, . . . , λn} ⊂ C is given P ∈ Gl(n)
at fixed locations Xiν ,jν

= aν , ν = 1, . . . , ℓ

Nonlinear variety Test Matrix Construction, P−1ΛP = U⊤ΣV
with fixed singular values Λ = diag{λ1, . . . , λn} and P ∈ Gl(n), U, V ∈ O(n)

and eigenvalues Σ = diag{σ1, . . . σn} are given

Maximal fidelity Structured Low Rank Approx.
(
diag

(
USS⊤U⊤

))−1/2
USV ⊤,

A ∈ Rm×n (U, S, V ) ∈ O(m) × Rk
×
×O(n)

and maintaining the inherent property guaranteed by the function f , we
look for the element Q ∈ G so that the matrix f(µ(Q,A)) best realizes the
desired canonical structure in the sense of least squares.

In principle, the functional (7.4) can be minimized by conventional opti-
mization techniques which mostly are iterative in nature. However, we find
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that the projected gradient flow approach can conveniently be formulated
as a dynamical system,

dQ

dt
= −ProjTQG∇F (Q), (7.5)

where TQG and ∇F (Q) stand for the tangent space of the group G and the
gradient of the objective functional F at Q, respectively.

One advantage of working with a matrix group is that its tangent spaces
at every element g have the same structure as g = TeG at the identity
element e of G. More specifically, the tangent space at any elements Q in G
is a translation of g via the relationship,

TQG = Qg. (7.6)

Thus the projection in (7.5) is fairly easy to do once the tangent space g is
identified.

It might be instructive to illustrate the idea of projection by the following
calculation (Chu and Driessel 1990). By (7.6), the tangent space of O(n) at
any orthogonal matrix Q is

TQO(n) = Qo(n),

where o(n) denotes the subspace of all skew-symmetric matrices in R
n×n.

It can easily be argued that the normal space of O(n) at any orthogonal
matrix Q is

NQO(n) = Qo(n)⊥,

where the orthogonal complement o(n)⊥ is precisely the subspace of all
symmetric matrices. The space R

n×n can be split as the direct sum of

R
n×n = Qo(n) ⊕Qo(n)⊥.

Any X ∈ R
n×n therefore has a unique orthogonal splitting as

X = Q(QTX) = Q

{
1

2
(QTX −XTQ)} +Q{

1

2
(QTX +XTQ)

}
.

The projection of X onto the tangent space TQO(n), therefore, is given by
the formula,

ProjTQO(n)X = Q

{
1

2
(QTX −XTQ)

}
. (7.7)

For other groups, the projection can be done in a similar way.
We briefly touch upon the realm of differential geometry by two remarks.

First, the notion of “projected” gradient described above is indeed the “ordi-
nary” gradient with respect to the Killing form or the normal metric on the
tangent space g (Edelman, Arias and Smith 1999, Tam 2004). Secondly, the
set g is a Lie subalgebra, that is, its elements are closed under the Lie bracket
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operation. The Lie subalgebra g can be characterized as the logarithm of G
in the sense that

g = {M ∈ R
n×n| exp(tM) ∈ G, for all t ∈ R}. (7.8)

The exponential map exp : g → G, as we have seen in Theorem 1, is a
central step from a Lie algebra g to the associated Lie group G (Celledoni
and Iserles 2000, Howe 1983). Since exp is a local homeomorphism which
maps a neighborhood of the zero O in the algebra g onto a neighborhood
of the identity e in the group G, any dynamical system in G in the neigh-
borhood of e therefore would have a corresponding dynamical system in g

in the neighborhood of O. Because of this, the decomposition we have ob-
served in Section 5.1 can be interpreted as follows. It is known that the
Lie group Gl(n) can be decomposed as the product of two Lie subgroups
in the neighborhood of the identity matrix I if and only if the correspond-
ing tangent space gl(n) of real-valued n × n matrices can be decomposed
the sum of two Lie subalgebras. By the decomposition property and the
reversal property in Theorem 1, the Lie structure apparently is not needed
for isospectral flows. A subspace decomposition of gl(n) as is indicated in
(5.8) suffices to guarantee a factorization of a one-parameter semigroup in
the neighborhood of I as the product of two nonsingular matrices, that is,
the decomposition indicated in (5.10).

Before we talk about specific applications, a misconception about the
gradient flow (2.10) in general and the projected gradient flow (7.5) in par-
ticular must be clarified. It is true that the objective value F (x(t)) is non-
increasing in t if x(t) follows the gradient flow (2.10). If F is further known
to be bounded below, the F (x(t)) converges to a limit value. However, the
flow x(t) itself might not converge at all. Examples can be constructed to
show the case that a local minimum of an infinitely differentiable objective
function F may not be an equilibrium point of the differential system (2.10).
Likewise, a stable equilibrium point of (2.10) may not be a local minimum of
F at all (Absil and Kurdyka 2006). A cone-shaped minaret with outside spi-
ral ramp, or a helicoid, can be modified to serve as examples where a gradient
flow converges to a limit cycle. The important message we want to convey is
that infinite smoothness of the gradient vector field is not sufficient to guar-
antee the convergence of a gradient trajectory. A sufficient condition that
happens to fit our applications is the analyticity of the objective function.
More specifically, the  Lojasiewicz-Simon theorem asserts that if the objec-
tive function F is real analytic, then the trajectory of a gradient flow cannot
have more than one limit point. (Chill 2003,  Lojasiewicz 1963, Simon 1983).
Furthermore, under the analyticity assumption, a stable equilibrium point
of the differential system (2.10) is a local minimum of F , and vice versa
(Absil, Mahony and Andrews 2005, Absil and Kurdyka 2006). In our ap-
plications, group actions, linear projections and squares of the Frobenious
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norm are naturally analytic. Our gradient flows are defined by an analytic
vector field, so convergence is assured.

7.3. Applications

From the framework outlined above, projected gradient dynamical systems
can be tailored to meet the need arising from various circumstances. We
shall demonstrate four interesting designs in this section. Many additional
applications and the associated dynamical systems can be found in the lit-
erature. See, for instance, the problems discussed in the paper by Brockett
(1993) and the book by Helmke and Moore (Helmke and Moore 1994). Our
intention in this section is to demonstrate the versatility of projected gradi-
ent flows. Some applications can be solved more efficiently by other means,
but there are problems where the continuous dynamical system approach
are particularly easy to formulate and compute.

Example 1. Given a symmetric matrix Λ and a desirable structure P,
suppose we want to find a symmetric matrix that is closest to P and has the
same spectrum as Λ (Chu and Driessel 1990). By defining the isospectral
matrix X := Q⊤ΛQ with Q ∈ O(n), the objective functional F : O(n) → R

is taken to be

F (Q) :=
1

2
‖Q⊤ΛQ− P (Q⊤ΛQ)‖2

F . (7.9)

It can be verified that the projected gradient flow (7.5) on the group O(n)
is equivalent to the isospectral flow,

dX

dt
= [X, [X,P (X)]], (7.10)

on the orbit OrbO(n)(Λ).

With different choices of Λ and P, the dynamical system (7.10) enjoys
different interpretation of applications. For example, if P (X) = diag(X),
then X(t) stands for a continuous Jacobi-type flow that gradually reduces
the off-diagonal elements of X while maintaining isospectrality. As another
example, by specifying the structure retained in P, the flow (7.10) offers an
avenue to tackle various kinds of very difficult structured inverse eigenvalue
problems (Chu and Golub 2002).

The so called double bracket flow by Brockett (1991) corresponds to the
special case where P = {N} contains a single constant symmetric matrix N
and hence P (Q⊤ΛQ) ≡ N . The resulting qualitative behavior is relatively
easier to analyze, but this seemingly ingenuous nearest matrix approxima-
tion to a fixed matrix has the following sorting property which appears
universal in a wide spectrum of applications, including the interior-point
algorithm (Faybusovich 1991), the QR algorithm (Deift et al. 1983), mo-
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ment maps (Bloch, Brockett and Ratiu 1992) and many others (Helmke and
Moore 1994).

Theorem 3. Suppose that both Λ = diag{λ1, . . . , λn} and the spectrum
of N have distinct elements. Then X = Q⊤ΛQ is the unique nearest matrix
to N on the isospectral orbit of Λ if and only if the columns of Q⊤ are the
orthonormal eigenvectors of N corresponding to eigenvalues arranged in the
same ordering as {λ1, . . . , λn}.

We have to mention one remarkable connection. If Λ is a tridiagonal
matrix to begin with and if N = diag{n, n − 1, . . . , 2, 1}, then the double
bracket flow becomes exactly the Toda lattice that has been discussed in
great length in Section 5.1. The sorting property asserted in Theorem 3
therefore explains the sorting property of the QR algorithm. It is interesting
that “the same set of equations is thus Hamiltonian a gradient flow on the
isospectral set.” (Bloch et al. 1992).

Given the wide range of applications, an effective way of integrating either
the isospectral dynamical system (7.10) for X(t) over the orbit or the asso-
ciated parameter dynamical system for Q(t) over the group therefore would
be extremely useful and desirable. We think that an efficient discretization
probably would not come from the traditional numerical ODE approaches,
but rather could be more in line with the vdLV approach where a certain
structure is preserved.

Example 2. Analogous to Example 1, we could also consider the nearest
approximation by iso-singular-value matrices. Given a rectangular matrix
Σ of size m× n and a desirable structure P over R

m×n, all matrices on the
orbit OrbO(m)×O(n)(Λ) := {X = U⊤ΣV |U ∈ O(m), V ∈ O(n)} have the
same singular values as Σ. The objective functional F : O(m) ×O(n) → R

defined by

F (U, V ) := ‖U⊤ΣV − P (U⊤ΣV )‖2
F , (7.11)

is meant to best approach the structure P while maintaining the singular
values. A continuous transformation X := U⊤ΣV is governed by the dy-
namical system

dX

dt
=

{
X(X⊤P (X) − P (X)⊤X) − (XP (X)⊤ − P (X)X⊤)X

}
, (7.12)

which, at the first glance, is not exactly in the double bracket form. However,
upon recasting the original action of equivalence U⊤ΣV by the product
group O(m) ×O(n) as a new action of conjugation,

[
U⊤ 0
0 V ⊤

] [
0 Σ

Σ⊤ 0

] [
U 0
0 V

]
,

by a subgroup of O(m+n), Tam (2004) has observed that (7.12) indeed can
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be written in a double bracket form,

dX

dt
= [X, [X,P(X)]], (7.13)

with the definition,

X :=

[
0 X
X⊤ 0

]
,

P(X) :=

[
0 P (X)

P (X)⊤ 0

]
.

Some applications of the gradient flow (7.12) include a sorting property
similar to Theorem 3 if P consists of a single constant matrix (Chu and
Driessel 1990, Smith 1991), structured inverse singular value problems, and
a Jacobi-type algorithm if P (X) = diag(X). In the last case, the corre-
sponding dynamical system is

dX

dt
=

{
X(X⊤diag(X) − diag(X)⊤X) − (Xdiag(X)⊤ − diag(X)X⊤)X

}
.

It is interesting to note that by merely a change of sign in the above equation,
we obtain the system,

dX

dt
=

{
X(X⊤diag(X) − diag(X)⊤X) + (Xdiag(X)⊤ − diag(X)X⊤)X

}

= XX⊤diag(X) − diag(X)X⊤X, (7.14)

which is precisely the SVD flow (6.2). Recall that the SVD flow was orig-
inally formulated with the intention to preserve the bidiagonal structure if
Σ is bidiagonal to begin with. The fact that the SVD flow can be expressed
differently as in (7.14) is interesting. At present, whether (7.14) is just an
algebraic coincidence or is a result of a deeper theory is not clear to us.

Example 3. Consider the classical matrix nearness problem of finding the
closest normal matrix to a given matrix A ∈ C

n×n (Higham 1989, Ruhe
1987). This problem is equivalent to minimizing the functional,

F (U) =
1

2
‖U∗AU − diag(U∗AU)‖2

F , (7.15)

subject to the constraint that U ∈ C
n×n is unitary. Once the minimizer Ũ of

(7.15) is found, the nearest normal matrix to A is given by Ũdiag(Ũ∗AŨ)Ũ∗.
The objective function (7.15) is similar to (7.9) except that we are dealing

with complex-valued matrices. A projected gradient flow,

dZ

dt
=

[
Z,

[Z, diag(Z∗)] − [Z, diag(Z∗)]∗

2

]
, (7.16)

for the complex matrix Z = U∗AU can be derived as the action of the
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unitary group over C
n×n. One advantage of this differential equation ap-

proach is that many theoretical results concerning the nearest normal ma-
trix approximation which have been challenging to matrix theorists can be
obtained naturally from analyzing the equilibrium point of the dynamical
system (Chu 1991, Ruhe 1987).

Example 4. We now illustrate how the “regulator” of f in (7.4) comes into
play in some applications. Given two vectors a,λ ∈ R

n, the Schur-Horn
theorem states that there exists a Hermitian matrix H with eigenvalues
λ and diagonal entries a if and only if λ is majorized by a (Horn and
Johnson 1990). The harder part of this classical result is the inverse problem
of construct a symmetric matrix with prescribed diagonal entries a and
spectrum {λ1, . . . , λn}. We recast the inverse problem as the problem of
minimizing the functional,

F (Q) :=
1

2
{diag(Q⊤ΛQ) − diag(a)‖2

F , (7.17)

subject to Q ∈ O(n). Note that we have taken f(X) = diag(X) for the
isospectral matrices X := Q⊤ΛQ. It can be shown that the projected gra-
dient flow becomes a double bracket equation (Chu 1995),

dX

dt
= [X, [X,diag(a) − diag(X)]]. (7.18)

Stability analysis at the equilibrium becomes an easy existence proof for the
Schur-Horn theorem.

We should re-emphasize that, unless special care is given to the discretiza-
tion and implementation, the differential equation approach generally is not
necessarily the most effective numerical means for solving problems. For
the Schur-Horn problem, a finite step recursive algorithm is computation-
ally more efficient (Zha and Zhang 1995).

7.4. Generalization beyond Group Actions

The primary purpose of employing group actions in linear transformations is
to keep eigenvalues or singular values invariant under the change of coordi-
nates. It sometimes becomes desirable to keep other properties invariant. In
many cases, the notion of gradient flows can be generalized to other geomet-
ric entities that do not hold any group structure. Examples of applications
include the Stiefel manifold for orthonormal Procrustes problem or the more
general Penrose regression problem (Chu and Trendafilov 2001), the convex
set of positive definite real symmetric matrices for the balanced realization
(Helmke, Moore and Perkins 1994), the Grassmann manifold for the geo-
metric optimization methods (Edelman et al. 1999), the manifold of oblique
matrices for the multidimensional scaling (Cox and Cox 1994, Del Buono
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and Lopez 2002) or the data fitting on the unit sphere (Chu, Del Buono,
Lopez and Politi 2005), the cone of nonnegative matrices for inverse eigen-
value problem (Chu and Guo 1998, Orsi 2006), and so on.

We wrap up this section by demonstrating one of these generalizations.
At its first glance, no group structure is involved in the formulation of the
dynamical system. We then modify the coordinate systems to bring in group
actions.

Example 5. The nonnegative inverse eigenvalue problem concerns the
construction of a entry-wise nonnegative matrix A ∈ R

n×n with a prescribed
set {λ1, . . . , λn} ⊂ C, closed under conjugation, as its spectrum. This has
been a classical but hard problem long investigated by many matrix theo-
rists. The inadequacy of the current development is evidenced by the fact
that the necessary condition for solvability usually is too general while the
sufficient condition is too specific (Chu and Golub 2005).

Recently it has been proved that, given an arbitrary (n− 1)-tuple,

Ω = (λ2, . . . , λn) ∈ C
n−1,

whose components are closed under complex conjugation, there exists a
unique positive real number R(Ω), called the minimal realizable spectral
radius of Ω, such that the set {λ1, . . . , λn} is precisely the spectrum of a
certain n × n nonnegative matrix with λ1 as its spectral radius if and only
if λ1 ≥ R(Ω). Employing any existing necessary conditions as a mode of
checking criteria, Chu and Xu (2005) have proposed a simple bisection pro-
cedure to approximate the location of R(Ω). As an immediate application,
it offers a quick numerical way to check whether a given n-tuple could be the
spectrum of a certain nonnegative matrix. However, even after a potential
spectrum is identified as feasible, very few general numerical procedures are
available for the actual construction of nonnegative matrices. Generalizing
the above ideas and taking the advantage of its easy formulation, a gradient
flow can come to serve this purpose (Chu and Guo 1998).

Since the spectrum is closed under complex conjugation, we may assume a
real-valued matrix J to carry the prescribed spectrum. We cast the inverse
problem as a constrained minimization problem by working with two matrix
parameters (g,R),

Minimize F (g,R) :=
1

2
||gJg−1 −R ◦R||2F ,

Subject to g ∈ Gl(n), R ∈ gl(n),

where ◦ denotes the component to component Hardamard product. The
idea behind F (g,R) is similar to that in (7.4), except that this time we
want to minimize the distance between the orbit OrbGl(n)(J) and the cone
of nonnegative matrices. The constraints literally do not exist because both
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Gl(n) and gl(n) are open sets. No projection onto the constraints is needed.
The steepest descent flow for F (g,R) is given by straightforward calculation,

dg

dt
=

[
(gJg−1)⊤, α(g,R)

]
g−⊤, (7.19)

dR

dt
= 2α(g,R) ◦R, (7.20)

with α(g,R) := gJg−1 −R ◦R.

The requirement of computing g−1 in the gradient flow is worrisome.
We can soften the concern at the cost of re-parameterizing g by its ana-
lytic singular value decomposition (Bunse-Gerstner, Byers, Mehrmann and
Nichols 1991, Wright 1992). Suppose g(t) = X(t)S(t)Y (t)⊤ is the singular
value decomposition of g(t) where S(t) is a diagonal matrix with elements
from the multiplicative group R× of nonzero real numbers and X(t) and
Y (t) are elements from the orthogonal group O(n). From the relationship
of derivatives,

X⊤dg

dt
Y = X⊤ dX

dt︸ ︷︷ ︸
Z

S +
dS

dt
+ S

dY ⊤

dt
Y

︸ ︷︷ ︸
W

, (7.21)

we can specify the dynamics of evolution for the parameters (X,S, Y ). In

particular, let Υ := X⊤ dg
dtY where dg

dt is given by (7.20). Given initial values
(X(0), S(0), Y (0)), we see that the equation for S(t) is readily available,

dS

dt
= diag(Υ), (7.22)

whereas the two equations,

dX

dt
= XZ, (7.23)

dY

dt
= YW, (7.24)

can also be defined since the skew-symmetric matrices Z and W can be
retrieved from off-diagonal elements of Υ and S. Total together, we have
constructed a gradient flow for the objective function F in terms of the four
matrix parameters (X,S, Y,R) that evolve on the manifold O(n) × R

n
× ×

O(n) × gl(n).

8. Structure Preserving Dynamical Systems

The notion of structure preserving has been put into practice in numer-
ical linear algebra since its very early stage of development. The upper
Hessenberg form has been used in the QR algorithm, the upper Hessen-
berg/triangular form in the QZ algorithm, and the bidiagonal form in the
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SVD algorithm (Golub and Van Loan 1996), to mention a few. These struc-
tures not only are preserved throughout the iterative processes, but also
play a fundamental role in making the algorithms effective for computation.

Each of the three above-mentioned iterative schemes has a correspond-
ing continuous analogue. It is well known that the generalized Toda flow
preserves the tridiagonal form for symmetric matrices and the upper Hessen-
berg form for general matrices (Chu 1988, Watkins and Elsner 1988). The
QZ flow and the SV D flow, on the other hand, were designed specifically
to preserve the upper Hessenbert/triangular and the bidiagonal structures,
respectively. Recall that the Lotka-Volterra equation discussed extensively
in Chapter 6 is precisely the SVD flow applied to bidiagonal matrices.

As before, the meaning of structure should be interpreted broadly to in-
clude any invariant properties under the flow. The Toda flow, therefore,
preserves at least two structures – the spectrum and the upper Hessenberg
form. Likewise, the SVD flow preserves the singular values the bidiagonal
form. It then becomes interesting to ask whether these are other structures
invariant under these flows? To distinguish these special matrix forms from
other invariant properties to be discussed later, we shall use the term zero
structure to refer to collectively any specific zero pattern of a matrix. The
flip side of the question is equally interesting and perhaps more important —
Given a set of structures related to a fixed matrix, can a dynamical system,
continuous or discrete, be designed so as to preserve the specified structures?

The importance of structure preserving goes far beyond the realm of just
linear algebra. There are properties other than just zero structures that
we want to maintain. Stability and passivity preserving, for example, are
highly desirable in model reduction (Antoulas 2005). Standard simplicity
preserving allows a doubling algorithm to effectively separate stable and un-
stable eigenvalues when solving the discrete algebraic Riccati equation (Lin
and Xu 2006). See also an interesting discussion by Mackey et al. (2003)
for structured matrices arising in the context of a bilinear or sesqui-linear
form. A quick search of the key word “structure preserving” over the inter-
net brings up a wide range of applications across multiple disciplines. We
will not and are unable to review the various situations in the literature
where structure preserving is insisted. However, it might be safe to say cat-
egorically that structure preserving is essential in applications because often
it makes possible more efficient computation, improves physical feasibility
or interpretability, and suffers less sensitivity dependence.

In this section, we shall explore dynamical systems that preserve some
interesting structures arisen from linear algebra. We intend to disclose some
of the structures that are elusive from the look of the dynamical systems.
Be warned that we have to surmise several observations as conjectures be-
cause no mathematical proofs are available at present. Even so, numerical
experiments strongly suggest that these conjectures should be true.
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8.1. Staircase Structure

The upper Hessenberg form is actually a special case of the more general
form known as the staircase structure. Given a matrix A = [aij ] ∈ R

m×n,
define the step index for each column by

tk(A) := max

{
k, max
k<i≤m

{i|aik 6= 0}

}
, k = 1, . . . n. (8.1)

We say that A is in a staircase form if and only if

tk(A) ≤ tk+1(A), k = 1, . . . , n− 1. (8.2)

Both of the following matrices, for example,



× × × × ×
0 × × × ×
0 × 0 × ×
0 0 × × ×
0 0 0 0 ×



,




× × × × ×
0 × × × ×
0 × × × ×
0 0 × × ×
0 0 0 0 ×




︸ ︷︷ ︸
full staircase

are staircase matrices with step indices {1, 3, 4, 4, 5}. When there are no
zero elements above the stairs, we say that the matrix is of full staircase.

Recall that the QR algorithm is the most efficient method for eigenvalue
computation due to its stability and isospectrality. The following result
by Arbenz and Golub (1995) identifies the zero structure that is preserved
under the QR algorithm when applied to symmetric matrices.

Theorem 4. Assume that A0 is symmetric. Let {Ak} be the iterates
generated by the QR algorithm (5.2). Then,

1 If A0 is reducible by some permutation matrix P , that is,

PA0P
⊤ =

[
A01 A02

0 A03

]
,

then each Ak is also reducible by means of the same permutation P .
2 If A0 is irreducible, then the zero pattern of A0 is preserved throughout

{Ak} if and only if A0 is a full staircase matrix.

Consider the zero structure of the following two 7×7 symmetric matrices,



× 0 × 0 × 0 ×
0 × 0 × 0 × 0
× 0 × 0 × 0 ×
0 × 0 × 0 × 0
× 0 × 0 × 0 ×
0 × 0 × 0 × 0
× 0 × 0 × 0 ×




,




× 0 × 0 × × ×
0 × 0 × 0 × 0
× 0 × 0 × 0 ×
0 × 0 × 0 × 0
× 0 × 0 × 0 ×
× × 0 × 0 × 0
× 0 × 0 × 0 ×




, (8.3)
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which differ only at the (1, 6) and (6, 1) positions. The QR algorithm using
these two matrices as the initial values produces very different behavior.
Theorem 4 asserts the zero pattern for the left matrix is preserved because
it is reducible, but the zero pattern for the right matrix is totally destroyed
even after one iteration.

For nonsymmetric matrices, the reducibility is not guaranteed to be pre-
served. However, the staircase form remains a sufficient, but not necessary,
condition for shape preservation under the QR algorithm. Given the close
relationship between the QR algorithm and the Toda flow, it should not be
surprising that if X0 is a staircase matrix, then so is X(t) under the dynami-
cal system (5.14) (Ashlock, Driessel and Hentzel 1997, Chu and Norris 1988).

For the generalized eigenvalue problem,

A0x = λB0x, (8.4)

a typical iterative scheme is the QZ algorithm. For practical purpose, the
matrix A0 usually is first reduced to an upper Hessenberg form and B0 to an
upper triangular form by orthogonal equivalence transformations. The basic
idea behind the QZ algorithm is to simulate the effect of the QR algorithm
on the matrix B−1

0 A0 (assuming B0 is invertible) without explicitly forming
the inverse or the product. Throughout the QZ iteration, a critical compo-
nent in the algorithm is that the upper Hessenberg/triangular structure is
preserved.

Suppose now that a smooth orthogonal equivalence transformation has
been applied to the pencil B0λ−A0,

L (t) = Q(t)(B0λ−A0)Z(t), Q(t), Z(t) ∈ O(n). (8.5)

Upon differentiation, the isospectral flow L (t) is necessarily governed by a
differential system of the form,

dL

dt
= LR− LL , L (0) = B0λ−A0, (8.6)

where the coordinate transformation must satisfy the system,

dQ

dt
= −LQ,

dZ

dt
= ZR,

with some L,R ∈ o(n). The choice of skew-symmetric matrix parameters
L(t) and R(t) determines the dynamics. Write

X(t) = Q(t)A0Z(t),

Y (t) = Q(t)B0Z(t).

To mimic the QZ algorithm, we prefer to choose L(t) and R(t) so that
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the resulting vector fields dX
dt and dY

dt remains upper Hessenberg/triangular
whenever X(t) and Y (t) are, respectively. Among many possibilities, one
selection out of naiveté but with proper symmetry is the choice,

L = Π0(XY −1), (8.7)

R = Π0(Y −1X), (8.8)

where the operator Π0 is given in (5.13). Define the QZ flow accordingly by

dL

dt
= L Π0(Y −1X) − Π0(XY −1)L , L (0) = B0λ−A0. (8.9)

Note that if X(t) and Y (t) are upper Hessenberg/triangular, then both L(t)
and R(t) are tridiagonal. Note also that if we define

E(t) := X(t)Y −1(t) (8.10)

F (t) := Y −1(t)X(t), (8.11)

then it can readily be proved that

dE

dt
= [E,Π0(E)], (8.12)

dF

dt
= [F,Π0(F )]. (8.13)

In other words, the QZ flow (8.9) is related to the QZ algorithm in the same
way as the Toda flow is related to the QR algorithm. The convergence of
the QZ flow therefore follows naturally from the dynamics of the Toda flow
(Chu 1986a).

Thus far, the peculiar right-hand sides of (8.9) are designed solely for the
purpose of maintaining the upper Hessenberg/triangular form. However,
one interesting phenomenon as a byproduct is worth mentioning. It has
been observed that the QZ flow and, consequently, the corresponding QZ
algorithm preserve the staircase structure. A more precise description of our
empirical observation is given in the following conjecture of which a rigorous
proof has not been established at present.

Conjecture 1. If both A0 and B0 are staircase matrices, not necessarily
of the same pattern, then the structures of A0 and B0 are preserved by X(t)
and Y (t) under the QZ flow defined by (8.9), respectively.

We elaborate on the implication of Conjecture 1 a little bit more. The
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distinct zero patterns of the two matrices,

A0 =




× × × × × × ×
× × × × × × ×
0 × × × × × ×
0 × × × × × ×
0 0 0 × × × ×
0 0 0 × × × ×
0 0 0 0 0 0 ×




, B0 =




× × × × × × ×
× × × × × × ×
× × × × × × ×
× × × × × × ×
0 0 0 × × × ×
0 0 0 0 × × ×
0 0 0 0 0 × ×




,

for example, are preserved respectively in the QZ flow. It is not obvious
why the separate stair structures are kept without interference. It is amazing
that the procedure of “mixing” Y −1 which usually is full and dense with the
structured X followed by the operations in the way specified in (8.9) will
eventually separate and give back the original staircase structures of X and
Y , respectively. Direct manipulation is hard to come by because algebraic
expression would be considerably complicated. Perhaps it is for this reason
that the staircase structure has been kept reticent to itself thus far. Though
not necessarily of practical value, such a structure preserving property of
the QZ flow (and of the QZ algorithm) is mathematically intriguing.

An equally interesting structure preserving property is also found in the
SVD flow (6.2). Our original idea in deriving this particular matrix form
of dynamical system was simply to maintain the bidiagonal structure (Chu
1986b). Because of this property, the SVD flow is reduced to the Lotka-
Volterra equation (6.3) when B0 is bidiagonal to begin with. Surprisingly,
if we continue to use the SVD flow in its matrix form (6.2), then we have
empirical evidence to support the following conjecture.

Conjecture 2. Suppose B0 is a staircase matrix. Then the SVD flow B(t)
defined by (6.2) and the corresponding SVD algorithm maintains the same
staircase structure.

For small size matrices, the validity of Conjecture 2 can be proved by an
ad hoc calculation. We are curious whether there is a more elegant way to
validate this conjecture in general.

Finally, we remark that the staircase form is only a sufficient condition for
shape preservation under the SVD flow. There are other structures invariant
under the dynamical system (6.2). The checkerboard structure of the left
matrix in (8.3), for example, is preserved under the SVD flow, but unlike
the symmetric QR flow the SVD flow does not preserve the reducibility.
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8.2. Lancaster Structure

The Lancaster structure of three given matrices M0, C0 and K0 in R
n×n

refers to a linear pencil of the form (Gohberg, Lancaster and Rodman 1982),

L(λ) := L(λ;M0, C0,K0) =

[
C0 M0

M0 0

]
λ−

[
−K0 0

0 M0

]
. (8.14)

The matrices need not to have any additional properties such as symmetry
or positive definiteness. The Lancaster structure consists of more than just
zero patterns. It also requires the matrix M0 to appear at three specified
locations. It is easy to see that the linear pencil (8.14) is equivalent to the
quadratic pencil,

Q(λ) := Q(λ;M0, C0,K0) = λ2M0 + λC0 +K0, (8.15)

in the sense that([
C0 M0

M0 0

]
λ−

[
−K0 0

0 M0

])[
u
v

]
= 0 (8.16)

if and only if {
(λC0 +K0)u + λM0v = 0,

λM0u−M0v = 0.
(8.17)

Indeed, if M0 is nonsingular, then we know further that v = λu. Obviously,
the Lancaster structure implies that if Q(λ) is self-adjoint, then so is L(λ).
The eigeninformation (λ,u) ∈ C×C

n of the quadratic pencil Q(λ) is critical
to the understanding of the dynamical system,

M0ẍ + C0ẋ +K0x = f(t), (8.18)

which arises frequently in many important applications, including applied
mechanics, electrical oscillations, vibro-acoustics, fluid mechanics, and signal
processing (Tisseur and Meerbergen 2001).

We are interested in the Lancaster structure because, in contrast to the
common knowledge that generally no three matrices can be diagonalized
simultaneously by equivalence transformations, it has been shown that for
almost all quadratic pencils there exist real-valued 2n× 2n real matrices Πℓ

and Πr such that

Π⊤
ℓ L(λ)Πr = L(λ;MD, CD,KD) (8.19)

where MD, CD,KD are all real-valued n × n diagonal matrices. In other
words, almost all n-degree-of-freedom second order systems can be reduced
to n totally independent single-degree-of-freedom second order subsystems
by real-valued isospectral transformations (Chu and Del Buono 2006a, Gar-
vey, Friswell and Prells 2002a, Garvey, Friswell and Prells 2002b). Such an
isospectral transformation is significant in that it links the dynamical be-
havior of a multiple-degree-of-freedom system directly to that of a system
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consisting of n independent single-degree-of-freedom subsystems. It breaks
down the interlocking connectivity in the original system into totally dis-
connected subsystems while preserving the entire spectral properties. Thus
it will be of great value in practice if the transformations Πℓ and Πr can be
found from any given pencil. We may consider (8.19) as a special kind of
canonical form for the linear pencil (8.14).

The current theory of existence expresses Πℓ and Πr in terms of the com-
plete spectral information of L(λ). The need of spectral information for the
construction of Πℓ and Πr certainly is not practical. Employing the notion
of structure preserving isospectral flows, it is possible to construct Πℓ and
Πr numerically without knowing the spectral information.

We first explore the “orbit” of L(Λ) under (Lancaster) structure preserv-
ing equivalence transformations. Denote

Πℓ =

[
ℓ11 ℓ12
ℓ21 ℓ22

]
, Πr =

[
r11 r12
r21 r22

]
, (8.20)

where each ℓij or rij is an n×n matrices. In order to maintain the Lancaster
structure in the transformation Π⊤

ℓ L(Λ)Πr, it is necessary that the following
five equations hold:

−ℓ⊤11K0r12 + ℓ⊤21M0r22 = 0,

−ℓ⊤12K0r11 + ℓ⊤22M0r21 = 0,

ℓ⊤12C0r12 + ℓ⊤22M0r12 + ℓ⊤12M0r22 = 0, (8.21)

ℓ⊤11C0r12 + ℓ⊤21M0r12 + ℓ⊤11M0r22 = ℓ⊤12C0r11 + ℓ⊤22M0r11 + ℓ⊤12M0r21

= −ℓ⊤12K0r12 + ℓ⊤22M0r22.

Ultimately, in order to produce the canonical form, the matrices Πℓ and Πr

must be such that the left-hand sides of the following three expressions:

−ℓ⊤12K0r12 + ℓ⊤22M0r22 = MD,

ℓ⊤11C0r11 + ℓ⊤21M0r11 + ℓ⊤11M0r21 = CD, (8.22)

ℓ⊤11K0r11 − ℓ⊤21M0r21 = KD,

are diagonal matrices. The conditions (8.21) and (8.22) together constitute
a homogeneous second-degree polynomial system of 8n2 − 3n equations in
8n2 unknowns. It is not obvious how the nonlinear algebraic system could be
solved analytically, but the underdetermined system does imply that there
is plenty of room to choose the transformation matrices Πℓ and Πr. In
particular, a smooth path connecting (M0, C0,K0) to (MD, CD,KD) can be
defined.

To characterize the path, denote the Lancaster pair in (8.14) by (A0, B0)
where

A0 =

[
−K0 0

0 M0

]
, B0 =

[
C0 M0

M0 0

]
. (8.23)
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We now develop two one-parameter families Tℓ(t) and Tr(t) in R
2n×2n of

structured preserving transformations starting with Tℓ(0) = Tr(0) = I2n.
Assume that these families of transformations act on (A0, B0) via the form,

A(t) = T⊤
ℓ (t)A0Tr(t),

B(t) = T⊤
ℓ (t)B0Tr(t),

respectively. Clearly, regardless how Tℓ(t) and TR(t) are defined, the trans-
formed pencil (A(t), B(t)) is isospectral to (A0, B0) for any t. For simplicity,
we limit ourselves to a special class of transformations where matrices Tℓ(t)
and Tr(t) are governed by the dynamical systems,

dTℓ(t)

dt
= Tℓ(t)L(t) = Tℓ(t)

[
L11(t) L12(t)
L21(t) L22(t)

]
, (8.24)

dTr(t)

dt
= Tr(t)R(t) = Tr(t)

[
R11(t) R12(t)
R21(t) R22(t)

]
, (8.25)

respectively, where each Lij(t) or Rij(t), i, j = 1, 2, is a n × n real one-
parameter matrix yet to be defined. Upon substitution, we observe that the
pencil,

L (t) = B(t)λ−A(t),

must satisfy the equation,

dL

dt
= L⊤

L + LR, L (0) = L(λ).

It is interesting to note that these differential equations are similar to those
discussed in (Bloch and Iserles 2006) which leads to a Lie-Poisson system.
By insisting that (A(t), B(t)) maintains the Lancaster structure throughout
the transformation, that is,

A(t) =

[
K(t) 0

0 −M(t)

]
, B(t) =

[
C(t) M(t)
M(t) 0

]
, (8.26)

we see that the entries of L(t) and R(t) should satisfy:

R12 = −DM, (8.27)

R21 = DK, (8.28)

L12 = D⊤M⊤, (8.29)

L21 = −D⊤K⊤, (8.30)

L11 − L22 = D⊤C⊤, (8.31)

R11 −R22 = −DC, (8.32)

where D ∈ R
n×n is an arbitrary matrix parameter. Note that hidden in

(8.31) and (8.32) are two other free matrix parameters which we denote as
NL and NR, respectively.
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There are several possible ways to choose the parameters and to arrange
the diagonal blocks of L(t) and R(t). For instance, corresponding to the
choice,

L =

[
D⊤ 0
0 D⊤

][
C⊤

2 M⊤

−K⊤ −C⊤

2

]
+

[
N⊤
L 0
0 N⊤

L

]
, (8.33)

R =

[
D 0
0 D

] [
−C

2 −M
K C

2

]
+

[
NR 0
0 NR

]
, (8.34)

an isospectral flow of the triplet (M(t), C(t),K(t)) can be defined by the
autonomous system:

dK

dt
=

1

2
(CDK −KDC) +N⊤

LK +KNR,

dC

dt
= (MDK −KDM) +N⊤

L C + CNR, (8.35)

dM

dt
=

1

2
(MDC − CDM) +N⊤

LM +MNR.

Furthermore, by assuming NR(t) = NL(t), the symmetry retained in the
matrix parameter D has the effect of preserving the symmetry for the flow
(M(t),K(t), C(t)) defined by the dynamical system (8.35). The various
symmetry preserving properties are summarized in Table 8.5.

Table 8.5. Preserving symmetry of (M(t), C(t),K(t)) by D(t), if NR(t) = NL(t).

D(t) M(t) C(t) K(t)

skew-symmetric symmetric symmetric symmetric
symmetric symmetric skew-symmetric symmetric
symmetric skew-symmetric skew-symmetric skew-symmetric

skew-symmetric skew-symmetric symmetric skew-symmetric

The remaining task is to “control” the free matrix parameters in such a
way that the structure preserving isospectral flow (A(t), B(t)) converges to
the canonical form (8.19). Consider the idea of minimizing a given suffi-
ciently smooth objection function f : R

n → R whose state variable x ∈ R
n

is constrained to the integral curve of

dx

dt
= g(x)u, x(0) = x0, (8.36)

where g : R
n −→ R

m is a fixed function and u(t) ∈ Rm is the control.
For minimization, one way to choose the control u is to make the vector ẋ
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as close to −∇f(x) as possible. This amounts to the selection of the least
squares solution u defined by

u(t) = −g(x(t))†∇f(x(t)), (8.37)

where g(x)† stands for the Moore-Penrose generalized inverse of g(x). It
follows that the closed-loop dynamical system,

dx

dt
= −g(x)g(x)†∇f(x), (8.38)

defines a descent flow x(t) for the objective function f(x).
For our application, we wish that the structure-preserving isospectral

flow (M(t), C(t),K(t)) be driven to diagonal matrices. However, unlike the
isospectral flow by orthogonal transformations, our flow (M(t), C(t),K(t))
preserve only the Lancaster structure but not the norm. Thus, we seek
matrix parameters NR, NL and D to minimize the function,

f(K,C,M) :=
1

2

{
‖offdiag(M)‖2

F + ‖offdiag(C)‖2
F + ‖offdiag(K)‖2

F

}

+ δh(diag(M),diag(C),diag(K)), (8.39)

subject to the condition that (M,C,K) is governed by the differential system
(8.35). The crux of choosing this particular objective function is to minimize
the off-diagonal entries of (M,C,K) while using the function h to regulate
the behavior of the diagonal entries by a factor of δ. Note that the we may
rewrite the dynamical system (8.35) in the same control scheme,

d

dt




vec(M)
vec(C)
vec(K)


 =




1
2(K ⊗ C − C ⊗K) K ⊗ I I ⊗K
K ⊗M −M ⊗K C ⊗ I I ⊗ C

1
2 (C ⊗M −M ⊗ C) M ⊗ I I ⊗M







vec(D)
vec(N⊤

L )
vec(NR)


 ,

as that of (8.36). The above-mentioned control strategy fits perfectly. In this
way, we have developed a “controlled” gradient flow which not only preserves
both the Lancaster structure and the isospectrality, but also moves in the
direction of total decoupling of a quadratic pencil. More detailed discussion
can be found in (Chu and Del Buono 2006b).

8.3. Hamiltonian Structure

A matrix H ∈ R
2n×2n is said to be Hamiltonian if it satisfies the relationship

(HJ)⊤ = HJ , where

J :=

[
0 In

−In 0

]
.

It is easy to see that a Hamiltonian matrix must have the structure,

H =

[
M P
Q −M⊤

]
, P and Q are symmetric. (8.40)
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Likewise, a skew-Hamiltonian matrix W satisfies (WJ)⊤ = −WJ and has
the structure,

W =

[
M F
G M⊤

]
, F and G are skew-symmetric. (8.41)

Without causing ambiguity, we shall refer to a form of either (8.40) or (8.41)
collectively as a Hamiltonian structure. We shall call up the more specific
reference to a Hamiltonian matrix or a skew-Hamiltonian matrix only when
a clear distinction is necessary. The notation H and W, specifically reserved
for the Hamiltonian matrix and the skew-Hamiltonian matrix, respectively,
should offer a clue on which structure we are referring to in the context.

Matrices with Hamiltonian structure arise from a variety of applications,
including systems and controls, algebraic Riccati equations, and quadratic
eigenvalue problems (Benner, Kressner and Mehrmann 2005). Inherent in
the Hamiltonian structure are many interesting properties. For example, the
eigenvalues of H are symmetric with respect to the imaginary axis, and the
eigenvalues of W have even algebraic and geometric multiplicities. These
properties often are tied to the physical settings that lead to the under-
lying structure. For feasibility and interpretability, therefore, any trans-
formation of H or W should respect the original Hamiltonian structure.
Because conventional algorithms usually fail to meet this requirement, there
has been considerable research effort to derive special methods for matrices
with Hamiltonian structure. Some principal references will be given in the
course of our presentation. Needless to say, special methods means more
delicate manipulations. The description of these methods usually are quite
involved.

In this section, we are mainly interested in deriving continuous dynamical
systems that mimic existing iterative schemes. In contrast to the iterative
methods, most of our Hamiltonian structure preserving dynamical systems
can be characterized as a single line equation. Nonetheless, despite the fact
that our extensive numerical experiments have given convincing evidence for
the resulting dynamical behavior, a major drawback in our current work is
the lack of a complete asymptotic analysis of these differential systems. We
have to leave these gaps as conjectures in this presentation.

To maintain the Hamiltonian structure, it is typical in practice that a
similarity transformation of H or W should involve only symplectic matrices
S ∈ R

2n×2n. A symplectic matrix S must satisfy the condition,

S⊤JS = J, (8.42)

which naturally implies the symmetry SJS⊤ = J as well. Recall that we
have mentioned earlier in Table 7.2 that symplectic matrices form a group
Sp(2n). For numerical stability, it is often further required that the trans-
formation matrix S be orthogonal symplectic.
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The following three facts, leading to the particular structure called the
real Schur-Hamiltonian form in the first two cases and the URV form in
the third case, play fundamental roles in the computation of eigenvalues for
matrices with Hamiltonian structure.

Theorem 5. Given H,W ∈ R
2n×2n which are Hamiltonian and skew-

Hamiltonian matrices, respectively,

1 (Paige and Van Loan 1981) If H has no purely imaginary eigenvalues,
then there exists an orthogonal symplectic matrix U ∈ R

2n×2n such
that H̃ = U⊤HU is Hamiltonian and is of the form,

H̃ =

[
R P
0 −R⊤

]
, (8.43)

where P is symmetric and R is upper quasitriangular.

2 (Van Loan 1984) There exists an orthogonal symplectic matrix U ∈

R
2n×2n such that W̃ = U⊤WU is skew-Hamiltonian and is of the form,

W̃ =

[
R F
0 R⊤

]
, (8.44)

where F is skew-symmetric and R is upper quasitriangular.

3 (Benner et al. 2005) There exist orthogonal symplectic matrices U, V ∈

R
2n×2n such that Ĥ = U⊤HV is of the form,

Ĥ =

[
T N
0 R⊤

]
, (8.45)

where N has no particular structure, T is upper triangular and R is
upper quasitriangular.

Apparently, being able to reduce a matrix of Hamiltonian structure to its
Schur-Hamiltonian form is sufficient for retrieving eigenvalue information.
Most existing numerical methods for eigenvalue problems with Hamiltonian
structure consists of two steps — First, endeavor to obtain the reduced form
and, secondly, employ some classical iterative schemes to solve the reduced
eigenproblem.

Currently, stable procedure for computing eigenvalues of skew-Hamiltonian
matrices is well developed (Benner et al. 2005, Van Loan 1984). For Hamil-
tonian matrices, the task is much harder. The prevailing idea is to square
a Hamiltonian H due to the fact that H2 is skew-Hamiltonian. Indeed, by
(8.45), we see that H2 can be factorized as

U⊤H2U =

[
−TR TN⊤ −NT⊤

0 −R⊤T⊤

]
, (8.46)

showing that the eigenvalues of H are the square roots of the eigenvalues
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from the matrix −TR. The 2n×2n eigenvalue problem therefore is effectively
halved. A QZ-type algorithm can be applied to find the eigenvalues of
the product TR without explicitly forming the product. Implementation
details can be found in the paper by Benner and Kressner (2006). We shall
present in the following an interesting contrast that a continuous approach
is easier to formulate for the Hamiltonian eigenproblem than for the skew-
Hamiltonian eigenproblem.

In a spirit similar to that in the QR, the QZ or the SV D algorithms,
we are interested in deriving dynamical systems that can realize the Schur-
Hamiltonian form or its alike. Toward that end, we need to understand how
a smooth curve S(t) moves on the manifold of symplectic group Sp(2n).
It suffices to know that the tangent space g = TI2n

Sp(2n) for Sp(2n) at
the identity is simply the collection of Hamiltonian matrices. The tangent
vectors of S(t) must be given by,

dS

dt
= SK, (or KS), (8.47)

where K is Hamiltonian. If the symplectic S(t) is also orthogonal, then the
Hamiltonian matrix K must be of the special form,

K =

[
M −Q
Q M

]
, (8.48)

where M is skew-symmetric and Q is symmetric.
We demonstrate a simple application of (8.48) to the Hamiltonian eigen-

problem. Given a matrix H0 ∈ R
2n×2n, consider a special kind of Lax

dynamical system described in (5.4),

dX

dt
= [X,P0(X)], X(0) = H0, (8.49)

where the operator P0 acting on X is defined to be the skew-symmetric
matrix,

P0(X) :=

[
0 −X⊤

21

X21 0

]
, (8.50)

if X is partitioned into four blocks of size n× n,

X =

[
X11 X12

X21 X22

]
.

Following (5.6), define the parameter dynamical system,

dg

dt
= gP0(X), g(0) = I2n. (8.51)

Note that if P0(X) is Hamiltonian, then g(t) is automatically orthogonal
symplectic. In particular, if H0 is Hamiltonian to begin with, then we know
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by Theorem 1 that X(t) = g⊤(t)H0g(t) remains Hamiltonian for all t. Under
some mild conditions, it can be proved that X(t) converges to an upper block
triangular form, that is, X21(t) −→ 0 as t −→ ∞ (Chu and Norris 1988).
Though the limit point of the isospectral flow (8.49) is not exactly of the
Schur-Hamiltonian form, it suffices to halve the Hamiltonian eigenproblem.
The flow approach is remarkably simple, given that in the literature the
Hamiltonian eigenproblem is known notoriously hard to solve by iterative
methods.

Unfortunately, the corresponding P0(X) is not Hamiltonian if X is skew-
Hamiltonian. The simple dynamical system (8.49) therefore cannot preserve
the skew-Hamiltonian structure. Since the skew-Hamiltonian eigenproblem
is supposed to be relatively easier to handle than the Hamiltonian eigen-
problem by iterative methods, it becomes interesting to ask whether the
Schur-Hamiltonian form of a skew-Hamiltonian matrix W0 can ever be re-
alized continuously. We offer a partial answer that looks pleasingly neat in
theory, but probably is of little usage in practice.

It is known that every real skew-Hamiltonian matrix has a real Hamilto-
nian square root (Faßbender, Mackey, Mackey and Xu 1999). Thus, given
a skew-Hamiltonian matrix W0, if we define H0 to be its real Hamiltonian
square root and define X(t) according to (8.49), then the corresponding
W(t) = X2(t) is skew-Hamiltonian and will converge to an upper block tri-
angular form. In particular, the very same parameter g(t) defined in (8.51)
(in terms of the Hamiltonian square root X(t)) serves as the continuous co-
ordinate transformation for W(t) = g⊤(t)W0g(t) and leads to convergence.
It is not difficult to verify that symbolically we can write the motion of W(t)
via the dynamical system,

dW

dt
= [W,P0(W1/2)], W(0) = W0, (8.52)

where W1/2 represents the real Hamiltonian square root of W. We hasten
to point out that caution must be taken in the above expression because a
skew-Hamiltonian matrix W has infinitely many Hamiltonian square roots
(Faßbender et al. 1999).

In the Lax dynamical system (5.14), the operation Π0(X) does the magic
of convergence to the real Schur form for a general square matrix X0. We
seek a similar dynamical system that converges to the real Schur-Hamiltonian
of for a Hamiltonian matrix H0. The operator P1 applied to a Hamiltonian
matrix X via the definition,

P1(X) :=

[
Π0(X11) −X21

X21 Π0(X11)

]
, (8.53)

appears to be a compromise between the overall Π0(X) required by the QR
flow for reaching sensible convergence and the form (8.48) required by the
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orthogonal symplecticity for keeping the Hamiltonian structure. The two
operators Π0 and P1 at a Hamiltonian matrix X differ only the (2, 2)-block.
We propose the dynamical system,

dH

dt
= [H,P1(H)], H(0) = H0, (8.54)

for finding the real Schur-Hamiltonian form of a Hamiltonian matrix H0.
The following conjecture characterizes the convergence behavior we have
observed numerically, but we cannot offer a theoretical proof for the present.

Conjecture 3. Suppose H0 is Hamiltonian with no purely imaginary eigen-
values. Then the solution flow H(t) of (8.54) remains Hamiltonian and con-
verges to the real Schur-Hamiltonian form as is specified in (8.43).

If the square root is interpreted in the same way as in (8.52), then a similar
conjecture can be made for the system,

dW

dt
= [W,P1(W1/2)]. W(0) = W0. (8.55)

The solution flow W(t) preserves the skew-Hamiltonian structure of an ini-
tial matrix W0 and converges to the real Schur skew-Hamiltonian form as is
characterized in (8.44).

Regarding the URV decomposition, it is necessary that a flow X(t) =
U⊤(t)X0V (t) satisfies a differential equation of the form,

dX

dt
= XR − LX, X(0) = X0, (8.56)

where the coordinate transformations are governed by

dU

dt
= −UL⊤, (8.57)

dV

dt
= V R. (8.58)

with L and R to be determined. The setting thus far is very similar to that
of the SVD flow. Let the operator P3 denote a generalization of P0 in that
the partition of X is not necessarily at the midpoint of its diagonal. In
particular, the off-diagonal block X21 can be of size (2n−k)×k with k ≤ n.
Consider the dynamical system

dX

dt
= XP3(X⊤X) − P3(XX⊤)X, X(0) = X0, (8.59)

for a general 2n× 2n matrix X0, Note that (8.59) is analogous to the SVD
flow (6.2) except that P3 is used in the place of Π0. Clearly, X(t) main-
tains the same singular values as X0. Numerical experiments support the
following conjecture which seems new and interesting.
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Conjecture 4. Given a general 2n× 2n matrix X0 with distinct singular
values and an integer k ≤ n, the solution flow X(t) of (8.59) converges to a

block diagonal matrix diag{X̂11, X̂22} of size k× k and (2n− k)× (2n− k),

respectively. Furthermore, the singular values of X̂11 are the first k largest
singular values of X0.

The coordinate transformations involved in Conjecture 4 are orthogonal
similarity at most. To really achieve the URV decomposition specified in
Theorem 8.45 for a Hamiltonian matrix H0, we have to employ orthogonal
symplectic transformations. The clue comes at recognizing from (8.46) that
the U transformation that does the URV decomposition for H0 should be
the same U transformation that does the real Schur-Hamiltonian form for
H0. That is, by Conjecture 3, L = P1(U⊤H0U). Similarly, the V matrix in
the URV decomposition should be the same V matrix that transforms H⊤

0

to lower quasitriangular Schur-Hamiltonian form. That is, by defining the
operator,

P2(X) :=

[
−Π0(X⊤

11) X12

−X12 −Π0(X⊤
11)

]
, (8.60)

for a given Hamiltonian matrix X, we take R = P2(V ⊤H⊤
0 V ). We are

interested in a URV flow X(t) = U⊤(t)H0V (t). From the relations that

U⊤H2
0U = XJX⊤J,

V ⊤H2
0V = X⊤JXJ,

we can express the URV flow symbolically through the autonomous dynam-
ical system,

dX

dt
= XP2((X⊤JXJ)1/2) − P1((XJX⊤J)1/2)X, X(0) = H0, (8.61)

where again W1/2 represents a proper real Hamiltonian square root of the
skew-Hamiltonian matrix W.

Hamiltonian structure preserving differential systems such as (8.49), (8.54),
or even (8.61) might not be practically useful right away, but they neatly
represent complicated dynamics that otherwise will be quite tedious, if not
formidable, to describe by iterative procedures. Maybe, and only maybe,
that somehow these flows could be suitably discretized and lead to effective
numerical algorithm. A precedent of such a possibility is the realization of
the vdLV algorithm for the Lotka-Volterra equation which, when first pro-
posed two decades ago, was regarded as “impractical” as well. These flows
might be worth further investigation..
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8.4. Hamiltonian Pencils

We have already seen linear pencils with the Lancaster structure resulting
from a special linearization of a quadratic pencil. There are also linear
pencils with the Hamiltonian structure. To start off, two different definitions
in the literature must be carefully discerned. First, a linear pencil Bλ− A
is said to be Hamiltonian if and only if

BJA⊤ = −AJB⊤ (8.62)

This definition is equivalent to saying that the product B−1A is Hamil-
tonian, provided B−1 exists (Lin, Mehrmann and Xu 1999). If λ is an
eigenvalue of a Hamiltonian pencil, the so are −λ, λ,−λ. Secondly, a linear
pencil Bλ − A is said to be skew-Hamiltonian/Hamiltonian (sHH) if and
only if B is skew-Hamiltonian and A is Hamiltonian (Mehl 1999). Pencils
with the sHH structure appear in gyroscopic systems, structural mechan-
ics, linear response theory, quadratic optimal control problems and many
other applications (Benner, Byers, Mehrmann and Xu 2002, Mehrmann
and Watkins 2000). Though it is a natural generalization in mathematics,
we have rarely seen Hamiltonian/Hamiltonian (HH) pencils in applications.
One indicator that an HH pencil is probably too general to deserve any
special attention is the fact that the HH structure generally does not carry
any additional symmetric properties in its spectrum. We note, for example,
that any self-adjoint quadratic pencil (8.15) can be linearized as the pencil,

[
M0 0
−C0 −M0

]
λ−

[
0 M0

K0 0

]
, (8.63)

which is equivalent to the Lancaster pair (8.14), is of the HH structure, and
literally can have arbitrary eigenvalues.

Similar to (8.5), the one-parameter isospectral flow,

L (t) = Q(t) (B0λ−A0)Z(t).

should satisfy a differential equation of the form,

dL

dt
= LR− LL , L (0) = B0λ−A0, (8.64)

where the coordinate transformations are governed by

dQ

dt
= −LQ, (8.65)

dZ

dt
= ZR. (8.66)

with L and R to be determined. So far, this setting is similar to the QZ flow
except that the definition of the two matrices L and R needs to be further
specified. The conventional condition that L and R be skew-symmetric so
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that Q(t) and Z(t) are orthogonal is certainly assumed in all cases, but we
are more interested in specifying conditions on L and R so as to maintain the
Hamiltonian structure. Besides, we are further interested in using L and R
to establish limiting behavior of L (t) that might be of some practical usages.
We outline some general ideas in the sequel.

We first consider the sHH pencils. Suppose that L (0) = W0λ−H0 is of
the sHH structure to begin with. Write

L (t) = W(t)λ−H(t).

In order that L (t) maintains the sHH structure for all t, it is necessary that
WR − LW and HR − LH remain skew-Hamiltonian and Hamiltonian, re-
spectively. A straightforward algebraic manipulation shows that a sufficient
condition for this to happen is that,

L = JR⊤J. (8.67)

Consequently, Q(t) and Z(t) can be changed to each other via the relation-
ship,

Z(t) = JQ⊤(t)J, (8.68)

Q(t) = JZ⊤(t)J. (8.69)

Only one coordinate transformation of either (8.65) or (8.66) is needed for
the isospectral flow of an sHH pencil.

For any given 2n × 2n matrix X, define a new operator P4 by,

P4(X) :=

[
Π0(X11) −X⊤

21

X21 −Π0(X⊤
22)

]
. (8.70)

Observe that P4(X) is almost identical to Π0(X) except for a “twist” at the
(2, 2) block. Take the definitions,

R := P4(W−1H), (8.71)

L := P4(HW−1). (8.72)

It is easy to see that the relationship,

HW−1 = J(W−1H)⊤J, (8.73)

holds for every sHH pencil. A direct substitution then shows that the suf-
ficient condition (8.67) is satisfied. In this way, we find that the dynamical
system,

dL

dt
= LP4(W−1H) − P4(HW−1)L , L (0) = B0λ−A0, (8.74)

defines an sHH flow which can be expressed as

L (t) = JZ⊤(t)J(W0λ−H0)Z(t). (8.75)
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Had P4 been taken as Π0, we would have precisely the standard QZ flow
described earlier and the convergence behavior of the QZ flow is well un-
derstood. With the little flip at the (2, 2) block in P4, we maintain the sHH
structure and we almost can expect that a similar convergence behavior will
occur. We conceive the following conjecture from our numerical observa-
tion. Its assertion is in agreement with the sHH Schur form characterized
in (Benner et al. 2002). If the convergence can be proved, then we have a
very simple way to realize the canonical form.

Conjecture 5. Suppose L (0) is an sHH pencil to begin with. Then the
flow (8.75) with R defined by (8.71) maintains the sHH structure and con-
verges to the canonical form,

L̃ =

[
W̃11 W̃12

0 W̃⊤
11

]
λ−

[
H̃11 H̃12

0 −H̃⊤
11

]
,

where W̃11 and H̃11 are upper quasitriangular, W̃12 is skew-symmetric, and
H̃12 is symmetric, respectively.

We next consider the Hamiltonian pencils. It is easy to verify that Bλ−A
is Hamiltonian if and only if Q(Bλ−A)Z is Hamiltonian for arbitrary non-
singular Q and symplectic Z. In order to maintain the Hamiltonian pencil,
the R matrix in (8.66) must be Hamiltonian, but there is no restriction on
L in (8.65). The only concern is to somehow ensure nice convergence.

For Hamiltonian pencils, both B−1A and A−1B are Hamiltonian matri-
ces, but AB−1 and BA−1 are not. Based on our past experience, we thus
propose to take R = P1(B−1A) which is a compromise of Π0(B−1A) with
the restriction (8.48) and makes Z orthogonal symplectic. There is no re-
strictions on L, so we use the QZ flow as a guide. In all, we propose the
differential equation,

dL

dt
= LP1(B−1A) − Π0(AB−1)L , (8.76)

which differs from the QZ flow defined in (8.9) at the P1 operator but keeps
the pencil flow L (t) Hamiltonian for all t.

The limiting behavior of (8.76) is somewhat more complicated to describe.
For convenience, let Ξ denote the unit perdiagonal matrix whose entries are
all zero but 1’s along the north-east to south-west diagonal. We introduce
the notion that a matrix X is upper-left quasitriangular if the product XΞ
is upper(-right) quasitriangular in the usual sense. Again, the following
conjecture is observed in our numerical experiments, but we have no proof
for the moment.

Conjecture 6. Suppose the pencil B0λ − A0 is Hamiltonian. Then the
flow defined by (8.76) remains to be a Hamiltonian pencil. Furthermore,
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1 Suppose that B0λ − A0 has no purely imaginary eigenvalues. Then
L (t) converges to the canonical form,

L̂ =

[
B̂11 B̂12

0 B̂22

]
λ−

[
Â11 Â12

0 Â22

]
,

where Â11 and B̂11 are upper quasitriangular matrices with 1 × 1 or
2× 2 blocks at the same corresponding locations, and Â22 and B̂22 are
upper-left quasitriangular matrices with 1 × 1 or 2 × 2 blocks at the
same corresponding locations,

2 If B0λ− A0 has one pair of purely imaginary eigenvalues. Then L (t)
converges to the same canonical form as above with the exception of a
non-zero entry at the (n+ 1, n) position which is periodic in t.

Finally, we mention the following theorem concerning a general 2n × 2n
pencil (Benner, Mehrmann and Xu 1998).

Theorem 6. Given an arbitrary real 2n× 2n pencil B0λ−A0, there exist
an orthogonal matrix Q3 and orthogonal symplectic matrices Q1 and Q2

such that

Q⊤
3 B0Q1 =

[
B̃11 B̃12

0 B̃⊤
22

]
, Q⊤

3 A0Q2 =

[
Ã11 Ã12

0 Ã⊤
22

]
, (8.77)

where B̃ij, Ãij ∈ R
n×n,, B̃11, Ã11, B̃22 are upper triangular and A22 is upper

quasitriangular.

Note that what is involved in Theorem 6 is a non-equivalence transfor-
mation, so generally it is not useful for eigenvalue preservation. However,
in the case when B0λ−A0 is Hamiltonian, then Q⊤

1 (B−1
0 A0)Q2 is precisely

the URV form for the Hamiltonian matrix B−1
0 A0. The reference to Q3 is

completely annihilated. The above result therefore has been exploited as an
effective way of eigenvalue computation for Hamiltonian pencils (Benner et
al. 1998).

We are curious at whether the canonical form described in (8.77) can be
realized continuously. Defining H(t) = B−1(t)A(t), we have already learned
that the URV flow H(t) is governed by (8.61). In particular, we know that
Q1(t) and Q2(t) should be governed by

dQ1

dt
= Q1P1((HJH⊤J)1/2), (8.78)

dQ2

dt
= Q2P2((H⊤JHJ)1/2), (8.79)

respectively. It is not immediately clear how the dynamics for Q3(t) should
be defined.
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Consider the product,

Z(t) := A(t)B−1(t) = Q⊤
3 A0Q2Q

⊤
1 B

−1
0︸ ︷︷ ︸

Z

Q3 =

[
Z11 Z12

Z21 Z22

]
.

Note that Z (t) is not necessarily isospectral in t. However, the canonical
form (8.77) motivates us to hope that, as t goes to infinity, the matrix

Z (t) would ultimately exhibits the property that Z11 = Ã11B̃
−1
11 is upper

triangular, Z21 = 0 and Z22 = Ã⊤
22B̃

−⊤
22 should be lower quasitriangular. We

suspect therefore that Q3(t) should be governed by the dynamical system

dQ3

dt
= Q3P4(Z), (8.80)

where the operator P4 is defined earlier in (8.70). Assembling all together, we
conjecture that the canonical form (8.77) can be realized via the dynamical
system,

dA

dt
= AP2((A⊤B−⊤JB−1AJ)1/2) − P4(AB−1)A, A(0) = A0, (8.81)

dB

dt
= BP1((B−1AJA⊤B−⊤J)1/2) − P4(AB−1)A, B(0) = B0. (8.82)

If this conjecture is true, it would be nicely expressing the complicated
iterative algorithm described in (Benner et al. 1998) in a concise form.

It might be helpful to summarize the different dynamical systems dis-
cussed thus far in Table 8.6. Recall that the principal consideration in
formulating these flows is to preserve the structure of the initial data. The
special operators on the right column in the table are designed for that pur-
pose, all of which are some kinds of variations of the operator Π0. Only
a few of these systems have their asymptotic behavior understood in the
literature. Those identified by a conjecture in the table have been exten-
sively tested by numerical integrators, but no theory of asymptotic analysis
is available for the present. If any of the conjectures is true, then often the
corresponding dynamical system encapsulates a fairly complicated iterative
process into a nice and simple mathematical expression. Be cautioned that
we are not implying that the flows sampled at integer times will produce
the same iterates as those generated by existing discrete methods. This kind
of coincidence might be too difficult to achieve for matrices with Hamilto-
nian structure. The only cases we know for sure about this coincidence are
the QR, QZ and SVD flows. Neither are we inferring that these structure
preserving dynamical systems can easily be discretized with the resulting
iterative schemes still preserving the original structure. We must stress that
the turnabout diagram in Figure 1.1 that we frequently refer to in this pa-
per now has an added dimension of constraint — structure preserving. Thus
there is much room left for further investigation of these relationships.
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Table 8.6. Hierarchy of Structure Preserving Dynamical Systems

Initial Structure Dynamical System Limiting Behavior Operator

X0=staircase Ẋ = [X,Π0(X)] (Ashlock et al. 1997) Π0(X) = X− − (X−)⊤

B0λ−A0 = staircase L̇ = L Π0(Y −1X) − Π0(XY −1)L Conjecture 1

B0 = staircase Ḃ = BΠ0(B⊤B) − Π0(BB⊤)B Conjecture 2

B0λ−A0 = Lancaster K̇ = 1
2 (CDK −KDC) +N⊤

L K +KNR D,NR, NL = controls

Ċ = (MDK −KDM) +N⊤

L C + CNR

Ṁ = 1
2 (MDC − CDM) +N⊤

L M +MNR

H0 = Hamiltonian Ḣ = [H,P0(H)] (Chu and Norris 1988) P0(X) =

[
0 −X⊤

21

X21 0

]

W0 = skew-Hamiltonian Ẇ = [W ,P0(W1/2)]

H0 = Hamiltonian Ḣ = [H,P1(H)] Conjecture 3 P1(X) =

[
Π0(X11) −X21

X21 Π0(X11)

]

W0 = skew-Hamiltonian Ẇ = [W ,P1(W1/2)]

X0 = general Ẋ = XP3(X⊤X) − P3(XX⊤)X Conjecture 4 P3 = generalized P0

H0 = Hamiltonian Ẋ = XP2((X⊤JXJ)1/2) − P1((XJX⊤J)1/2)X URV flow P2(X) :=

[
−Π0(X⊤

11) X12

−X12 −Π0(X⊤
11)

]

W0λ−H0 = sHH L̇ = LP4(W−1H) − P4(HW−1)L Conjecture 4 P4(X) :=

[
Π0(X11) −X⊤

21

X21 −Π0(X⊤
22)

]

B0λ−A0 = Hamiltonian L̇ = LP1(B−1A) − Π0(AB−1)L Conjecture 6

B0λ−A0 = general Ȧ = AP2((A⊤B−⊤JB−1AJ)1/2) − P4(AB−1)A Not tested

Ḃ = BP1((B−1AJA⊤B−⊤J)1/2) − P4(AB−1)A
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8.5. Group Structure

Needless to say, there are far more too many other applications where it is
desirable that a specific structure is maintained throughout a specified dy-
namical system. Like the canonical forms, the notion of “structure” should
be interpreted quite liberally. We have discussed only a few cases involving
spectrum, singular values, staircase, or the Hamiltonian structure from the
linear algebra point of view. Obviously, it is never an overstatement that
preserving volume, momentum, energy, symplecticity, or other kinds of phys-
ical quantities is an extremely important task with significant consequences.
The subject is simply too wide a scope that the author must humbly admit
is beyond his comprehension. We conclude this chapter by pointing out one
more structure that has attracted tremendous interest recently.

The once abstract notion of Lie theory is now a ubiquitous framework be-
hind many disciplines of sciences and engineering applications. In Chapter 7
we have also demonstrated how group actions often serve as the fundamental
coordinate transformations leading to canonical forms. It should not come
as a surprise, but rather is a necessity, that many of the dynamical systems
and numerical algorithms originally developed over the Euclidean space need
to be redeveloped over manifolds. By studying the underlying geometry, for
example, critical algorithms such as the Newton and the conjugate gradient
methods can be generalized to the Grassmann and the Stiefel manifolds in
a natural way (Edelman et al. 1999).

We illustrate in this section how the Newton dynamics can take place on
a Lie group (Owren and Welfert 2000). This notion typifies what we mean
by a dynamical system that respects the group structure.

Let G be a Lie group and g its corresponding Lie algebra. Keep in mind
that elements in G can be abstract functionals or operators. Suppose we
want to find “zero(s)” of a given map,

f : G→ g,

where the iterates are to stay on the manifold G. Given a current iterate
yn ∈ G, the Newton scheme can interpreted as solving the equation,

dfyn(un) + f(yn) = 0, (8.83)

for a tangent vector un ∈ g and then updating to the next iterate via the
exponential map,

yn+1 = yn exp(un). (8.84)

In the above, the differential,

dfy : TyG→ g,



Linear Algebra Algorithms as Dynamical Systems 77

can be interpreted as

dfy(u) = (d/dt)t=0f(y exp(tu)). (8.85)

Alternatively, since all local charts of a Lie group can be obtained by trans-
lation, we can restrict ourselves to the local charts. In particular, it suffices
to consider the “local” representation of f at yn,

f̃ := f ◦ Lyn ◦ exp, (8.86)

where Lz(y) = zy with a fixed z ∈ G. This becomes a classical algebraic
equation in the Euclidean space. The Newton iteration involves the steps of
solving the equation,

df̃vn(un) + f̃(vn) = 0, (8.87)

for un, where vn is the local parametrization, i.e., logarithm of yn, updating
over the linear space by vn+1 = vn + un, and finally advancing to the new
iterate on the manifold G by defining,

yn+1 = yn exp(vn+1). (8.88)

Note that both formulations reduce to the standard method in the Euclidean
case. It can be shown that under classical assumptions the proposed meth-
ods converge quadratically (Owren and Welfert 2000).

We think this framework can be repeatedly applied to generalize other
types of algorithms originally designed for the Euclidean space to Lie groups.
To what extent this generalization should go and of what practicality this
extension could make are something yet to be seen.
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M. R. S. Kulenović and O. Merino (2002), Discrete dynamical systems and difference
equations with Mathematica, Chapman & Hall/CRC, Boca Raton, FL.

P. D. Lax (1968), ‘Integrals of nonlinear equations of evolution and solitary waves’,
Comm. Pure Appl. Math. 21, 467–490.

W.-W. Lin and S.-F. Xu (2006), ‘Convergence analysis of structure-preserving dou-
bling algorithms for Riccati-type matrix equations’, SIAM J. Matrix Anal.
Appl. 28(1), 26–39 (electronic).

W.-W. Lin, V. Mehrmann and H. Xu (1999), ‘Canonical forms for Hamiltonian and
symplectic matrices and pencils’, Linear Algebra Appl. 302/303, 469–533.
Special issue dedicated to Hans Schneider (Madison, WI, 1998).
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H. Rutishauser (1960), ‘Über eine kubisch konvergente Variante der LR-

Transformation’, Z. Angew. Math. Mech. 40, 49–54.
Y. Saad and M. H. Schultz (1986), ‘GMRES: a generalized minimal residual algo-

rithm for solving nonsymmetric linear systems’, SIAM J. Sci. Statist. Comput.
7(3), 856–869.

G. V. Savinov (1983), ‘The conjugate gradient method for systems of nonlinear
equations’, J. Math. Sci. 23, 2012–2017. Translated from Zap. Naučn. Sem.
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