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HOMOTOPY METHOD FOR GENERAL X-MATRIX PROBLEMS*

MOODY T. CHUrl, T. Y. LI:I:, AND TIM SAUER

Abstract. This paper describes a homotopy method used to solve the kth-degree X-matrix problem
(Akk q_ Ak- k-

__
+ Al - A0)x 0. A special homotopy equation is constructed for the case where all

coefficients are general n n complex matrices. Smooth curves connecting trivial solutions to desired eigenpairs
are shown to exist. The homotopy equations maintain the nonzero structure ofthe underlying matrices (ifthere
is any) and the curves correspond only to different initial values of the same ordinary differential equation.
Therefore, the method might be used to find all isolated eigenpairs for large-scale h-matrix problems on single-
instruction multiple data (SIMD) machines.
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1. Introduction. Given a kth-degree matrix polynomial

(1.1) P(k)=AkXk+Ak-lXk-l + +AIX+Ao
with Ak, Ak-1, "", A0 e Cnn, the X-matrix problem consists of determining scalars X,
called eigenvalues, and corresponding n nonzero vectors x, called eigenvectors,
such that

(1.2) P(X)x=0

is satisfied. Problems of this kind occur in many different application areas. Note that
the important regular eigenvalue problem

(1.3) Xx=Ax

and the generalized eigenvalue problem

(1.4) XBx=Ax

are just two special linear cases of the general problem (1.2). Various examples of (1.1)
in physical applications can be found in [3 ]-[ 5] and the references cited therein.

A variety of numerical methods are available for solving the h-matrix problem. In
fact, several review papers have already appeared. Without attempting a complete list,
we mention here only those by Gohberg, Lancaster, and Rodman [3], Lancaster [4 ],
[5], Ruhe [12], Scott [13], and Peters and Wilkinson [10]. Roughly, most of the ap-
proaches can be classified into three categories:

(1) Solving the linearized problem;
(2) Iterating directly;
(3) Reducing to the canonical form.

Each approach has its strengths and weaknesses. For example, the first approach can
make use ofthe readily available software packages, but it increases the size considerably.
The second approach includes subspace and Newton-type iterations. Both iterative pro-
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cesses are plausible in theory. However, concerns over the rate of convergence for the
former process and the starting procedure for the latter arise in practice. The third approach
involves the problem of finding zeros of one-dimensional polynomials. When the degree
increases, this becomes an ill-conditioned problem. Interested readers may find more
detailed discussions and references concerning each approach among the review papers
mentioned above.

Recently the homotopy method has been applied successfully to find all isolated
solutions of the linear algebraic eigenvalue problems. In ], Chu proposes a homotopy
equation for (1.3) when A is real, symmetric, and tridiagonal with nonzero off-diagonal
elements. Li and Sauer [7] and Li, Sauer, and Yorke [8] study homotopy methods for
(1.3) and (1.4) by using fairy sophisticated concepts from algebraic geometry when both
A and B are general matrices. In [2] Chu shows that the equation formed in 1] for
tridiagonal symmetric matrices works equally well for general matrices by using elementary
algebraic theory. The same idea is also applicable to problem (1.4).

Solving the X-matrix problem by the homotopy method may be costly because of
the task of following the homotopy curves. We feel that with improvements in the curve-
tracing techniques (say, a hybrid method) this overhead would be substantially reduced.
Recently, Rhee 11 has reported some rather promising results on this subject. On the
other hand, the homotopy method may have the following advantages:

(1) All isolated eigenpairs are guaranteed to be reached. The method can even
approximate nonisolated eigenpairs.

(2) The homotopy curves correspond only to different initial values of the same
ordinary differential equation. Hence, all curves can be followed simultaneously if there
are enough processors.

(3) The homotopy equation respects the matrix structure (if there is any) of the
original problem.

In this paper we present a general treatment of the homotopy method for solving
the general kth-degree h-matrix problem (1.2). Previous results in regard to the linear
algebraic eigenvalue problems should then follow as special cases. Readers should be
cautioned, however, that the line of thinking in this paper is fundamentally different
from that of previous papers.

This paper is organized as follows. In 2 we begin with a collection of preliminary
observations. All these facts are either easy to prove or well known in the literature. We
then use these fundamentally important facts to establish the theory of the homotopy
method in 3. Comments on computational aspects of our method are given in 4,
along with some numerical examples.

2. Preliminaries. In this section we observe some basic facts that will be used in
the development of our homotopy method.

Consider an arbitrary X-matrix

(2.1) P(X;Bk, ,Bo)=BkXk+ +BX+Bo,
where Bk,"’, B0 e Cnn. When it becomes unambiguous, we shall abbreviate
P(X; Bk, Bo) as P(X).

We first observe the obvious fact that the determinant of P(X) is a polynomial.
Indeed, det (P(X)) (det(Bk))Xnk + lower-degree terms. It follows, if we count the
multiplicities, that the h-matrix problem corresponding to (2.1) has exactly nk eigenvalues
if the leading coefficient Bg is nonsingular. Such a h-matrix is said to be regular.

Recall that the resultant R R( a,,, ..., ao, bm, bo) of two polynomials

f(x) a,,x" + + ax+ ao,

g(x) bmxm --b -1- blX + bo,
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with an, "’", a0, bm, bo C, an 4: 0, and bm v 0 is defined to be the determinant
of the (n + m) (n + m) matrix

-a0,al, ,an
ao, al, an

ao, al an
bo, bl ", bm

bo, bl bm

b0, bi bm
which is made of m rows of a’s, n rows of b’s, and zeros elsewhere. It is well known 14
thatfand g have a common nonconstant factor if and only ifR 0. Thus a polynomial
f has a multiple root if and only if its discriminant, the resultant off and its derivative
f’, is zero.

Given di C, 1, n, let D diag (dl, dn) and

p(X)=det(P(X)-D).(2.2)

We claim the following.
LEMMA 2.1. There exist real numbers (d, dn) such that p(X) has no multi-

ple roots.

Proof. We prove the lemma by induction on n, the size ofP(,). For convenience,
we rename the polynomial p() as Pn(,).

When n 1, p (,) has multiple roots ifand only ifthe discriminant R (d) ofp (,)
vanishes. Suppose the leading coefficient ofp (},) is ak. It is easy to see that R(d) is an
(n 1)th polynomial in d with leading coefficient (kak). Therefore, R(d) can vanish
only at finitely many points. There exists a real number d such thatp (,) has no multi-
ple roots.

Let d, , dn_ be chosen by the induction hypothesis so that Pn-(’), the deter-
minant of the principal (n 1) (n 1) minor of P() D, has no multiple roots.
With these fixed values of d, dn-1, we have

Pn()=q,(k)-dnPn-l()

where qn() and p_() do not depend upon the value of dn. We claim the set of real-
valued dn such that p.(,) has no multiple roots is dense in .

Suppose not. Then there would exist an open interval I such that (dn) is a multiple
root ofpn(X) Pn( ; dn). By refining the interval I if necessary, we may assume without
loss of generality that (dn) is differentiable with respect to dn. For each dn e I, we have

0 p.(.(d.)) q.(X(d.))- dnpn-

Upon differentiating with respect to the parameter dn, we get

0 q’n(X(d.))X’(dn)- dnp’-,(X(dn))X,(dn)-Pn-

--p (X) X dn)-p,-l(X(dn))
X X(dn)

-p,_ ,(X(d,)), dnI.
The last equality follows t?om the fact that X(dn) is a multiple root for dn I. Note that
p,- (dn)) -= 0 for d, e I implies (dn) ,0 a constant) for dn I, since Pn- () is a
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polynomial. It follows that p,(X) has a multiple root at X X0 for all d, e I. Choose
d() 4: d(n2) in I. Then

0 Pn(XO) qn( XO)- d(,,’)p,,--, (Xo),

0 Pn(Xo) qn(XO) d(,,z)p,, (Xo),

0 =p,(Xo) q,(Xo)- d(,,)p’,,- (Xo),

0 P(X0) q(Xo)- -, ,,-(X0).

It follows that p,_ l(X0) p,-l(X0) 0. This contradicts the induction hypothesis that
p,-1 (X) has no multiple roots.

The following lemma is an extension of the preceding result.
LEMMA 2.2. The polynomial p(X) in (2.2) has no multiple roots for (dl, d,)

almost everywhere in C" except on a subset ofcomplex codimension 1.
Proof. The polynomial p(X) has no multiple roots if and only if its discriminant

R(d, d,) is nonzero. By Lemma 2.1, we know that R(dl, , d,) is not identically
zero. Furthermore, since R dl, d,) is itself a polynomial in variables dl, dn,
it can vanish only on a hypersurface of complex codimension [see 9 ].

It is well known in basic matrix theory that if all eigenvalues ofa matrix are distinct,
then it has no generalized eigenvectors. In 3 and 6 ], it is shown that this concept can
be extended naturally to matrix polynomials. In particular, the following lemma is equiv-
alent to the statement that there are no generalized eigenvectors 6, eq. 14.3.3 for the
h-matrix P(X). Readers are referred to 3, Chap. and 6, Chap. 14 for more detailed
discussions. We simply state the result without proof.

LEMMA 2.3. Suppose the h-matrix P( X has nk distinct eigenvalues
Let xj be a unit eigenvector of P(X) associated with X, i.e., P(X)x O. Then
P’(Xj)x q Range (P(Xj)), where P’(X) (d/dX)P(X) kBk xk-1 q-

Henceforth we shall assume that the h-matrix P(X) has nk distinct eigenvalues. For
each eigenpair (x, X) of P(X), we define Q Q(x, x) to be the n (n + 1) com-
plex matrix

(2.3) Q(x, x) [P(X),P’(X)x].

It follows from Lemma 2.3 that Q is of complex rank n.
Recall that a linear transformation from C "+1 to C" can be regarded as a linear

transformation from 2,+ 2 to 2, if each component, say z a + ib, of the complex
matrix is replaced by the 2 2 real matrix [gl -b]. Let e flq :" x (2. + 2) denote the real
matrix associated with the complex matrix Q e C "x(’+ l) defined in (2.3). Suppose each
component xg of the complex vector x is written as x ak + ibg, k 1, "", n. We
define a matrix M M(x, X) e N (:" + 1) x (2n + 2) as follows:

(2.4) M(x,X) [ ( ]al,b,a2, ,a,,bn,O,0

Note that the last row ofM is orthogonal to all rows of because P( X)x 0. It follows
that the matrix M is of real rank 2n + 1.

3. Homotopy method. Equipped with the knowledge of the preceding section, we
now consider our original k-matrix problem (1.2).
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(3.1)

(3.)

(3.4)

For simplicity, we shall denote

xk-P()=AkXk-I-Ak-I + +AIXq-A0,

a(X)= clXk--D,

R(X,t,c,D)=(1 t)Q(X)+ tP(X)

where c e C and D diag (dl, dn) e C n" are to be specified later.
Observe that

R(X,t,c,O)= (1-t)Q(X)+tP(X)

xk-l[(1--t)cI+tAk]Ak+tAk_l + +tAIX+[(I-t)D+tAo]

is still a h-matrix. It is easy to show [7 that there exists an open dense set Ul with full
measure in C such that if c e Ul, then (1 t) cI + tag] is nonsingular for all e 0, 1).
Henceforth we shall assume that the scalar c in (3.2) is always chosen from U, and
abbreviate R(X, t, c, D) as R (X, t, D). We shall also denote

gx(x,t) =-R(X,t,D)(3.4)
xk-2=k[(1-t)clWtAk]Xk-1 +(k- 1)tAk_l -t- +tAl.

For the X-matrix problem (1.2), the homotopy function H: C" C [0, 1) --*
C" N is constructed as follows:

[ R(X,t,D)x ](3.5) H(x’X’t)=
(x’x- 1)/2

where x* represents the transpose of the complex conjugate of x. We are interested in
the set H-1 (0). As our main result is we show that H-1 (0) is a two-dimensional smooth
submanifold in 2n 2 .

Note first that H(x, X, 1) 0 corresponds to problem (1.2) with normalized eigen-
vectors. For 1, ..., n, let e; represent the standard ith unit vector in n and Xi be
the jth complex root of (d/c) l/k, where j-1, ...,k. It is obvious that
(ei, Xij, O) H-l (0). We shall use these nk points (ei, Xij, 0) C C 0, 1) as our
initial points when constructing homotopy curves connected to the desired solution
of(1.2).

The following theorem is the main result.
THEOREM 3.1. There exists an open dense subset U offull measure in C n such

that, for D diag (dl,’", dn) with (d,..., dn) U and each initial point yij
(el, Xi, 0), the connected component C(yi) ofyij in H-l(O), when identified as a sub-
set in 2 2 , has thefollowing properties.

1. C(yi) is a (real) analytic submanifoM in [R2 2 with real dimen-
sion 2.

2. The cross-section of C(yi) with each hyperplane constant [0, 1) is a unit
circle centered at (0, X) 2n ff2 2 for some X.

3. The manifolds C(yij) corresponding to different initial points do not intersectfor
t[0, ).

4. Each manifold C(yij) is boundedfor [0, 1).
Proof. For each fixed [0, 1), consider the h-matrix

X,t,D) (clXk D)+-_tP(X)R(X,t,D)=-_tR
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By Lemma 2.2, there exists a hypersurface /2 (t) e C" of complex codimension (real
codimension 2) such that if (dl, d,) U (t), then det (R (),, t, D)) does not have
multiple roots. As varies in [0, 1), the set V Ut[0,) U(t) C n is of real codimension
at most one. Thus the complement U of Vin C n is open and dense and has full measure.

For D diag (dl, ,dn) with (dl, dn) e U, the ),-matrix R ()‘, t, D) has no
multiple eigenvalues. For every (x,)‘, t) e H-l(0), it is necessary that R()‘, t, D)x O,
i.e., x is an eigenvector of R()‘, t, D) associated with the eigenvalue )‘. Analogous to
(2.3) we now consider the matrix Q Q(x, )‘, t) e C" (" / 1), where

(3.6) Q(x, )‘, t) [R( )‘, t,D),Rx( )‘, t)x]

and its associated real matrix M M(x, )‘, t) (2n+ 1)(2n+2) is as defined in (2.4).
Note that the homotopy function H may be regarded as a mapping from 2n X 2 X
into 2n X and that M (OH/O(x,)‘)), where the derivatives are taken in the real
variable sense. By the way the constant c C and the vector (dl, ,dn) e C" are
selected, we know that the )‘-matrix R ()‘, t, D) has nk distinct eigenvalues for every t e
0, 1). From the discussion in the preceding section, it follows that M is of full rank.

We may now apply the implicit function theorem to conclude that H-l(0) is a
smooth submanifold in 2n X 2 X with real dimension two. Assertion (1) is proved.

Indeed, given an arbitrary point (x,)‘, t) H-l(0), note that the partial derivatives
in forming the matrix M is not taken with respect to t. So a local neighborhood of
(x, , t) on H-1 0 is diffeomorphic to a two-dimensional neighborhood of and another
suitable real variable from (x,)‘). This shows that H- (0) intersects each hyperplane

constant [0, l) transversally. If the connected components C(yh and C(y22) of
two distinct initial points Yit and y:2 ever intersect, then C(yh) C(yg22). This is
possible only if at the intersection point the two-dimensional surface C(yi) "bends"
back toward the initial point Yi22. This contradicts the transversal property we have
observed. Assertion 3 is proved.

Since H(x, )‘, t) 0 implies H(3’x, )‘, t) 0 whenever 3" C and 13"1 1, we see
that C(yi;) indeed is a two-dimensional cylindrical tube whose cross-section with each
hyperplane constant [0, 1) is a unit circle centered at (0,)‘) e 2, 2 for some
)‘. Assertion 2 is proved.

To prove assertion 4 it remains to show only that on every manifold C(yij) the
eigenvalue )‘ stays bounded for e [0, 1). From assertions 2 and 3, it suffices to consider
any one-dimensional submanifold on C(yi;) that is parameterized by the variable t.
Define

w= min [l[(1-t)cI+ta,]x(t)ll.
[0, to]

Since (1 t)cI + tAk is continuous and nonsingular for all e [0, to ], we have w > 0.
Let r(t) IX(t) and s max/t0,/01 IltAo (1 t)DII. Then, R()‘(t), t, D)x(t) 0
implies that

0< wrk(t) <- [( -t)cI+ ta]x(t)ll
)‘k-<tllAk- (t)+ /4X(t)ll / Iltao-(1-t)DIi

--< IIAk-lllrk-(t)+ + Ilall]r(t)+s

since x[I and < 1. The solution ofthis polynomial inequality is obviously bounded.
The proof is completed. E]

Remarks. 1. It follows from a standard degree argument that each circle of solutions
of P()‘)x 0 in C "+l with xll is a limit set of one of the component C(yij).
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2. IfAk is nonsingular, the proof of Theorem 3.1 can be easily extended such that
H-1 (0) is uniformly bounded for [0, 1]. If Ak is singular, then some components
C(y;j.) will become unbounded as -- 1. This simply indicates that the X-matrix problem
(1.2) does not have nk eigenvalues.

3. For real symmetric eigenvalue problems Ax Xx 0, the homotopy method
can be carried out in real arithmetic. In this case, the zero set H-l(0) consists ofsmooth
curves only. Rhee 11 has shown that the local conditioning of the homotopy curves at

(0, 1) is affected by two factors: the separation of eigenvalues of the matrix D + t
(A D) and the closeness of D to A. It is interesting to note that a checking criterion
can easily be set up to prevent the ODE solver from jumping from one curve to another
in the continuation process.

4. Computations. Theorem 3.1 asserts the existence of nk cylindrical tubes C(yij)
starting from the hyperplane 0. We now show how to extract a path from a tube with
the intention that this path could be followed numerically and would lead from 0 to

1. According to the proof of Theorem 3.1, assertion 3, we could further require that
this path be parameterized by the variable t.

Among the many possible ways to define such a path, we choose to consider the
following approach.

Let the homotopy function H be a mapping from N .n N 2 [0, 1) to N 2n N so
that (x, X) is identified as a vector in N_n N and ix a vector in N2. We define vector
fields (2, ,, 1) on H-1 (0) by requiring

(4.1) M(x,X,t)[2]=[ (Q(X)- P(X))x]0

(4.2) [ixr,0][.] =0
where M e R (2n+ 1)(2+2) is the corresponding real matrix, defined as in (2.4), of the
matrix Q in (3.6). Note that (4.1) is a necessary condition for the vector field (2, }, 1)
to be tangent to the surface H-l(0). Equation (4.2) simply means that the vector field
is always perpendicular to the circle of the intersection of the hyperplane constant
and the tube.

The (2n + 2) (2n + 2) real matrix

ixr, 0 al b a,,, b,,, O, O
-b a -b,,, a,,, O, O

is precisely the real representation of the (n + 1) (n + 1) complex matrix

[ R(X,t,D), 0

Therefore, the remaining numerical work is to follow the initial value problem in
Cn C:

(4.3) x*, 0 dX/dtJ 0

x(0) e;, x(0)=

for 1, n andj 1, k.
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Remark. Note that the nk homotopy curves we derived are integral curves of the
same differential equations subject to different initial values. Since these curves are in-
dependent of each other, it is suitable to follow several curves simultaneously on a mul-
tiprocessor. Note also that the homotopy function (3.5) does not cause any destruction
in the matrix structure ofP()‘). Combined with a sparse matrix technique, the homotopy
method might therefore become attractive for solving large-scale )‘-matrix problems.

Remark. In practical computation, it may not be necessary to follow the entire
homotopy curve (x(t), )‘(t) as in (4.3). For example, Rhee 11] proposes an algorithm
for real symmetric eigenvalue problems that traces the one-dimensional eigenvalue curves
only, whereas the eigenvectors are estimated locally by the Rayleigh quotient iteration.
Test results seem to indicate that the overall complexity of the homotopy method for
finding all n eigenpairs would be O( n 2) as opposed to O( n 2"6) ofthe standard subroutine
IMTQL2 in EISPACK. We should point out also that. EISPACK is not designed for
large-scale matrices, where it can be shown [11 that the conditioning of the eigenvalue
curves in the homotopy method is independent of the size of the matrix. With careful
coding the homotopy method might be a serious alternative for solving large-scale ei-
genvalue problems.

We coded the homotopy method (4.3) into an IBM 3081 uniprocessor simply to
examine the various behavior of the paths near 1. With no intention of making this
code efficient, we integrated the initial value problem (4.3) by using the subroutine
DGEAR found in IMSL. The scalar c and the vector (dl, ,dn) were randomly gen-
erated. No matrix structure was taken into consideration. The linear equation solver
LEQ2C was used to find the vector field in (4.3). The following examples represent a
collection of problems we used to experiment with our homotopy method.

Example 1. The following is a symmetric, definite quadratic problem with dis-
tinct eigenvalues:

--10)‘ 2 + )‘ + 10,
2)‘2+2)‘+2,
--)‘2+)‘--1,
)‘z + 2)‘+ 2,

P()‘)
-11)‘2+)‘+9,
2)‘2+2)‘+3,
-23,2 + )‘- 1,
)‘2+3)‘-2,

-12)‘ 2 + 10,
-)‘2-2)‘+2,
)‘2-2)‘- 1,

symmetry

-10)‘ 2 + 2)‘ + 12,
2)‘2+3)‘+ 1, -11)‘ 2 + 3)‘ + 10

_)‘2_ 3)‘ + 1,
)‘2_ 1, -2)‘2- 3)‘ + 5, (symmetry)

P()‘) -)‘-- 3)‘ + 1, )‘2_ 1, -2)‘2- 5)‘ + 2,
-2)‘2-6)‘ + 2, 2)‘2- 2, -4),, -9X2- 19)‘ + 14

This problem has double eigenvalues and -2, and simple eigenvalues -4 _+ fi and
-4 + fi. The code had no difficulty in accurately locating all eigenpairs (although it
took a slightly extra effort to tackle the multiple eigenvalue cases). The computed eigen-
vectors associated with multiple eigenvalues were linearly independent.

The code found all 10 eigenpairs without any difficulty. The eigenvalues (to seven digits)
are: (-0.5117619, 0.8799272, 1.465467, -0.7790945, 0.5024152, 1.077167, 0.9365506,
1.004838, 1.956883, 1.271885 }.

Example 2. The following is a symmetric, definite quadratic problem with multi-
ple eigenvalues:
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Example 3. The following is an unsymmetrical cubic problem with singular lead-
ing coefficients:

+
)3+)‘, 5)‘3+)‘+ 1, )‘3+ .)‘3 + )‘, 5)‘3 + )‘, )‘3 + )‘ +

The problem actually has only seven eigenvalues since det(P()‘))= 27)‘7+ 4)‘6+
9)‘ + 9)‘ 4 _. 6)‘ .. )‘ 2 _. )‘

__
1. The code had no problem in locating these seven

eigenpairs. The eigenvalues (to six digits) are (0.307991 + 0.686745i, -0.453629
___

0.460837i, 0.327145

___
0.47441 li,-0.529683 }. Two of the nine homotopy curves es-

caped to infinity (with xll always) as approaches 1. This deceived the code into
giving two large extraneous eigenvalues and their associated eigenvectors.

Example 4. The following is a quadratic problem with high multiplicity of eigen-
values and high degeneracy of eigenvectors:

()‘- 1)()‘-4), 5 2)‘, 0
P()‘) 0, ()‘- 1)()‘- 4), 5-2)‘

0, 0,

Obviously the eigenvalues of this problem are and 4 only, and each eigenvalue is of
multiplicity 3. Furthermore, this problem has only one eigenvector. With local tolerance
TOL 10 -6 in DGEAR, the code was returned with all six curves being convergent.
However, the accuracy was only about 10 -2. This was due to a high-order bifurcation
occurring at 1.
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