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1. Introduction. Modeling is one of the most fundamental tools that we use to simulate the
complex world. The goal of modeling is to come up with a representation that is simple enough for
mathematical manipulation yet powerful enough for describing, inducing, and reasoning complicated
phenomena. When modeling physical systems, the resulting mathematical models are sometimes
of a very high order too expensive for simulation. One remedy is the notion of model reduction
that assists in approximating very high order mathematical models with lower order models. As is
evidenced in this collection, model reduction has been under extensive study and rapid development
over the past few years with many physical and engineering applications. On the other hand, precise
mathematical models of physical systems are hardly available in practice. Many factors, including
inevitable disturbances to the measurement and imperfect characterization of the model, attribute to
the inexactitude. Since the model reduction process begets only a partial effect of the original model,
it is reasonable to expect that the reduced model might not be consonant with realistic data either.
For various reasons, it often becomes necessary to update a primitive model to attain consistency
with empirical results. This procedure of updating or revising an existing model is another essential
ingredient for establishing an effective model. The emphasis of the following discussion is on the
model updating of quadratic pencils.

The second order differential system

M ẍ + Cẋ + Kx = f(t), (1.1)

where x ∈ R
n and M , C, K ∈ R

n×n, arises frequently in a wide scope of important applications,
including applied mechanics, electrical oscillation, vibro-acoustics, fluid mechanics, signal processing,
and finite element discretization of PDEs. In most applications involving (1.1), specifications of the
underlying physical system are embedded in the matrix coefficients M , C and K. It is well known
that if

x(t) = veλt

represents a fundamental solution to (1.1), then the scalar λ and the vector v must solve the quadratic
eigenvalue problem (QEP)

(λ2M + λC + K)v = 0. (1.2)

That is, characteristic behavior of the system (1.1) usually can be interpreted via the eigenvalues and
eigenvectors of the system (1.2). Because of this connection, considerable efforts have be devoted to
the QEP in the literature. Readers are referred to the treatise by Tisseur and Meerbergen [25] for a
good survey of many applications, mathematical properties, and a variety of numerical techniques
for the QEP.

Two aspects of the quadratic pencil associated with the model (1.1) deserve consideration.
The process of analyzing and deriving the spectral information and, hence, inducing the dynamical
behavior of a system from a priori known physical parameters such as mass, length, elasticity,
inductance, capacitance, and so on is referred to as a direct problem. The inverse problem, in
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contrast, is to validate, determine, or estimate the parameters of the system according to its observed
or expected behavior. The concern in the direct problem is to express the behavior in terms of the
parameters whereas in the inverse problem the concern is to express the parameters in term of the
behavior. The inverse problem is just as important as the direct problem in applications. The model
updating problem can be regarded as a special case of the inverse eigenvalue problem.

The inverse eigenvalue problem is a diverse area full of research interests and activities. See the
newly revised book by Gladwell [17], the review article [5], and the recently completed monograph
by Chu and Golub [7] in which more than 460 references are collected. Among current development,
the quadratic inverse eigenvalue problem (QIEP) is particularly more important and challenging
with many unanswered questions. Depending on the applications, the term QIEP has been used
in the literature to mean a rather wide range of diverse formulations. For instance, the QIEP
studied by Ram and Elhay in [22] involves only symmetric tridiagonal matrix coefficients where
two sets of eigenvalues are given. The QIEP studied by Starek and Inman in [24] is associated
with nonproportional underdamped systems. Lancaster and Prells [20] considered the QIEP with
symmetric and positive semi-definite damping C where complete information on eigenvalues and
eigenvectors is given and all eigenvalues are simple and non-real. There are also works which utilize
notions of feedback control to reassign the eigenstructure [10, 21]. The list goes on and on and can
hardly be exhaustive.

In this article, we shall consider the QIEP under one common scenario, that is, the spectral
information furnished is obtained from empirical data. In vibration industries, including aerospace,
automobile, and manufacturing, through vibration tests where the excitation and the response of
the structure at selected points are measured experimentally, there are identification techniques
to extract a portion of eigenpair information from the measurements. However, the size of the
system can be so large and complicated that it is not always possible to attain knowledge of the
entire spectrum. While there is no reasonable analytical tool available to evaluate the entire spectral
information, it is simply unwise to use experimental values of high natural frequencies to reconstruct
a model. Additionally, it is often demanded, especially in structural design, that certain eigenvectors
should also satisfy some specific conditions. A finite-element generated symmetric model therefore
needs to be updated using only a few measured eigenvalues and eigenvectors [13, 14]. Furthermore,
quantities related to high frequency terms in a finite model generally are susceptible to measurement
errors due to the finite bandwidth of measuring devices. Spectral information, therefore, should not
be used at its full extent. For these reasons, it might be more sensible to consider an inverse
eigenvalue problem where only a portion of eigenvalues and eigenvectors is prescribed. Under these
circumstances, the quadratic model updating problem (MUP) therefore can be formulated as follows:

(MUP) Given a structured quadratic pencil (M0, C0, K0) and a few of its associated eigen-
pairs {(λi,ui)}k

i=1 with k < 2n, assume that new measured eigenpairs {(σi,yi)}k
i=1 have

been obtained. Update the pencil (M0, C0, K0) to (M, C, K) of the same structure such
that the subset {(λi,ui)}k

i=1 is replaced by {(σi,yi)}k
i=1 as k eigenpairs of (M, C, K).

2. Challenges. The MUP as stated above is of immense practical importance. However, there
are considerable difficulties when solving a model updating problem. Many issues remain open for
further research. We briefly outline three challenges below. We shall comment on current status of
development for facing these challenges in later sections.

Structural Constraint. The structure imposed on a MUP depends inherently on the connectivity
of the underlying physical system. The typical structure for a general mass-spring system, for
example, is that the mass matrix M is diagonal, both the damping matrix C and the stiffness
matrix K are symmetric and banded, M is positive definite (M > 0) and K is positive semi-definite
(K ≥ 0). As an illustration, the structure corresponding to the four-degree-of-freedom mass-spring
system depicted in Figure 2.1 should be of the form where
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Fig. 2.1. A four-degree-of-freedom mass-spring system.
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In contrast, the structure associated with an electronic circuit may not be definite or even symmetric.
As another illustration, the matrix coefficients in the differential system associated with the RLC
network depicted in Figure 2.2 should have the following structure:
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For the sake of physical feasibility, the updated model usually is required to inherit the same con-
nectivity as the original model. Since structured problems often results in special interrelationship
within its eigenstructure, the observed measurement which often is contaminated with random noise
may not be consistent with that innate structure. In other words, the structural constraint often
severely limits whether a model could be updated.
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Fig. 2.2. An RLC electronic network.

Spurious Eigeninformation. An added challenge, known as the no spill-over phenomenon in the
engineering literature, is that in updating an existing model it is often desirable that the current
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vibration parameters not related to the newly measured parameters should remain invariant. No
spill-over is desirable either because these parameters have already been proven to be acceptable in
the previous model and engineers do not wish to introduce new vibrations via updating or because
engineers simply do not know of any information about these parameters. The MUP under such a
circumstance therefore should be formulated as finding the updated model (M, C, K) so that not
only he subset {(λi,ui)}k

i=1 of the original model is replaced by newly measured {(σi,yi)}k
i=1 as

k eigenpairs of (M, C, K), but also the remaining 2n − k eigenpairs of (M, C, K), which often are
unmeasurable and stay unknown, are the same as those of the original (M0, C0, K0).

Minimal or Robust Modification. The solution to an MUP is not unique. The notion of op-
timizing the adjustment or the robustness therefore is highly plausible. Earlier work by Friswell,
Inman and Pilkey [15] considers model updating by minimal changes of only the damping and the
stiffness matrices. The work by Baruch [1], Bermann and Nagy [2], and Wei [26] concentrates only
on undamped systems. More recently, the feedback control techniques have also been employed
by Nichols and Kautsky [21] and Datta, Elhay, Ram, and Sarkissian [10, 11, 12] to manage the
robustness.

Despite much effort, there does not seem to exist adequate theory or techniques thus far that
can solve the MUP while addressing the aforementioned concerns. Existing methods have severe
computational and engineering limitations, which restrict their usefulness in real applications. The
purpose of this article is to provide an overview of this interesting topic with the hope of stimulating
further studies toward its solution.

3. Quadratic Inverse Eigenvalue Problem. To answer whether a quadratic pencil can be
updated, a more fundamental question is whether a quadratic pencil can have arbitrary k prescribed
eigenpairs. For convenience, we adopt the notation that the diagonal matrix Λ ∈ R

k×k represents
the “eigenvalue matrix” of the quadratic pencil (1.2) in the sense that Λ is in real diagonal form
with 2× 2 blocks along the diagonal replacing the complex-conjugate pairs of eigenvalues originally
there. Similarly, let X ∈ R

n×k represent the “eigenvector matrix” in the sense that each pair of
column vectors associated with a 2 × 2 block in Λ holds the real and the imaginary part of the
original complex eigenvector. For the quadratic pencil (M, C, K) to have eigenstructure (Λ, X), it
is clear that the relationship

MXΛ2 + CXΛ + KX = 0n×k (3.1)

must hold.

3.1. Self-Adjoint Pencils. At first glance, the relationship (3.1) is only a homogeneous linear
system of nk algebraic equations. If there are no other constraints, the triplet (M, C, K) constitutes
3n2 unknowns. Since k is bounded above by 2n, the system is well under-determined. It is intuitively
true that the system should be solvable in general. The challenge is to characterize the solution in
terms of the given (Λ, X). In this section, we discuss how a parametric representation can be
obtained for (M, C, K) when these matrix coefficients are required to be symmetric.

To derive the parametric representation, observe that the matrix

Ω := [Ik, Λ⊤, Λ2⊤] ∈ R
k×3k (3.2)

has a null space of dimension 2k. Let columns of the matrix



U

T

S



 ∈ R
3k×2k,

where S, T and U are matrices in R
k×2k, denote a basis of the null space of Ω. It is clear that once

S and T are specified, then

U = −Λ⊤T − Λ2⊤S (3.3)
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is determined. Note that the system (3.1) can be written as

Ω




X⊤K

X⊤C

X⊤M


 = 0k×n, (3.4)

implying that there must exist a matrix Ψ ∈ R
2k×n such that




U

T

S


Ψ =




X⊤K

X⊤C

X⊤M


 . (3.5)

Since M , C and K are symmetric, the three matrices

A := SΨX, (3.6)

B := TΨX, (3.7)

F := UΨX (3.8)

must also be symmetric in R
k×k. From (3.3) we know that F is specified once A and B are given.

We shall use A and B to characterize the solution (M, C, K) to the QIEP associated with (Λ, X).
It is important to note a critical relationship between A and B. Upon substituting (3.3) into (3.8)
and using the fact that F = F⊤, we find that A and B are related by the equation:

Λ⊤B − BΛ = AΛ2 − Λ2⊤A. (3.9)

That is to say, not all entries in A or B are free. We shall exploit those entries which are free and
establish a parametric representation of (M, C, K). Observe that each side of (3.9) represents a
skew-symmetric matrix.

We begin with the case when k = n and formulate the following result [8].
Theorem 3.1. Given n distinct eigenvalues Λ and n linearly independent eigenvectors X both

of which are closed under conjugation, let A ∈ R
n×n be an arbitrary symmetric matrix and let B be

a solution to the equation (3.9). Then the self-adjoint quadratic pencil with coefficients defined by

M = X−⊤AX−1, (3.10)

C = X−⊤BX−1, (3.11)

K = −X−⊤Λ⊤(B + Λ⊤A)X−1. (3.12)

has the prescribed pair (X, Λ) as part of its eigenstructure.
Proof. The proof is straightforward. The relationship (3.5) implies that M = X−⊤SΨ for

some Ψ ∈ R
2n×n. We also know from (3.6) that A = SΨX . Together, we can express M as

M = X−⊤AX−1. Similar arguments can be applied to C and K.

The choice of A gives rise to n(n+1)
2 free parameters. For each given A ∈ R

n×n, we need to see
how B can be determined from the equation (3.9). Without loss of generality, we may assume that
Λ is the diagonal matrix with ℓ × ℓ blocks,

Λ = diag{λ[2]
1 , . . . , λ[2]

ν , λν+1, . . . , λℓ}, (3.13)

where λ
[2]
j =

[
αj βj

−βj αj

]
∈ R

2×2, βj 6= 0, if j = 1, . . . , ν; λj ∈ R if j = ν + 1, . . . , ℓ; and

ℓ+ ν = n. Partition B into ℓ× ℓ blocks in such a way that, if the (i, j)-block is denoted by Bij , then
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diag{B11, . . . , Bℓℓ} has exactly the same structure as Λ. It is not difficult to see that the (i, j)-block
of Λ⊤B − BΛ is given by






λ⊤

i Bij − Bijλj , if ν + 1 ≤ i, j ≤ ℓ,

(λ
[2]
i )⊤Bij − Bijλj , if 1 ≤ i ≤ ν and ν + 1 ≤ j ≤ ℓ,

(λ
[2]
i )⊤Bij − Bij(λ

[2]
j ), if 1 ≤ i, j ≤ ν.

From a comparison with the corresponding blocks in AΛ2 − Λ2⊤A (cf (3.9), we draw the following
conclusion. In the first case, Bij is a scalar and is uniquely determined except that Bii is free. In
the second case, Bij is a 2 × 1 block with all entries being uniquely determined. In the third case,
if we write

Bij =

[
x y

y z

]
,

then

(λ
[2]
i )⊤Bij − Bij(λ

[2]
j ) =

[
x(αi − αj) − y(βi − βj) −zβi − xβj

xβi + y(αi − αj) + zβj y(βi − βj)

]
.

It is clear that if i = j, then y is free and x + z = 0, still giving rise to two degrees of freedom. If
i 6= j, the all entries of Bij are uniquely determined. We conclude that A ∈ R

n×n can be totally
arbitrary and B is determined up to n free parameters. We thus have proved the following theorem.

Corollary 3.2. The solutions (M, C, K) to the quadratic inverse eigenvalue problem with

eigenstructure (X, Λ) as described in Theorem 3.1 form a subspace of dimensionality n(n+3)
2 in the

product space R
n×n × R

n×n × R
n×n.

It is worth mentioning that if A is selected to be symmetric and positive definite, then so is the
leading coefficient M . Indeed, the above construction parameterizes all possible solutions.

We point out in passing that, in contrast to the construction described in Theorem 3.1, Kuo,
Lin and Xu [18] have developed independently another parametrization for the solution (M, C, K).
Let

Ω := diag

{[
ξ1 η1

η1 −ξ1

]
, . . . ,

[
ξν ην

ην −ξν

]
, ξν+1, . . . , ξκ

}
.

where ξ1, . . . , ξν , ξν+1, . . . , ξκ and η1, . . . , ην are arbitrary real numbers. Then the matrices defined
by

M := an arbitrary symmetric matrix, (3.14)

C := −
(
MXΛX−1 + (XΛX−1)⊤M + X−⊤ΩX−1

)
, (3.15)

K := (XΛX−1)⊤M(XΛX−1) + X−⊤ΩΛX−1, (3.16)

also solves the QIEP associated with (Λ, X). It can been checked that these two ways of parametriza-
tion are equivalent, except that our approach is also able to handle the case k > n which we now
explore.

The case k > n is a little bit more involved. It remains true from the relationships (3.5), (3.6),
(3.7) and (3.8) that

A = SΨX = X⊤MX, (3.17)

B = TΨX = X⊤CX, (3.18)

F = UΨX = X⊤KX, (3.19)
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are symmetric even in the case k > n, but we cannot obtain a parametric representation of (M, C, K)
from A and B directly because X ∈ R

n×k with k > n is no longer an injection transformation. To
retrieve (M, C, K), we rewrite the eigenvectors as

X = [Z1, Z2],

where Z1 ∈ R
n×n and Z2 ∈ R

n×(k−n). Then we see that

A =

[
A11 A12

A⊤
12 A22

]
=

[
Z⊤

1 MZ1 Z⊤
1 MZ2

Z⊤
2 MZ1 Z⊤

2 MZ2

]
, (3.20)

where Aij , i, j = 1, 2, are blocks with appropriate sizes. Thus, instead of using the matrix A as
parameter, we should select a symmetric submatrix A11 ∈ R

n×n arbitrarily and define

M = Z−⊤

1 A11Z
−1
1 . (3.21)

Once M ∈ R
n×n is determined, the matrix A ∈ R

k×k is completely specified. This selection gives

rise to n(n+1)
2 degrees of freedom. There is no additional freedom in the choice of A.

With A ∈ R
k×k specified, we next want to determine the matrix B ∈ R

k×k based on the
necessary condition (3.9). Write

B =

[
B11 B12

B⊤
12 B22

]
=

[
Z⊤

1 CZ1 Z⊤
1 CZ2

Z⊤
2 CZ1 Z⊤

2 CZ2

]
. (3.22)

Consider the B11 block first. Partition the given eigenvalues as

Λ = diag{Υ1, Υ2}

where Υ ∈ R
n×n and Υ2 ∈ R

(k−n)×(k−n). We note that B11 and A11 satisfy a relationship

Υ⊤

1 B11 − B11Υ1 = A11Υ
2
1 − Υ2⊤

1 A11, (3.23)

that is similar to (3.9). The same argument used earlier for the case when k = n can be applied
and we conclude that the submatrix B11 can be completely determined up to n free parameters. It
follows that a symmetric matrix

C = Z−⊤

1 B11Z
−1
1 (3.24)

can be determined and, hence, it appears that the matrix B is completely determined up to n free
parameters.

The point is that there are additional limitations on the choice of A and B in the case k > n.
The very same C defined by (3.24) should also equate the two sides of equation (3.9) for the (1, 2)
and (2, 2) blocks, respectively. These blocks involve more than n equations to be satisfied. Thus,
B11 and consequently A11 must be special. We have to go back to modify the selection of A11. In
other words, the n free parameters in B11 and the matrix A11 must be further restricted so that the
remaining part of B also satisfies (3.9). To that end, we observe that if we define

W := Z−1
1 Z2, (3.25)

then it follows that

A =

[
A11 A11W

W⊤A11 W⊤A11W

]
,

B =

[
B11 B11W

W⊤B11 W⊤B11W

]
.
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Expressing the equation (3.9) in block form, we obtain (3.23) and the following two equations:

Υ⊤

1 B11W − B11WΥ2 = A11WΥ2
2 − Υ2⊤

1 A11W, (3.26)

Υ⊤

2 W⊤B11W − W⊤B11WΥ1 = W⊤A11WΥ2
2 − Υ2⊤

2 W⊤A11W. (3.27)

Post-multiplying (3.23) by W and subtracting (3.26), we obtain an equivalent relationship:

A11Υ
2
1W + B11Υ1W = A11WΥ2

2 + B11WΥ2.

It follows that

W⊤(A11WΥ2
2 + B11WΥ2) = W⊤(A11Υ

2
1W + B11Υ1W )

= (W⊤A11Υ
2
1 + W⊤B11Υ1)W = (Υ⊤

2 W⊤B11 + Υ2⊤
2 W⊤A11)W,

which is precisely (3.27). The final equality follows from taking the transpose of equation (3.26). We
have just proved that if we can solve the two equations (3.23) and (3.26), then the third equation
(3.27) is automatically solved. We have indicated earlier that any given A11 will determine B11

through (3.23) up to n free parameters. Thus, it only remains to choose the n free parameters in
B11 and the n×n symmetric matrix A11 to satisfy the n(k−n) linear equations imposed by (3.26).
In total there are

n(n + 1)

2
+ n − n(k − n) =

3n(n + 1)

2
− nk

degrees of freedom. For nontrivial solutions, it is clear that we need k <
3(n+1)

2 .
Finally, we discuss the case when k < n. If less than n eigenpairs (X, Λ) are given, we can solve

the inverse eigenvalue problem by embedding this eigeninformation in a larger set of n eigenpairs.
In particular, we expand X ∈ R

n×k to

X̂ := [X, X̃] ∈ R
n×n, (3.28)

where X̃ ∈ R
n×(n−k) is arbitrary under the condition that X̂ is nonsingular. Caution should be taken

when counting the degrees of freedom. We should consider the columns in X̃ as being normalized
since, otherwise, a normalization factor would have been added to the arbitrariness of A. With this
normalization in mind, the expansion of eigenvectors involves additional (n − 1)(n − k) degrees of
freedom. We then expand Λ ∈ R

k×k to

Λ̂ := diag{Λ, Λ̃}, (3.29)

where Λ̂ is a diagonal matrix with distinct eigenvalues. This expansion of eigenvalues gives rise
to another n − k degrees of freedom. With (X̂, Λ̂) playing the role of (X, Λ) in Theorem 3.1, we
can now construct the coefficient matrices M , C and K according to the formulas (3.10), (3.11) and
(3.12), respectively. Recall that A is taken as an arbitrary symmetric matrix in R

n×n and B, though

depending on Λ̂ through the relationship (3.9), maintains n degrees of freedom. We conclude that

the solutions to the QIEP with k < n form a subspace of dimensionality n(n+3)
2 + n(n − k). Note

that this embedding approach characterizes the solution (M, C, K) via the parametrization (3.10),

(3.11) and (3.12) which in nonlinear in terms of A, B, X̃ and Λ̃.
We end this section with the following summarizing theorem.

Theorem 3.3. Assume 1 ≤ k <
3(n+1)

2 . Let (Λ, X) represent k arbitrarily prescribed eigenpairs
(Λ, X) which are closed under conjugation. The self-adjoint quadratic inverse eigenvalue problem

associated with (Λ, X) is generally solvable. The solutions form a subspace of dimension 3n(n+1)
2 −nk.

The maximal allowable number of prescribed eigenpairs is given by (4.2).
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3.2. Structured Pencils. Thus far, the only structure laid upon the QIEP is the symmetry, in
which case we have shown its solvability. However, it is important to note that algebraic solvability
does not necessarily imply physical feasibility. Physical feasibility means, for example, that the
special matrix structure resulting from the underlying connectivity must hold or that the physical
parameters must be nonnegative. These additional constraints make the QIEP much more interesting
but harder to solve. There does not seem to exist reported research in this direction. We believe
that the issue of solvability probably is problem dependent and will have to be analyzed case by
case. For demonstration purpose, we shall discuss only one setting in this section.

Consider the serially linked, undamped mass-spring system depicted in Figure 3.1, which can
be used to model many other physical systems, including a vibrating beam, a composite pendulum,
or a string with beads. The corresponding quadratic pencil λ2M + K has the structure

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

k1 k2 k3 kn

x1 x2 xn

m1 m2 mn

Fig. 3.1. An undamped mass-spring system.

M =




m1 0 . . . 0
0 m2

...
. . .

0 mn


 , K =




k1 + k2 −k2 0 . . . 0 0
−k2 k2 + k3 −k3 0
0 −k3 k3 + k4

...
. . .

...
0 kn−1 + kn −kn

0 −kn kn




. (3.30)

The inverse eigenvalue problem would imply to find positive values for the masses m1, . . . , mn

and spring constants k1, . . . , kn from prescribed eigeninformation. A typical approach in the lit-
erature has been to recast the quadratic pencil as a linear pencil µI + J with a Jacobi matrix
J = M−1/2KM−1/2. A classical theory has been that two sets of eigenvalues can uniquely solve the
corresponding Jacobi inverse eigenvalue problem [7, Section 4.2]. What can be said if the system is
to be reconstructed from eigenpairs?

Each eigenpair provides n equations. Imposing two eigenpairs generally will lead to the trivial
algebraic solution in such a system, unless the prescribed eigenpairs satisfy some additional internal
relationship. So we ask the even more fundamental question of constructing the system with one
prescribed eigenpair (iβ,x) where i =

√
−1, β ∈ R and x ∈ R

n.
Denote x = [x1, . . . , xn]⊤ and x0 = 0. It is not difficult to see that the recursive relationship,

kn =
β2mnxn

xn − xn−1
, (3.31)

ki =
β2mixi + ki+1(xi+1 − xi)

xi − xi−1
, i = n − 1, . . . , 1, (3.32)
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must hold. Our goal is to find a positive approximation for mi, which then defines a positive value
for ki. The following is a make-or-break algorithm for the construction [4].

Algorithm 3.1. Given an arbitrary eigenpair (iβ,x), assume the normalization xn = 1
and mn = 1. The following steps either construct the masses m1, . . . , mn−1 and spring constants
k1, . . . , kn, all positive, for the pencil λ2M + K, or determine that such a system with the prescribed
eigenpair does not exist.

1. initialization:
sn = 0.9; (mass decreasing factor)
sp = 1.1; (mass increasing factor)
η = β2;

2. if xn−1 < 1,

kn = β2

1−xn−1

; (use formula (3.31))

else
return (inconsistent eigenvector)

end
3. for i from n − 1 to 2, do

(a) ρ = η
xi

;
(b) if xi−1 < xi,

if ρ > 0,
if xi < 0,

return (inconsistent eigenvector)
else

mi = 1; (any mi > 0 will be fine)
end

else
if xi < 0,

mi = − snρ
β2 ; (need 0 < mi < − ρ

β2 )
else

mi = − spρ
β2 ; (need mi > − ρ

β2 )
end

end
else

if ρ > 0,
if xi < 0,

mi = 1;
else

return (inconsistent eigenvector)
end

else
if xi < 0,

mi = − pnρ
β2 ;

else
mi = − snρ

β2 ;
end

end
end

(c) η = η + β2mixi;
(d) ki = η

xi−xi−1

; (use formula (3.32))
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4. finale:
(a) rho = η

x1
;

(b) if ρ > 0,
m1 = 1;

else
m1 = − spρ

β2 ;
end

(c) η = η + β2m1x1;
(d) k1 = η

x1

; (use formula (3.32))

The above algorithm appears naive since it only checks a few signs, but its simplicity is in fact
closely related to the classical Courant Nodal Line Theorem [27]. Roughly speaking, it is known in
the literature that critical information about a vibration system can be recovered from places where
nothing happens. These places are referred to as the nodal lines. Courant’s theorem gives a right
count of the number of nodal lines. We shall not elaborate the particulars here. Readers are referred
to the paper [9, 27] for more detailed discussion. In short, the effect of the algorithm is based on
the following result, whose proof can be found in [4]. We believe that the necessary and sufficient
conditions on the specified eigenvector is lucid but elegant.

Theorem 3.4. A given vector x = [x1, . . . , xn]⊤ ∈ R
n with distinct entries is an eigenvector of

a quadratic pencil λ2M + K with the structure specified in (3.30) if and only if xn(xn − xn−1) > 0
and the signs of the triplets (xi+1 − xi, xi, xi − xi−1) for i = 2, . . . , n − 1 are not (+, +,−) nor
(−,−, +). Furthermore, if x is feasible and if there are τ changes of signs when going through x1 to
xn, then x is the τ-th eigenvector of the pencil regardless how the masses mi are defined.

For damped systems and other types of connectivity or RLC configurations, the resulting pencil
structure will be different. It is likely that the conditions for solvability will also vary. This is a wide
open area for further research.

4. Spill-Over Phenomenon. Recall that a model updating with no spill-over is mathemati-
cally equivalent to a QIEP with a complete set of prescribed eigenpairs (Λ, X) where we partition Λ
and X as

Λ = diag{Σ, Λ2}, X = [Y, X2], (4.1)

with the pair (Σ, Y ) ∈ R
k×k×R

n×k representing the portion of eigenstructure that has been modified
and (Λ2, X2) corresponding to the inert portion of eigenstructure in the original model which should
not been changed (and perhaps is even not known). Ideally, we prefer to see no spill-over in the
model updating. But can this be achieved? If not, to what extent do we know about the spurious
eigenstructure brought in by the updating?

In the case when symmetry is required, we have seen that the additional constraint of symmetry
imposes an upper bound on the number k of prescribed eigenpair. The maximal allowable number
kmax of prescribed eigenpairs is given by

kmax =

{
3ℓ + 1, if n = 2ℓ,

3ℓ + 2, if n = 2ℓ + 1.
(4.2)

As a consequence, the remaining 2n − kmax eigenpairs of a quadratic pencil cannot be arbitrarily
assigned anymore. That is to say, if n ≥ 3 and if the updating intends to replace kmax original
eigenpairs by newly measured data, then with probability one the phenomenon of spill-over will
occur. The following example from [8] illustrates this.

Consider the case when n = 3. A quadratic pencil generally allows six eigenpairs. Suppose that
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five of them are prescribed by

Σ = diag{1, 2, 3, 5, 8}, Y =




1 0 0 2 −1
0 1 0 −2 0
0 0 1 2 2



 .

This is a case where k = kmax = 5. By Theorem 3.3, the solution has three degrees of freedom. We
find that the solution to the QIEP can be represented as

M =




s −s + 4u u

−s + 4u t − 7
10s + 14

5 u

u − 7
10s + 14

5 u − 3
10u + 7

10s


 ,

C =




−9s + 10u 3s − 12u −4u

3s − 12u − 27
5 s + 108

5 u − 7t 7
2s − 14u

−4u 7
2s − 14u 34

5 u − 77
10s


 ,

K = −




−8s + 10u 2s − 8u −3u

2s − 8u − 54
5 s + 216

5 u − 10t 21
5 s − 84

5 u

−3u 21
5 s − 84

5 u 177
10 u − 84

5 s


 .

It can be shown that

det(M) = − 1

100
(7s − 10u)

(
272u2 − 136su − 10tu − 10ts + 17s2

)
.

Obviously, we can choose s, t and u so that det(M) > 0. Indeed, the three parameters can be chosen
to make the other two principal minors of M positive so that M is positive definite. We also find
that the sixth eigenvalue is given by

λ6 = −2
52u2 + 37s2 − 161su + 40st − 35tu

17s2 − 136su− 10tu + 272u2 − 10st

while its corresponding eigenvector is given by

x6 =

[
2

5

9s − 36u + 5t

7s − 10u
, 1,

2

5

9s − 36u + 5t

7s − 10u

]⊤

.

It is clear that the sixth eigenvector x6 cannot be arbitrarily assigned and, hence, no spill-over cannot
be guaranteed.

On the other hand, suppose k = n eigenpairs have been modified. Then according to the
construction specified in Theorem 3.1, we can derive the following result.

Theorem 4.1. Given n distinct eigenvalues Σ and n linearly independent eigenvectors Y both
of which are closed under conjugation, construct (M, C, K) as in Theorem 3.1 with A and B as
parameters. Then the corresponding self-adjoint quadratic pencil can be factorized as

λ2M + ΣC + K = Y −⊤
(
λIn − Σ⊤

) (
B + (λIn + Σ⊤)A

)
Y −1

= Y −⊤ (B + A(λIn + Σ)) (λIn − Σ)Y −1. (4.3)

It is interesting to note from Theorem 4.1 that the remaining eigenvalues are the same as the
eigenvalues of the linear pencil λA+B +AΣ. Since the entire matrix A and (diagonal) part of B are
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free, there is room to impose additional eigeninformation to the pencil. In [18], for instance, it has
been argued that additional n eigenvalues could be arbitrarily specified. This fulfills only partially
the no spill-over phenomenon. In our context where we require that eigenvalues and eigenvectors
are prescribed in pairs, we believe that spill-over phenomenon is inevitable except in the undamped
case. In undamped case, note that the quadratic pencil λ2M + K can be reduced to a linear pencil
µM + K with µ = λ2. The following result for a self-adjoint linear pencil is proved in [8].

Theorem 4.2. A self-adjoint linear pencil µM + K can have arbitrary eigenstructure with n

distinct eigenvalues and linearly independent eigenvectors. Indeed, given an eigenstructure (Λ, X)
in R

n×n × R
n×n, the solutions (M, K) form a subspace of dimensionality n in the product space

R
n×n × R

n×n and can be parameterized by the diagonal matrix Γ via the relationships,

M = X−⊤ΓX−1, (4.4)

K = −X−⊤ΓΛX−1. (4.5)

5. Least Squares Update. Inverse eigenvalue problems generally are ill-posed. Any measure
of sensitivity or robustness of a solution to perturbations must be designed by taking several factors
into consideration [21]. One such attempt is to require that the updating is made with minimal
changes [15]. The model updating problem can then be formulated as an optimization problem:

minimize
1

2

(
‖M − M0‖2

F + ‖C − C0‖2
F + ‖K − K0‖2

F

)
, (5.1)

subject to MY Σ2 + CY Σ + KY = 0, M , C and K are all symmetric, (5.2)

where (Σ, Y ) ∈ R
k×k × R

n×k are the newly measured eigenpairs. Note that the above formulation
is actually a quadratic programming problem for which many techniques are available. See, for
example, [16]. In principle, the least squares model updating problem can be handled by standard
optimization procedures, provided the feasible set is known to be nonempty.

Of course, advantage can be taken of the special features of the problem so that the quantities
needed for numerical computation are calculated with minimal effort. For example, since the problem
involves only linear equality constraints, the projected gradient and the projected Hessian can be
calculated formally in terms of the null space of the k × 3n matrix [X⊤, Λ⊤X⊤, Λ2⊤X⊤]. Another
approach is to utilize the parametric representation of (M, C, K) that we have developed earlier
——where?—–Henk and rewrite the objective function as an unconstrained optimization in terms
of the free parameters. Readers are referred to [19] for an implementation that uses a similar but
different parametrization specified in [18].

Structured model updating problems can be formulated in a similar way except that the matrices
(M, C, K) in (5.2) are restricted to the specified structures. If the matrices are further required to be
nonnegative, then we also have bounded constraints. As we have indicated, we can solve currently
only a few structured QIEPs, if they are solvable at all, by numerical algorithms. That is to say,
when solving a structured least squares model updating problem, a feasible candidate (M, C, K)
can be identified only through point-to-point calculation. This would make it very hard to find the
optimal solution. Again, we believe that this is an area open for further research.

6. Conclusions. Model updating so as to attain consistent spectral property with empirical
data is an essential ingredient for establishing an effective model. In this chapter, we presented an
overview on this subject by briefly addressing three important issues involved in model updating:
— we have to satisfy the structural constraint for physical feasibility, — we prefer to see that no
spurious modes are introduced into the range of the frequency range of interest, and — we want to
keep the modifications minimal.
Before we are able to determine whether some updating can be achieved, a more fundamental
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question is to solve the quadratic inverse eigenvalue problem when a set of eigenpairs is prescribed.
For this problem we are able to provide a parametric representation of the solution to the QIEP
if only symmetry is required of the matrices involved. We demonstrated an algorithmic approach
for an undamped QIEP when the structure and nonnegativity are to be maintained, but a general
solution procedure is not available yet. From inspection of the dimension of the solution space of
the QIEP, we conclude that the spill-over phenomenon is unavoidable. We pointed out many open
questions that deserve further study.
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