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Abstract. The Leontief model, originally developed for describing an economic system in terms of mutually interrelated
and structurally conditioned simultaneous flows of commodities and services, has important applications to wide ranging
disciplines. A basic model assumes the linear form x = Tx + d, where x represents the total output vector and d represents
the final demand vector. The consumption matrix T plays the critical role of characterizing the entire input-output dynamics.
Normally, T is determined by massive and arduous data gathering means which inadvertently bring in measurement noises.
This paper considers the inverse problem of reconstructing the consumption matrix in the open Leontief model based on
a sequence of inexact output vectors and demand vectors. Such a formulation might have two advantages: one is that no
internal consumption measurements are required and the other is that inherent errors could be reduced by total least squares
techniques. Several numerical methods are suggested. A comparison of performance and an application to real-world data
are demonstrated.
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1. Preliminaries. The input-output model first envisioned, developed, and stimulated by Leontief
has tremendous impact in wide ranging applications. Subjects that could be studied by this model include
the effects of disarmament or military base closures on local economy, the costs of pollution, the depletion
of mineral resources, the impact of automation on workers, and the projection of world economy [9, 11].
An input-output analysis of the comprehensive source data collected by the U.S. Department of Commerce
(DOC) about the national economy, for example, can provide detailed information on the flows of the
goods and services that comprise the production process of industries which, in turn, influences critical
decisions made by the government, private business, households, and individuals. More specifically, one
of the principal establishments by the DOC is the Benchmark Input-Output Accounts based primarily on
data from the quinquennial (and now annual since 1998) economic censuses conducted by the Bureau of
the Census and supplemented by data from other sources [1]. The matrix tables in these accounts, mostly
measured in the money value of all goods and services delivered by each industry to each other industry in
a census year, show how industries interact, that is, how industries provide input to, and use output from,
each other to produce Gross Domestic Product.

The literature for the input-out analysis is voluminous. Without repeating too many details, we briefly
outline some basic background information below for introducing later ideas. In a Leontief system, it is
assumed that

• An economy is disaggregated into n sectors s1, . . . , sn of industries.
• Each of the n sectors produces a single kind of commodity.
• The production in each sector requires the transformation of goods from several others sectors in

a linear way into the good in the current sector.
Suppose tij represent the units of good produced by sector si that is needed to produce one unit of good
by sector sj . Let xi denote the production level of sector si. Let pi denote the unit price of commodity
by sector si. Then the summation

∑n
j=1 tijxj stands for the number of units produced by sector si that

has been consumed by the economy, whereas the summation
∑n

i=1 tijpi stands for the unit cost of the
commodity produced by sector sj . Assume further that an economy has to satisfy an outside demand di
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of the good produced from sector si. Then it is desired that for each sector si, i = 1, . . . , n, the equation

xi =

n∑

j=1

tijxj + di (1.1)

must be satisfied. In matrix form, the open Leontief model can be expressed as

x = Tx + d (1.2)

where x = [x1, . . . , xn]⊤, T = [tij ], and d = [d1, . . . , dn]⊤. Likewise, entries in the row vector

v⊤ := p⊤ − p⊤T, (1.3)

where p = [p1, . . . , pn]⊤, represent the net revenues per unit commodity produced by the sectors s1, . . . , sn,
respectively. In a fair market, it is reasonable to expect that the supply and demand should satisfy the
equation

v⊤x
︸︷︷︸

total net revenue

= p⊤d
︸︷︷︸

market price

. (1.4)

In the literature, the matrix T has many names — consumption matrix, technology matrix, direct
requirement matrix, input-output matrix, and so on. In this paper, we shall call T the consumption
matrix. Typically, the entries of T are taken as the ratios

tij =
uij

xj

, (1.5)

where uij represents the amount of the product from sector si used by sector sj as intermediate input to
produce the amount xj . It is this quantity uij which is usually collected, for example, by the Bureau of
the Census through industrial surveys. The matrix U = [uij ] is referred to as the Use Table in the official
documents by the Bureau of Economic Analysis (BEA) [1]. The size of the matrix U can be relatively
large. The Standard Industrial Classification (SIC) system (which has been replaced by the new North
American Industry Classification System (NAICS) since 1997) classifies economic sectors into industries on
the basis of their primary activities. In 1992, for example, the economy was separated into 97 I/O industry
groups from 498 industry sectors. In this case, a detailed consumption can be of size 498 by 498.

One general application of the input-output analysis is to determine the production level x from the
overall industries in order to meet a given demand vector d. That is, solve the linear equation (1.2) for
x from a given d. From a practical point of view, we are only interested in a nonnegative solution x of
(1.2) and a nonnegative p of (1.3). In these cases, we say the Leontief model is feasible and profitable,
respectively. The following result is well established in the literature. See, for example, [2, Theorem 9.3.9].

Theorem 1.1. In an open Leontief model with consumption matrix T , the following statements are
equivalent:

1. The model is feasible.
2. The model is profitable.
3. The matrix A := I − T is a nonsingular M -matrix.

The notion of M -matrix is another well studied subject in the literature. A total of 50 equivalent
conditions, for example, are listed in [2, Theorem 6.2.3] for the statement “A is a nonsingular M -matrix”.
On the other hand, the matrix (I−T )−1 is commonly referred to as the Leontief inverse. The (i, j) entry in
the Leontief inverse has a special meaning — it is the amount by which sector si must change it production
level to satisfy an increase of one unit in the final demand from sector sj . The Leontief inverse thus plays an
essential role in input-output modelling. Efforts addressing the concern over the estimation of the Leontief
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inverse when errors are presented in the consumption matrix T can be found in [4, 8]. In contrast, the
main goal of this paper is to estimate T using consecutive measurements of inexact total outputs and final
demands.

The Leontief model “describes the economic system in terms of mutually interrelated and structurally
conditioned, simultaneous flows of commodities and services [10].” The system (1.2) is also known as
a static input-output model because it represents the “flow” of commodities only at a single interval of
time. It is sometimes desirable to reflect changes in time and to take into account model components that
are constantly changing as a result of previous actions or future expectations [12]. For example, in the
model (1.2) the final demand vector d comprises not only consumption goods, but also investment goods
including additions to the stock of fixed capitals such as buildings, machinery, tools and so on. It is perhaps
more reasonable to assume that the investment should not be taken as given from outside, but rather be
explained within the model. An illustration of such a scenario is that one reason to justify an investment
is the expectation that the expansion of production capacity, say, buying machines, should match in some
way with the expansion of the output level demanded. Let xk denote the vector of total outputs at the
k-th time period. In contrast to (1.2), a simple dynamic input-output model reflecting the above-mentioned
investment policy is of the form

xk = Txk + B(xk+1 − xk) + yk
︸ ︷︷ ︸

dk

, (1.6)

where yk is the demand vector excluding fixed capital investment, B = [bij ] is the transit matrix with bij

defining the investment required of sector si in order to increase one unit of output capacity of sector sj .
Again, from the investment or management point of view, it will be interesting to estimate either T or B
based on a sequence of observed vectors {xk} and {yk}.

2. Inverse Problem. In either the static or the dynamic model described above, the usual task is the
forward problem of determining, by assuming that the consumption matrix T and the transit matrix B are
known and fixed, the production level from given demand vector. It is conceivable that, in a complicated
and interwoven economic system, the coefficients of dependence tij and bij between any two given sectors
si and sj are never known precisely. Though the economy is actively engaging and inputs and outputs are
revolving as we see them in the market, often we do not quite comprehend the “invisible hand” behind
that drives the economy. That is, even after we have assumed the practicality of the Leontief model for
the economy, often we do not know the exact consumption matrix T nor the transit matrix B. By the
inverse problem of the Leontief model, we mean the estimation of either T or B based on a sequence of
observed output vectors xk and demand vectors dk (or yk in (1.6)). For simplicity, we will have to assume,
as did the BEA before 1998 since the benchmark were made quinquennially, that during the period of
observation the matrices T and B remain constant. Obviously, the fact that the resulting model must be
feasible imposes a constraint on the estimation. In what follows we study only the inverse problem for
estimating T . The general inverse problem is still an ongoing research project.

2.1. Formulation. At its first glance, the inverse problem is straightforward to solve. Assuming the
static Leontief model (1.2), if there are n corrected observed output vectors X̃ = [x̃1, . . . , x̃n] and demand
vectors D̃ = [d̃1, . . . , d̃n], then

T = I − D̃X̃−1. (2.1)

However, questions arise under any of the following scenarios:
S1. Either x̃k or d̃k (and often both) cannot be measured precisely.
S2. There are not enough data collected, that is, an estimation is to be made with less than n pairs

(x̃k, d̃k) of observations.
S3. There are too many observations and consistency is not necessarily maintained.
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In the case of S1, the notion of total least squares should be brought in [13]. In the case of S2, we shall
have an underdetermined system and multiple solutions are expected. In the case of S3, we encounter an
overdetermined system. In all situations, the constraint is that I − T must be a nonsingular M -matrix.
We think both the theory of solvability and the practice of computation deserve further consideration.

Let R
n×m
+ denote the cone of nonnegative matrices of size n×m. Assume that there are p observations.

Given inexact data X̃, D̃ ∈ R
n×p
+ , one possible formulation of reconstructing the consumption matrix in

the Leontief model is to consider the constrained total least squares problem stated as follows:

min
X, D ∈ R

n×p

+

The equation (I − T )X = D is solvable for T ∈ R
n×n
+

The matrix I − T is a nonsingular M-matrix

1

2
‖

[

X̃ − X |D̃ − D
]

‖F . (2.2)

Because T ∈ R
n×n is the parameter to be found, it might be more convenient to rewrite (2.2) in the

transpose of its matrices. Without causing any ambiguity, we shall use henceforth the same notation to
represent the transpose of the problem, that is,

min
X ∈ R

p×n

+
,

T ∈ R
n×n
+

I − T is a nonsingular M-matrix.

1

2
‖

[

X̃ − X |D̃ − X(I − T )
]

‖2
F . (2.3)

By using the Neumann lemma [2, Lemma 2.1], the M -matrix constraint can be expressed in terms of a
spectral constraint. We rewrite (2.3) as follows:

min
X ∈ R

p×n

+
,

T ∈ R
n×n
+

,

ρ(T ) < 1.

1

2
‖

[

X̃ − X |D̃ − X(I − T )
]

‖2
F . (2.4)

Likewise, by exploiting condition I28 of [2, Theorem 2.3], we can formulate (2.3) as an algebraically con-
strained optimization problem:

min
X ∈ R

p×n

+
,

T ∈ R
n×n
+

,

X(I − T ) ∈ R
p×n

+
.

1

2
‖

[

X̃ − X |D̃ − X(I − T )
]

‖2
F . (2.5)

One of our main contributions in this paper is the description of numerical methods for solving either
(2.4) or (2.5). In particular, we demonstrate numerically that the projected gradient approach is perhaps
the most robust and efficient. More details are given in Section 3.

2.2. Solvability. For convenience, denote the objective function by

g(X, T ) :=
1

2

{

〈X̃ − X, X̃ − X〉 + 〈D̃ − X(I − T ), D̃ − X(I − T )〉
}

, (2.6)

where 〈A, B〉 =
∑

i,j aijbij denotes the Frobenius inner product of two matrices A and B. It is easy to see
that the gradient ∇g(X, T ) with respect to the Frobenius inner product is given by the pair of matrices

∇g(X, T ) = −
(

X̃ − X + (D̃ − X(I − T ))(I − T )⊤,−X⊤(D̃ − X(I − T ))
)

. (2.7)

Because neither the objective function nor the constraints in problem (2.4) is convex, a brief remark on
the solvability might be worth mentioning.
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Consider first the simplest case when n = p = 1. It is easy to see that the objective function g(X, T )
has only two critical points in R

2. These are

(0, 1 +
X̃

D̃
) and (X̃, 1 −

D̃

X̃
).

The first critical point is infeasible, if we assume that both X̃ and D̃ are positive scalars to begin with.
It is interesting to observe that if D̃ > X̃, that is, if the observed demand is higher than the observed
output, then the second critical point is also infeasible. Even in the feasible case where D̃ ≤ X̃, the

minimum occurs at ( X̃+D̃
2 , 0) which would still be “undesirable” because the consumption matrix(scalar)

T is identically zero. This simple consideration is an indicator of a subtle question that the consumption
matrix T estimated from the total least squares formulation needs to be properly interpreted. We point
out at this early stage that a similar issue of interpretation arises in Example 3 of Section 4 when our
numerical methods are applied to some real EBA data.

For the general multidimensional case, we observe that the function g(X, T ) is coercive, that is,
g(X, T ) → ∞ as ‖(X, T )‖ → ∞ (with respect to any norm). Therefore, the minimum of g(X, T ) must occur
within a bounded subset, say B, of R

p×n
+ ×R

n×n
+ . For arbitrary but fixed positive scalar ǫ < 1, g(X, T ) must

attain a global minimal value g(Xǫ, Tǫ) within the compact subset
{
(X, T ) ∈ B | ρ(T ) ≤ ǫ < 1

}
. What is

not clear about, but would be interesting to investigate in a separate study, is the limiting behavior of
(Xǫ, Tǫ) as ǫ approaches 1. The limit point may or may not exist. For computational purpose, we usually
implement the constraint ρ(T ) ≤ 1 with the hope that the spectral radius at the (local) minimizer is strictly
less than one. Through our extensive numerical experiments, we are inclined to think that it is often the
case in practice.

The issue of solvability can also be addressed in terms of the optimality conditions. We briefly outline
the idea below. Assume, without loss of generality, the generic condition that T is irreducible. By the
Perron-Frobenius theorem, the spectral radius ρ(T ) is a simple eigenvalue with positive eigenvector. It is
not difficult to argue that ρ(T ) is differentiable with respect to T . Indeed, let u and v denote, respectively,
the left and right eigenvectors of T corresponding to ρ(T ). Assume further that u and v are normalized
to u⊤v = 1. Then it can be shown that

∂ρ(T )

∂T
= uv⊤. (2.8)

This piece of derivative information can be used to facilitate numerical computation in various ways which
will be exploited in Section 4.

The positivity of dominant eigenvectors implies that the gradient ∂ρ(T )
∂T

> 0. It follows that the
constraint qualification [6, Lemma 9.2.2] is satisfied by the constraints in problem (2.4). Therefore, the
KKT conditions for problem (2.4) can be stated as follows.

Theorem 2.1. Suppose (X, T ) is an optimal solution to (2.4). Let u and v be the normalized left
and right eigenvectors of T corresponding to ρ(T ). Then in addition to satisfying the feasibility conditions
X ≥ 0, T ≥ 0, and ρ(T ) ≤ 1, it is necessary that

Φ = (X̃ − X) + (D̃ − X(I − T ))(I − T )⊤ ≤ 0, (2.9)

Ψ = X⊤(D̃ − X(I − T )) + λuv⊤ ≥ 0, (2.10)

λ = λρ(T ) ≥ 0, (2.11)

Φ. ∗ X = 0, (2.12)

Ψ. ∗ T = 0. (2.13)

where .∗ denote the Hadamand product of two matrices.
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In the above, we have used the notation M ≥ 0 to indicate a nonnegative matrix M . Note that both
matrices −Φ and Ψ and the scalar λ serve as the Lagrange multipliers. In a similar manner, the KKT
conditions for problem (2.5) can be stated in the following way.

Theorem 2.2. Let (X, T ) be an optimal solution to (2.5). Then the feasibility conditions X ≥ 0,
T ≥ 0, X(I − T ) ≥ 0 have to be satisfied and, in addition, there must exists a matrix M ∈ R

p×n, M ≥ 0,
such that

Φ = (X̃ − X) + (D̃ − X(I − T ))(I − T )⊤ + M(I − T )⊤ ≤ 0, (2.14)

Ψ = X⊤(D̃ − X(I − T )) + X⊤M ≥ 0, (2.15)

M. ∗ (X(I − T )) = 0, (2.16)

Φ. ∗ X = 0, (2.17)

Ψ. ∗ T = 0. (2.18)

3. Numerical Methods. To our knowledge, the constrained total least squares formulation for the
inverse Leontief problem has not been studied in the literature. The nonlinear or spectral constraint also
makes the classical total least squares techniques impractical. In this section, we propose three approaches
for solving the constrained total least squares problem (2.3) numerically. The two formulations (2.4) and
(2.5) are equivalent, but have different characteristics on their constraints. Thus for each approach outlined
below, we describe its variants applied to (2.4) and (2.5) separately. A preliminary comparison of their
performance will be reported in Section 4.

3.1. Classical Optimization Approach. By considering X and T as the unknown parameters, it
is possible to employ classical optimization techniques, such as the trust region method or the sequential
quadratic programming method [6], to tackle the constrained problems (2.4) or (2.5). Without specifying
which techniques are being employed, we shall refer to any types of these classical schemes for problem (2.4)
and (2.5) as Algorithms C1 and C2, respectively. Plenty of existing software is readily available for use in
this application. Thus we shall make no effort to review any programming details in this presentation. Be it
sufficient to say that built in these algorithms are various tactics to satisfy the KKT conditions described
earlier. For later comparison, we use in this paper the MATLAB routine fmincon as the “classical”
scheme. Obviously, many other routines could be used in its place and the performance could be very
different.

It is important to point out that there are n(n+ p) unknowns in the underlying optimization problem.
Thus the problem can easily be large-scaled. Unless the inherent structure is further exploited, this
approach in general is more expensive.

3.2. Projected Gradient Approach. Though it is known to converge only linearly, the method
of line search in the descent direction remains to be one of the cheapest and easiest ways to tackle un-
constrained optimization problems. For linearly constrained problems, the steepest descent idea can be
modified with the application of projected gradient. In our case, we have a mixture of nonlinear inequality
constraints. However, we find it possible to enforce these inequality constraints by simple projections or
scalings.

Given a matrix S, let P(S) denote its projection to the cone of nonnegative matrices. That is, define
the (i, j) entry of P(S) by

(P(S))ij := max{sij , 0}. (3.1)

We propose the following hybrid scheme for solving the constrained problem (2.4). The basic idea is to
employ the steepest descent method so long as the constraints are inactive. A correction is made only when
a constraint is violated. In that case, the corrected iterate is put back to the “boundary” of the feasible
set. For later reference, this method is referred to as Algorithm G1.
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Algorithm G1. Given initial value (X(0), T (0)) that is strictly feasible, do the following for k =
0, 1, 2, . . . until convergence:

1. Select a step size µ > 0 and compute

X̂ = X(k) + µ
(

X̃ − X(k) +
(

D̃ − X(k)(I − T (k))
)

(I − T (k))⊤
)

,

T̂ = T (k) − µ(X(k))⊤
(

D̃ − X(k)(I − T (k))
)

;

2. Update

X(k+1) = P(X̂),

T (k+1) =

{

P(T̂ ), if ρ(P(T̂ )) ≤ 1,

P(T̂ )/ρ(P(T̂ )), if ρ(P(T̂ ) > 1.

Likewise, the following hybrid scheme for solving the constrained problem (2.5) is referred to as Algo-
rithm G2. The basic idea in Algorithm G2 is that the implicitly defined matrix D = X(I − T ) should be
nonnegative itself. We thus employ the steepest descent method with the correction of all three matrices
D, X , and T to the nearest nonnegative matrices.

Algorithm G2. Given initial value (X(0), T (0)) that is strictly feasible, do the following for k =
0, 1, 2, . . . until convergence:

1. Compute D(k) = P(X(k)(I − T (k))).
2. Select a step size µ > 0 and compute

X̂ = X(k) + µ
(

X̃ − X(k) + (D̃ − D(k))(I − T (k))⊤
)

,

T̂ = T (k) − µ(X(k))⊤(D̃ − D(k));

3. Update

X(k+1) = P(X̂),

T (k+1) = P(T̂ ).

With properly chosen µ, these iterations can be made into a descent method.

3.3. Penalty Approach. Thus far, we have been tackling the inverse problem head on. In this
section, we explore the idea of approximately solving the inverse problem by solving its approximate
problem. We describe two ways to formulate the approximate problem – the penalty function and the log
barrier function.

The penalty function is to approximate the optimization problem (2.2) by the new problem

min
X, D ∈ R

p×n

+
,

T ∈ R
n×n
+

.

1

2

{

‖
[

X̃ − X |D̃ − D
]

‖2
F + α‖D − X(I − T )‖2

F

}

, (3.2)

where α ∈ R represents the weight of the penalty. The idea is that, instead of enforcing the relationship
D = X(I − T ) directly, we bring down the gap between D and X(I − T ) through the penalty term. The
Leontief model (1.2) is only approximately satisfied. However, we gain the advantage that the constraints
involve only simple bounds. The problem (3.2) can be solved by many existing nonlinear optimization
techniques. Such an approach of employing existing software to the approximate problem (3.2) will be
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referred to as Algorithm P1 for problem (2.5). Note that the size of the problem grows as n(n + 2p). Any
Algorithm P1 involving second order derivatives will become expensive when n is large.

On the other hand, it might be much easier to apply the steepest descent method with projection to
problem (3.2). The following Algorithm P2 is a projected gradient method for the approximate problem.

Algorithm P2. Given initial value (X(0), T (0), D(0)) that is strictly feasible, do the following for
k = 0, 1, 2, . . . until convergence:

1. Select a step size µ > 0 and compute

X̂ = X(k) + µ(X̃ − X(k) + α(D(k) − X(k)(I − T (k)))(I − T (k))⊤),

T̂ = T (k) − µα(X(k))⊤(D(k) − X(k)(I − T (k))),

D̂ = D(k) + µ(D − D(k));

2. Update

X(k+1) = P(X̂),

T (k+1) = P(T̂ ),

D(k+1) = P(D̂).

In a similar spirit, we could also approximate problem (2.4) by the log barrier function [3, 5]. The
logarithmic barrier function can be formulated as

f(X, T ; µ) =
1

2

(

‖X̃ − X‖2
F + ‖D̃ − X(I − T )‖2

F

)

− γ (ln(1 − ρ(T ))) (3.3)

where γ > 0 is the barrier parameter. The basic idea in the log barrier algorithm is to apply the Newton
procedure with a fixed value of µ to find a minimizer (X(γ), T (γ)) of (3.3) where X ∈ R

p×n
+ and T ∈ R

n×n
+ .

The approximate minimizer of f(X, T ; γ) for one value of γ is then used as a starting point for the Newton
procedure at the next reduced value of γ until γ converges to zero. To accomplish that goal, we point out
that the gradient ∇f for each fixed γ can be calculated as follows:

∂f

∂X
= −

(

(X̃ − X) + (D̃ − X(I − T ))(I − T )⊤
)

, (3.4)

∂f

∂T
= X⊤(D̃ − X(I − T )) +

γ

1 − ρ(T )
uv⊤. (3.5)

Such an approach is referred to as Algorithm P3.

4. Numerical Experiment. We have outlined seven numerical methods classified into three cate-
gories for the inverse Leontief problem. In this section, we carry out some numerical experiments on the
various techniques and report our test results. Because these methods have different features and wide-
ranging degrees of complexities, they perform differently. It is not easy to make a fair comparison of their
performance. In all these experiments, we use the CPU time and the attainable objective values on a singly
devoted machine to evaluate the performance.

For Algorithms G1, G2 and P2, the step size is set at µ = 10−3 and we assume to have reached con-
vergence when ‖[X(k+1)|T (k+1)]− [X(k)|T (k)]‖F ≤ 10−8. The routine fmincon in the Matlab environment
is used as the main driver in Algorithms C1, C2, P1 and P3, where the tolerance parameters are set at
TolX = 10−10, TolFun = 10−10 and the maximal number of iterations are set at MaxFunEvals = 105

and MaxIter = 104. For Algorithms P1 and P2, we set α = 1; For Algorithm P3, the value of γ is initially

set at 1 and is decreased linearly with a slope of 1/50 until it reaches the minimum value 10−8

n(n+p+1) .

We carry out the experiments on three sets of test data for different purposes. The first two examples are
based on artificially generated data. The purpose of these two experiments is to compare the performance
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of the algorithms. The third example is based on real-world data and it shows an optimal consumption
matrix which is surprisingly different from what has been observed in the market.

Example 1. We generate the first set of test data according to the following rules:

(a) Randomly generate an irreducible nonnegative matrix T∗ ∈ R
n×n. Choose an arbitrary positive

scalar 0 < β < 1 and define T := (β/ρ(T∗))T∗. The matrix T , with a controlled spectral radius
ρ(T ) = β, is used as the “correct” consumption matrix in the Leontief model. In our experiments,
we take β = 0.8.

(b) Randomly generate a nonnegative matrix D̃obs ∈ R
n×p
+ . This matrix is regarded as the observed

demand matrix.
(c) Define X̃obs = (I − T )−1D̃obs. This matrix is regarded as the observed output matrix.

We perform tests on problems of sizes n = 3ℓ and p = 5ℓ with ℓ = 1, 2, 3. For each given and fixed
size, the same starting points (X(0), T (0)) generated randomly are used for all methods.

The goal of the first experiment is to test how well the algorithms handle the inverse problem when no
errors are introduced in the measurements. Let the observed data D̃1 and T̃1 be the “exact” data, that is,

D̃1 := D̃obs,

X̃1 := X̃obs.

We expect to see that if p ≥ n, then T should be uniquely and completely recovered. The attainable
objective values and the CPU overhead are reported in Table 4.1 and Figure 4.1, respectively.

n2 + np
Alg. 24 96 216

C1 1.0212e-11 2.1455e-10 1.0581e-7
G1 1.5482e-9 2.1868e-9 7.4370e-10
P1 2.3285e-11 N/A 7.2634e-9
C2 2.2318e-12 2.6071e-8 5.3670e-10
G2 1.5482e-9 2.1868e-9 7.4548e-10
P2 1.5384e-9 2.2027e-9 8.0719e-10
P3 5.4504e-9 5.3516e-9 3.1549e-10

Table 4.1

Objective values attained by the different algorithms in Example 1.

Note that the Matlab routine FMINCON may fail to converge within the maximum number of function
evaluations or iterations. It is worth mentioning that overhead of the three algorithms G1, G2, and P2
seems to be incentive to the size of the problem.

Example 2. In this experiment, we subject both the demand matrix D̃1 and the output matrix X̃1

to perturbations. Our goal is to examine how much fidelity of the original consumption matrix T can be
recovered. There are two ways to introduce perturbations — errors that are stochastic entry-wise or errors
that are bounded within a certain rectangle. For demonstration purpose, we consider only the following
two cases.

Case 2.1. Let randn(n, p) stand for an n×p random matrix whose entries are chosen from iid standard
Gaussian distribution. Define the observed demand matrix and the output matrix by

D̃2 := D̃1 + σ1randn(n, p),

X̃2 := X̃1 + σ2randn(n, p),

respectively, where σk, k = 1, 2, represent the variance of the perturbations.
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Fig. 4.1. CPU time required by the different algorithms in Example 1.

Case 2.2. Let E stand for an arbitrary but fix matrix with unit Frobenius norm. Define the observed
demand matrix and the output matrix by

D̃3 := D̃1 + ǫ1E,

X̃3 := X̃1 + ǫ2E,

respectively, where ǫk, k = 1, 2, represent the absolute magnitude of the perturbations.
Objective values corresponding to the choice ǫ1 = ǫ2 = 0.05 and σ1 = σ2 = 0.05 are reported in Table

4.2. The corresponding CPU overhead is reported in Figure 4.2.
All of these test results seem to suggest that among the seven proposed methods, Algorithms G1, G2

and P2 are most robust and insensitive to the size of the problem. The classical techniques C1 and C2 are
effective for low dimensional problems, but are at least one order more expensive when the size becomes
modestly large.

n2 + np (Case 2.1) n2 + np (Case 2.2)
Alg. 24 96 216 24 96 216

C1 5.2807e-3 2.3707e-2 N/A 1.5167e-4 N/A N/A
G1 5.2807e-3 2.3707e-2 7.4340e-2 1.5167e-4 6.3775e-5 3.3688e-5
P1 5.2777e-3 2.3312e-2 7.3879e-2 1.4145e-4 6.3139e-5 3.3701e-5
C2 5.2807e-3 2.3707e-2 7.4463e-2 1.5167e-4 6.3775e-5 3.3688e-5
G2 5.2807e-3 2.3707e-2 7.4694e-2 1.5167e-4 6.3775e-5 3.3688e-5
P2 5.2807e-3 2.3312e-2 7.3885e-2 1.5167e-4 6.3775e-5 3.3688e-5
P3 5.2807e-3 2.3707e-2 7.4340e-2 1.5167e-4 6.3780e-5 3.3688e-5

Table 4.2

Objective values obtained by the different algorithms in Example 2.

Example 3. The BEA began to collect annual industry accounts in 1998 based on a comprehensive
revision NAICS of the classification system. The database they have established contains massively detailed
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Fig. 4.2. CPU time required by the different algorithms in Case 2.1 (left) and Case 2.2 (right).

information. A full-scope input-output table will be too large to fit in this paper. It is nice that the BEA
offers an interactive access to the input-output accounts data [1] by which users can retrieve information
from a partial list of the sectors. For demonstrate purpose, we have selected five industries to study
the interrelationship, these are, (01) Agriculture, forestry, fishing, and hunting; (04) Construction; (05)
Manufacturing; (08) Transportation and warehousing; and (10) Finance, insurance, real estate, rental and
leasing. (Numbers in the parentheses are the IO codes used in the tables.)

To avoid possible incompatibility in the definition of classification, we examine the BEA data of the six
years from 1998 to 2003 only when the newer NAICS is used. Listed in Table 4.3 are the Use Tables, that
is, the consumption matrices, for the five selected industries identified by their IO codes. For comparison,
the 6×1 column in each cell represents the values tij of the corresponding sectors i and j over the six years.
The points we want to make in this table are twofold: one is that these values represent only estimates of
the true yet unknown input-output flows and the other is that the estimates in each cell over the span of
six years are approximately the same. Could it be possible that the slight variations in each cell are due to
input-output measurement errors whereas the consumption matrix should have been constant (like what
has been assumed quinquennially before 1998), or are these variations representing true economic growth?
In either case, it would be interesting to see how the notion of our inverse problem would suggest about the
consumption matrix.

To conduct our experiment, we gather the total industry output from the six years’ Use tables. The
output vectors of the five selected industries for each year is listed as a row in Table 4.4. Because we are not
referring to the entire spectrum of industries, the demand vector of each industry in our context is defined
to be the sum of “Intermediate Not Selected” and “Sum of Value Added Not Selected”. This information
is listed in Table 4.5. These data are of large scale. To improve the computational efficiency, we work on
the modified matrices X̃N and D̃N obtained by scaling data in Table 4.4 and Table 4.5 by the mean value
of the entire data.

We use (X̃N , T (2002)), where T (2002) denotes the consumption matrix associated with year 2002, as
the starting point for our iteration. For each of the seven methods, we summarize the computed total
least squares output matrix X in Table 4.6 and demand matrix D in Table 4.7. The results by any of the
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Commodities Industries
01 04 05 08 10

0.223 0.001 0.039 0 0
0.237 0.001 0.036 0 0

01 0.230 0.001 0.035 0 0
0.231 0.001 0.037 0 0
0.226 0.001 0.036 0 0
0.225 0.001 0.038 0 0.001
0.003 0.001 0.002 0.003 0.009
0.003 0.001 0.002 0.003 0.009

04 0.004 0.001 0.002 0.002 0.008
0.004 0.001 0.002 0.002 0.009
0.004 0.001 0.002 0.003 0.009
0.003 0.001 0.002 0.003 0.010
0.180 0.268 0.360 0.099 0.016
0.186 0.263 0.357 0.103 0.016

05 0.183 0.258 0.347 0.122 0.016
0.183 0.256 0.338 0.112 0.014
0.185 0.247 0.330 0.105 0.014
0.173 0.249 0.321 0.106 0.014
0.028 0.019 0.033 0.120 0.009
0.029 0.018 0.031 0.120 0.009

08 0.029 0.018 0.030 0.118 0.010
0.029 0.018 0.030 0.121 0.008
0.031 0.018 0.031 0.122 0.007
0.028 0.018 0.030 0.116 0.007
0.073 0.031 0.025 0.057 0.186
0.065 0.030 0.026 0.054 0.194

10 0.064 0.032 0.026 0.051 0.200
0.066 0.033 0.028 0.053 0.185
0.055 0.032 0.026 0.053 0.178
0.058 0.035 0.026 0.053 0.182

Table 4.3

“Use Table” of five selected industries from BEA input-output account data for years 1998 to 2003.

year Industries
01 04 05 08 10

1998 257843.2 824368.1 3801739.6 530616.8 2558430.0
1999 250549.4 890481.4 3943198.0 559076.7 2765987.6
2000 254252.9 957442.8 4118977.1 593706.4 3037986.9
2001 258307.2 1000890.8 3852737.6 571210.7 3102808.3
2002 249564.5 1009983.4 3797031.8 571512.9 3208738.0
2003 275057.9 1063284.8 3890415.9 592871.8 3394219.2

Table 4.4

Total output vectors of five selected industries for year 1998 to 2003.
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year Industries
01 04 05 08 10

1998 50557.3 790038.4 20.69769.7 295677.8 1911555.0
1999 47004.6 855243.9 2155880.6 322589.2 2054120.6
2000 48892.8 920437.8 2273986.1 347418.3 2246536.3
2001 52263.5 962474.6 2138755.1 336973.9 2341720.7
2002 53164.2 969264.0 2142228.8 337839.9 2463951.6
2003 62553.7 1019074.4 2216503.6 357648.2 2590789.8

Table 4.5

Total demand vectors of five selected industries for year 1998 to 2003.
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Fig. 4.3. Comparison of the computed output matrices (left) and demand matrices (right) by the different algorithms.

seven methods described in this paper point to almost the same optimal solution expect perhaps the last
two digits which are within the stopping criteria after scaling. The logarithmic plots of these matrices in
Figure 4.3 clearly demonstrate this closeness of total least squares solutions to the original data.

What is interesting and deserves further attention is the corresponding computed consumption matrices
T recorded in Table 4.6. Note that these computed consumption matrices by the seven methods are almost
identical, confirming that our calculation should be correct. However, these matrices are remarkably
different from those consumption matrices in the User Table 4.3 which are obtained through arduous
undertakings. An explanation of this discrepancy from an economics point of view is yet to be done. The
meaning of this optimal consumption matrix is yet to be understood. We point out that the objective
value has been reduced from the initial order of approximately 1010 to the order of 109 at convergence,
which we think is quite significant.

5. Conclusion. The inverse problem of estimating the consumption matrix from output vectors and
demand vectors has been considered in this paper. Assuming that the measurements usually are inexact,
we employ the notion of total least squares to remove the noise while performing the estimation. A total of
seven numerical schemes has been proposed as means to solve the inverse problem. Numerical experiments
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seem to suggest that the projected gradient approach is the most robust and problem-size insensitive.

As a mathematical result when our methods are applied to some real-world EBA data, we discover a
consumption matrix that is very different from the User Table collected in the EBA database. An eco-
nomical interpretation of this result is beyond our expertise. It would be interesting to see if the estimated
consumption matrix by our inverse formulation has any useful meaning to the economics community.

Alg. X T

256373.6 824042.8 3784175.5 522545.0 2567582.2 0.545 0.027 0 0 0

249885.2 890653.9 3928805.5 558948.3 2767065.4 0 0 0 0 0

C1 254809.5 958159.2 4113402.9 599945.2 3028375.3 0.017 0 0.445 0.050 0

257808.5 1001315.2 3852490.2 572977.8 3099403.3 0 0 0 0.070 0.865

250664.1 1009756.5 3811192.9 567412.2 3215452.0 0 0.010 0 0 0.083

275978.6 1062575.7 3914156.6 595990.1 3391741.2

256363.6 824029.4 3784176.4 522574.9 2567581.7 0.543 0.026 0 0 0

249889.0 890648.5 3928805.3 558964.6 2767060.6 0 0 0 0 0

G1 254821.3 958160.0 4113401.7 599947.0 3028369.9 0.017 0 0.445 0.051 0

257807.4 1001313.8 3852490.9 572967.5 3099398.1 0 0 0 0.068 0.864

250667.0 1009768.8 3811191.6 567404.7 3215461.6 0 0.010 0 0 0.083

275969.8 1062581.4 3914157.1 595967.4 3391744.7

256370.3 824051.5 3784177.4 522546.0 2567580.1 0.544 0.027 0 0 0

249886.2 890656.8 3928805.6 558948.3 2767065.9 0 0 0 0 0

P1 254812.2 958160.6 4113401.7 599944.8 3028375.3 0.017 0 0.445 0.050 0

257811.1 1001312.1 3852489.4 572978.6 3099399.9 0 0 0 0.07 0.860

250665.3 1009757.8 3811191.6 567411.9 3215452.9 0 0.01 0 0 0.080

275977.3 1062575.0 3914156.6 595989.6 3391742.3

256371.1 824050.6 3784177.2 522545.2 2567580.0 0.544 0.027 0 0 0

249886.6 890657.8 3928806.5 558946.4 2767063.3 0 0 0 0 0

C2 254813.0 958160.6 4113401.4 599945.3 3028378.3 0.017 0 0.445 0.050 0

257810.8 1001309.1 3852490.2 572976.4 3099399.7 0 0 0 0.070 0.865

250666.2 1009757.1 3811191.9 567411.2 3215454.5 0 0.010 0 0 0.083

275977.1 1062576.5 3914156.0 595987.1 3391742.3

256363.6 824029.4 3784176.4 522574.9 2567581.7 0.543 0.026 0 0 0

249889.0 890648.5 3928805.3 558964.6 2767060.6 0 0 0 0 0

G2 254821.3 958160.0 4113401.7 599947.0 3028369.9 0.017 0 0.445 0.051 0

257807.4 1001313.8 3852490.9 572967.5 3099398.1 0 0 0 0.068 0.864

250667.0 1009768.8 3811191.6 567404.7 3215461.6 0 0.010 0 0 0.083

275969.8 1062581.4 3914157.1 595967.4 3391744.7

256363.6 824029.4 3784176.4 522574.9 2567581.7 0.543 0.026 0 0 0

249889.0 890648.5 3928805.3 558964.6 2767060.6 0 0 0 0 0

P2 254821.3 958160.0 4113401.7 599947.0 3028369.9 0.017 0 0.445 0.051 0

257807.4 1001313.8 3852490.9 572967.5 3099398.1 0 0 0 0.068 0.864

250667.0 1009768.8 3811191.6 567404.7 3215461.6 0 0.010 0 0 0.083

275969.8 1062581.4 3914157.1 595967.4 3391744.7

256365.2 824007.4 3784176.8 522563.3 2567582.7 0.544 0.025 0 0 0

249888.3 890640.4 3928805.7 558958.0 2767063.3 0 0 0 0 0

P3 254819.4 958161.3 4113401.8 599946.8 3028373.4 0.017 0 0.445 0.051 0

257808.5 1001317.4 3852490.6 572971.6 3099398.3 0 0 0 0.069 0.865

250666.1 1009781.3 3811191.6 567408.5 3215457.5 0 0.011 0 0 0.083

275971.2 1062588.5 3914156.6 595976.4 3391742.2
Table 4.6

Total least squares solutions of output matrix X and consumption T based on BEA data for year 1998 to 2003.
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Alg. D=X(I-T)
53809.6 790358.6 2101437.9 295069.8 1901577.4
48451.6 855069.9 2181754.2 321630.4 2052944.6

C1 47624.8 919721.8 2284265.3 350446.9 2257010.7
53327.3 962057.2 2139374.5 338530.2 2345439.3
50761.2 969484.8 2116441.2 335437.4 2456625.4
60574.1 1019781.8 2173619.3 356822.2 2593500.3
53816.3 790377.1 2101437.5 295050.1 1901573.5
48440.9 855076.8 2181753.2 321621.7 2052947.9

G1 47607 919720.6 2284263.7 350446.3 2257021.1
53333.4 962051.6 2139374.1 338535.5 2345436.7
50762.7 969478.6 2116439.7 335446.3 2456618
60597.7 1019777.8 2173618.7 356837.6 2593497.7
53811.0 790359.5 2101436.6 295071.2 1901571.1
48451.2 855069.3 2181751.9 321630.7 2052941.3

P1 47623.5 919723.0 2284262.1 350446.5 2257007.3
53330.6 962054.4 2139371.8 338530.6 2345433.1
50762.9 969489.6 2116438.2 335436.9 2456625.0
60579.1 1019782.7 2173616.9 356821.1 2593500.2
53811.0 790358.4 2101438.2 295072.8 1901571.6
48449.0 855070.3 2181754.1 321630.8 2052940.5

C2 47620.5 919723.2 2284263.8 350448.6 2257009.4
53329.7 962051.8 2139373.9 338529.7 2345434.3
50762.0 969489.3 2116440.1 335437.4 2456626.3
60580.0 1019784.6 2173618.3 356819.7 2593501.6
53816.3 790377.1 2101437.5 295050.1 1901573.5
48440.9 855076.8 2181753.2 321621.7 2052947.9

G2 47607.0 919720.6 2284263.7 350446.3 2257021.1
53333.4 962051.6 2139374.1 338535.5 2345436.7
50762.7 969478.6 2116439.7 335446.3 2456618.0
60597.7 1019777.8 2173618.7 356837.6 2593497.7
53816.3 790377.1 2101437.5 295050.1 1901573.5
48440.9 855076.8 2181753.2 321621.7 2052947.9

P2 47607.0 919720.6 2284263.7 350446.3 2257021.1
53333.4 962051.6 2139374.1 338535.5 2345436.7
50762.7 969478.6 2116439.7 335446.3 2456618.0
60597.7 1019777.8 2173618.7 356837.6 2593497.7
53815.1 790398.1 2101437.7 295057.6 1901572.7
48443.7 855085.3 2181753.4 321624.8 2052944.5

P3 47611.6 919719.0 2284263.7 350446.9 2257015.6
53333.1 962048.8 2139373.9 338533.4 2345436.9
50762.8 969465.7 2116439.7 335443.5 2456623.0
60593.1 1019771.1 2173618.4 356831.6 2593501.2

Table 4.7

Total least squares solutions of demand matrix D based on BEA data for year 1998 to 2003.
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