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Abstract

Given a linear Euclidean distance matrix Qn of size n×n, it has been claimed that rank+(Qn) = n.
The proof given in the previous LAA paper by Lin and Chu is incomplete. This note continues the
investigation of this claim. The argument employed below is still not perfect, but shows at least
that the claim is generically true. Additionally, this course of study leads to a few new discoveries
which will be presented below.
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1. The feasible set

Let ϑ(Qn) denote the pullback of Qn to the unit simplex Dn. It is known that rank(Qn) =
3. Columns of ϑ(Qn) therefore are “coplanar”, whereas by their common plane we refer to a 2-
dimensional affine subspace An ∈ Rn. Denote Tn := An

⋂
Dn which is said to be feasible with

respect to the inequality system (2) described below. Obviously, columns of ϑ(Qn) are embedded
in Tn. We first elaborate on how to see this 2-dimensional feasible set Tn in Rn via its isomorphic
image over R2.

We begin with a fixed point, say, ϑ(q1), and two coordinate axes, say, b1 := ϑ(q2)− ϑ(q1) and
b2 := ϑ(q3)− ϑ(q1). All points in the 2-dimensional affine subspace, including those in Tn, can be
represented as

ϑ(q1) + αb1 + βb2

by some real scalars α and β. Denote the n× 2 basis matrix by

B := [b1,b2]. (1)

We seek feasible α and β such that

ϑ(q1) + B

[
α
β

]
≥ 0. (2)

Because B is of full column rank, it defines an isomorphism by which we may identify the set Tn

with the collection Pn of all feasible pairs (α, β). The former is a set residing in Rn which is hard
to see, but the latter is a polygon residing in R2.

Note that the inequality system (2) involves exactly n lines. The set Pn is generically a convex
polygon. In particular, we should have
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Figure 1: Feasible domain for (α, β) when n = 6 and r = 1

ϑ(Qn) = [ϑ(q1), . . . , ϑ(q1)]︸ ︷︷ ︸
A

+BC, (3)

where A ∈ Rn×n and C ∈ R2×n is of this special form

C =
[

0 1 0 × . . .
0 0 1 × . . .

]
,

where × stands for some nonzero scalars. Obviously each column ci of C is a feasible point in Pn.
By our isomorphism, each column vector ϑ(qi) is uniquely represented by the point ci in Pn. An
example for the case n = 6 is depicted in Figure 1 in which the feasible set Pn is enclosed by solid
lines, each ci is marked by a solid bullet, and the region bordered by dashed lines represents the
convex hull spanned by ϑ(Q6).

Of particular importance is that because the i entry of ϑ(qi) for i = 1, . . . , n is zero, each ci

satisfies precisely one equation in the inequality system (2). In other words, each ci is a point on
precisely one side of the polygon Pn. A careful examination of the slopes of these lines from the
definition of Qn shows that these lines can be ordered, starting with the side passing through the
origin and going counterclockwise. It then can be argued that Pn is a convex n-tope. Because ci’s
reside on the boundary of the 2-dimensional polygon Pn, it is now clear that the convex hull of
{c1, . . . , cn} cannot be enclosed by any convex n-gon, except by itself or the polytope Pn. Any
other n-gon in the (α, β)-plane containing {c1, . . . , cn} will necessarily contain infeasible point.
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2. Constructing nonnegative factorizations

Based on the above understanding, we can actually construct a few nontrivial nonnegative fac-
torizations for Qn numerically. We outline three construction schemes in this section.

The first approach is to calculate the vertices of Tn in Rn which, in turn, offers a mechanism
for computing a nonnegative factorization of Qn. All it matters is to calculate the vertices of the
polytope Pn and transform these vertices in R2 via B back to Tn in Rn.

Specifically, let columns of U = [u1, . . . ,un] denote the vertices of Tn. Then

ui = ϑ(q1) + B

[
αi

βi

]
, i = 1, . . . , n, (4)

where
[

αi

βi

]
is a simultaneous solution to the linear system[

bi,1 bi,2

bi+1,1 bi+1,2

] [
αi

βi

]
=

[
ϑ(q1)i

ϑ(q1)i+1

]
, (5)

with the interpretation that [bn+1,1, bn+1,2] = [b1,1, b1,2] and ϑ(q1)n+1 = ϑ(q1)1. By construction,
we immediately see that U must be of the structure

U =



0 × × . . . × 0
0 0 × . . . ×
× 0 0 ×
× × 0
...

. . . . . .
0 ×

× 0 0


. (6)

In other words, each vertex of Tn has exactly two zero entries and, thus, must reside on precisely
one and distinct “ridge” of the simplex Dn. As conv(Tn) ⊃ conv(ϑ(Qn)), we obtain a nonnegative
factorization

ϑ(Qn) = UV, (7)

where each column of V has exactly two nonzero entries representing a convex combination of two
columns of U . With appropriate scaling, we obtain a nonnegative factorization Qn = UnVn for the
linear EDM Qn.

We remark that in the above construction, the nonnegative matrix Un obtained via the vertices
of Fn is of rank 3 in general. While V4 is of rank 3 always, it has been observed and conjectured
that V2m−1 is of full rank 2m − 1 generically and V2m could be of rank 2m or 2m − 1 for m ≥ 3.
In the special case when n = 4, we note the unique fact that each column of either U4 or V >

4 has
exactly two zeros and two nonzeros. Thus, columns of ϑ(U4) and ϑ(V >

4 ) represent the same set of
vertices of T4. Such a coincidence does not hold for n > 4.

The second approach is to take advantage of the above observation for the case n = 4. Write

Qn =

 Q4 Q̂n,4

Q̂>n,4 Q̃n,4

 , (8)

with Q̃n,4 ∈ R(n−4)×(n−4). Consider the submatrix [Q4, Q̂n,4] only. Clearly, if Q4 = U4V4 where
columns of ϑ(U4) (or ϑ(V >)

4 ) are the four vertices of T4, then there exist nonnegative matrices
W4, Z4 ∈ R4×(n−4) such that

Q̂n,4 = U4W4 = V >
4 Z4 ∈ R4×(n−4). (9)
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In this way, we obtain two nontrivial standard nonnegative factorizations of Qn via the relationship

Qn =

 U4 0

0> In−4


 V4 W4

Q̂>n,4 Q̃n,4

 =

 U4 Q̂n,4

Z>4 Q̃n,4


 V4 0

0> In−4

 , (10)

respectively. In the former case, the nonnegative factors U is of rank n− 1 and V if of rank 4.
The second scheme for constructing nonnegative factorizations in the first form of (10) can be

generalized. Still taking advantage of the coplanar property if Qk = UkVk where columns of ϑ(Uk)
are the k vertices of Tk when k > 4, we know that there exists a nonnegative matrices Wk ∈ Rk×(n−k)

such that

Qn =

 Uk 0

0> In−k


 Vk Wk

Q̂>n Q̃n,4

 , (11)

with
Q̂n,k = UkWk ∈ Rk×(n−k) (12)

denoting the upper right corner of Qn in a way similar to the partition in (8). In this case, the
nonnegative factor U is of rank n − k + 3 and V is of rank no greater than k. Take note that
a similar generalization of the second form in (10) is not as obvious because generally columns of
ϑ(V >

k ) are not coplanar and, thus, it is not guaranteed that the equation

V >
k Zk = Q̂n,k (13)

can be solved for a nonnegative Zk. See the next section, however, for further remarks.

3. New discoveries

This section contains a few newer observations made during the course of this study. Theoretical
justification remains lacking at this point.

The columns of a rank-3 matrix generally are not coplanar. The original purpose of the pullback
map was to conveniently introduce the intersection with a hyperplane in Rn and, hence, induce
the coplanar property of ϑ(Qn). It has been observed recently, however, that the linear EDM is so
special that the columns of Qn are automatically coplanar to begin with. I still do not have a nice
analytic proof of this property yet. If this observation is true, then notion of feasible set discussed
in Section 1 becomes obsolete and the construction schemes of nonnegative factorizations can be
further simplified.

The generalization of the second approach outlined in Section 2 generally cannot be applied to
second type of factorization in (10) for k > 4 because the equation (13) is not always solvable. Further
numerical experiments, however, reveal some additional details which are yet to be understood
analytically. That is, it is observed numerically that (13) is not solvable only if k is odd. But if k is
even, then both equations (12) and (13) are solvable for nonnegative matrices Wk, Zk ∈ Rk×(n−k),
respectively. In the latter case, we obtain a nonnegative factorization

Qn =

 Uk Q̂n,k

Z>k Q̃n,k


 Vk 0

0> In−4

 . (14)

Obviously, the second type of factorization in (10) is a special case of (14) with k = 4 which is even.
It is not clear why the evenness of k will entail such a factorization, but the oddness will not.
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If Qn = UV is a nonnegative factorization, then by symmetry Qn = V >U> is also a nonnegative
factorization. This dual relationship has an interesting implication in that our previous geometric
argument about the nonnegative rank of Qn is not sufficient. It shows that it is entirely possible,
despite of the facts of coplanar property and zero patterns inherent in Qn, that columns of Qn (or
even of ϑ(Qn) after the pullback) could be enclosed by polytopes whose vertices are not coplanar at
all.

4. The nonnegative rank

All the schemes discussed above construct a nonnegative factorization for Qn with n rank-1
nonnegative components. Though it was claimed in Lin and Chu’s LAA paper that rank+(Qn) = n,
their proof there has overlooked the possibility that the nonnegative factor U might be composed of
vertices outside the 2-dimensional affine subspace containing Qn. So how can the claim be absolved?

The case n = 4 is all clear. We can prove either geometrically or algebraically that rank+(Q4) = 4.
We adopt an induction argument as follows. Assuming that it is known that rank+(Qn) = n almost
surely in the sense that points in R such that their corresponding EDM has nonnegative rank strictly
less than n form a subset of measure zero. We want to show that rank+(Qn+1) = n + 1 almost
surely. To prove by contradiction, we may assume a factorization

Qn+1 =

 U

z>

[
V w

]
, (15)

where U, V ∈ Rn×n and w, z ∈ R are nonnegative matrices and vectors, respectively. As Qn is
nested in Qn+1 by ways of

Qn+1 =

 Qn Q̂n+1,n

Q̂>n+1,n 0

 (16)

with Q̂n+1,n ∈ Rn, we see from (15) that the product UV must be one of the nonnegative factoriza-
tions of Qn and the relationships {

Uw = Q̂n+1,n,

V >z = Q̂n+1,n
(17)

must hold. The qualification that z>w = 0, together with the proviso that both w and z are
nonnegative, implies additional equations wizi = 0, i = 1, . . . , n. There are a total of 3n equations for
2n unknowns, implying an overdetermined system even before taking into account of the additional
requirement of a nonnegative solution. Additionally, the system (17) implicates an implicit constraint
that the range spaces of U and V > must intersect at a nontrivial point. By the transversality
theorem, we know that the system is not solvable for almost all Q̂n+1,n ∈ Rn. In other words,
almost surely we could not have rank+(Qn+1) = n.

Alternatively, by permuting columns of U and rows of V simultaneously if necessary, we may
assume that the first k entries of w are the only nonzero (positive) unknowns in w. The true value
of k is not essential at this point, though it should be such that 2 ≤ k ≤ n − 2. Then z can carry
at most n − k unknowns. By this reduction, there are only n unknowns to be determined from 2n
linear equations. Still the linear system (17) is overdetermined.
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