A List of Matrix Flows with Applications

Moody T. Chu *
Department of Mathematics
North Carolina State University
Raleigh, North Carolina 27695-8205

Abstract

Many mathematical problems, such as existence questions, are studied
by using an appropriate realization process, either iteratively or continu-
ously. This article is a collection of differential equations that have been
proposed as special continuous realization processes. In some cases, there
are remarkable connections between smooth flows and discrete numerical
algorithms. In other cases, the flow approach seems advantageous in tack-
ling very difficult problems. The flow approach has potential applications
ranging from new development of numerical algorithms to the theoretical
solution of open problems. Various aspects of the recent development and
applications of the flow approach are reviewed in this article.

1 Introduction

A realization process, in a broad sense, means any deductive procedure that
we use to comprehend and solve problems. In mathematics, especially for exis-
tence questions, a realization process often appears in the form of an iterative
procedure or a differential equation. For years researchers have taken great
effort to describe, analyze, and modify realization processes. Nowadays the suc-
cess of this investigation is especially evident in discrete numerical algorithms.
On the other hand, the use of differential equations to issues in computational
mathematics has been found recently to afford fundamental insights into the
structure and behavior of existing discrete methods and, sometimes, to suggest
new and improved numerical methods.

This paper reflects upon a number of interesting continuous realization pro-
cesses that have been proposed in the literature. Adopted from dynamical
system terminology, each continuous realization process is referred to as a flow.
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Although the rich theory of differential equations can often be put to use, the
dynamics of many of the proposed differential systems are not completely under-
stood. The true impact on numerical algorithms also needs to be investigated
further. The intention of this paper is to compile a list of flows with brief de-
scription of possible applications so as to stimulate further interest and advance
in the flow approach for realizing a problem.

The basic idea of continuous realization methods is to connect two abstract
problems by a mathematical bridge. Usually one of the abstract problems is a
made-up problem whose solution is trivial while the other is the real problem
whose solution is difficult to find. The bridge usually takes the form of an
integral curve for a certain ordinary differential equation that describes how the
problem data, including the answer to the problem, are transformed from the
simple system to the more complicated system. This idea will become clear in
the next section.

Obviously, the most important issue in the flow approach is the assurance
that a bridge connecting the two abstract problems does exist. The construction
of a bridge can be motivated in several different ways: Sometimes an existing
discrete numerical method may be extended directly into a continuous model
[32, 8]; Sometimes a differential equation arises naturally from a certain physical
principles [40, 44]; More often a vector field is constructed with a specific task in
mind [6, 11, 15, 16]. We shall report the material only descriptively. For more
extensive discussion, readers should refer to the bibliography.

We present the flows on a case-by-case basis. For brevity, we encapsulate the
circumstances under which the discussion is set forth by the following labels:

ORIGINAL PROBLEM: The underlying problem that is to be solved.

DiscRETE METHOD: Basic schemes of any existing discrete methods.

MoTivaTION: Motivation or idea for the construction of a bridge (flow).

Frow: The description of the differential equation.

INTTIAL CONDITIONS: The starting point of the flow (The simple system).

SPECIAL FEATURES: Special features of the flow approach.

ExAMPLE: Examples or applications.

GENERALIZATION: Possible generalizations or new numerical schemes.

2 List of Flows

2.1 Linear Stationary Flows

ORIGINAL PROBLEM: Solve the linear equation
Az =b (1)

where A € R"*" and z, b € R™.



DISCRETE METHOD: Most linear stationary methods assume the form [29]

Ty =Gz +c¢, k=0,1,2,... (2)
where
G = I-Q'A
c = Q'

and @ is a splitting matrix of A.
MoTivaTioN: Think of (2) as one Euler step with unit step size applied to
a linear differential system.

FrLow: i
£ -1
— = — A .
o Q Az +c (3)

INTTIAL CONDITIONS: z(0) can be any point in R™.
SpECIAL FEATURES: For global convergence of (3), only the inequalities

PN (G) < 1 (4)

for all eigenvalues A; of G are needed, which is much weaker than the would-be
condition for the convergence of (2).

GENERALIZATION: Solving (3) by a numerical method amounts to a new
iterative scheme, including highly complicated multistep iterative schemes [25,
8].

2.2 Homotopy Flows

ORIGINAL PROBLEM: Solve the nonlinear equation

flx)=0 (5)

where f : R® — R"™ is continuously differentiable.
DiSCRETE METHOD: A classical method is the Newton method [37]

1 = xp, — o (f'(r) 7 f(ap). (6)
MOTIVATION: At least two ways to motivate the continuous flows:

1. Think of (6) as one Euler step with step size «ay applied to the differential
equation [32]

dx ! —1
7 = ~(f@) " fl2). (7)



2. Connect the system (5) to a trivial system by, for example,
H(z,t) = f(z) — tf(zo) (8)

where x is an arbitrarily fixed point in R™ [1, 2]. Generically, the zero
set H1(0) is a one-dimensional smooth manifold.

Frow: Either (7) or

e —%;t@)H%]:[H. (9)

ds ds ds

53

INITIAL CONDITIONS: For (7), z(0) can be arbitrary. For (9), z(0) = zo
and t(0) = 1.
SPECIAL FEATURES:

1. The flow of (7) satisfies f(z(s)) = e~*f(2(0)). That is, the flow moves in
the direction along which || f(z)|| is exponentially reduced.

2. Properties of f and the selection of 2y must be taken into account in (9)
in order that the bridge really makes the desired connection to t =0 [1, 2].

EXAMPLE: Successful applications with specially formulated homotopy func-
tions include eigenvalue problems [9, 34], nonlinear programming problem [27],
physics applications and boundary value problems[38, 44], and polynomial sys-
tems [35, 36].

2.3 Scaled Toda Flows

ORIGINAL PROBLEM: Reduce a square matrix Ag € R™ ™ to a certain
canonical form [31], e.g., triangularization, so as to solve the eigenvalue problem

Aoz = Az (10)
DISCRETE METHOD:
1. For triangularization, use the unshifted QR algorithm:
Ay = QrRry = Ap+1 = R Qi (11)

where @Ry, is the QR decomposition of Ay; or any other QR-type algo-
rithms, e.g., the LU algorithm [28, 45].

2. For a general non-zero pattern which Ay is reduced to, no discrete method
is available.

FLow:



1. The Toda flow ixX
P [X, Mo (X)] (12)
where [4, B] = AB — BA, Ily(X) = X~ — X" and X is the strictly
lower triangular part of X.

2. The scaled Toda flow ix
E:[X’KOX] (13)

where K is a constant matrix and o represent the Hadamard product.

INITIAL CONDITIONS: X (0) = Ao.
SPECIAL FEATURES:

1. The time-1 map of the Toda flow is equivalent to the QR algorithm [20, 40].

2. The time-1 map of the scaled Toda flow also enjoys a QR-like algorithm
[18].

3. For symmetric X, K is necessarily skew-symmetric. Asymptotic behavior
of (13) is completely known [18].

MoTivaTioN: The Toda lattice originates as a description of a one-dimensional
lattice of particles with exponential interaction. The connection between the
Toda flow and the QR algorithm was discovered by Symes [40].

ExaMPLE: Different choices of the scaling matrix K give rise to different
isospectral flows, including many already proposed in the literature [12, 18, 21,
41, 42] . In particular, (13) can be used to generate special canonical forms that
no other methods can [10].

2.4 Projected Gradient Flows

ORIGINAL PROBLEM: Let S(n) and O(n) denote, respectively, the subspace
of all symmetric matrices and the group of all orthogonal matrices in R"*™. Let
P(X) denote the projection of X onto a specified affine subspace of S(n). Then

Minimize  F(X) := %HX — P(X)|?
Subject to X € M(Xy) (14)

where M(Xy) :={X € S(n)|X = QT X,Q,Q € O(n)} and || -|| is the Frobenius
norm.

DisCRETE METHOD: Depending upon the nature of the projection P, the
problem may or may not have a discrete method [11]. The Jacobi method [28]
, for example, may be applied if P(X) = diag(X).



Frow: IX
—r = X POO] (15)

MoTivaTION: The right hand side of (15) represents the negative of the
gradient of F' on the feasible set M (Xj).

INITIAL CONDITIONS: X (0) = X).

EXAMPLE:

1. The flow (15) may be employed to solve the least squares approximation
problem subject to spectral constraints, the inverse eigenvalue problem
and the eigenvalue problem [11]. For the latter, the flow (15) is a contin-
uous analogue of the Jacobi method [24].

2. The flow (15) generalizes Brockett’s double bracket flow [6, 7] which, in
turn, has been found to have other applications in sorting, linear program-
ming and total least squares problems [4, 5].

GENERALIZATION: The idea of projected gradient flow can be generalized
to other types of approximation problems as will be seen below.

2.5 Simultaneous Reduction Flows

ORIGINAL PROBLEM: Simultaneous reduction by two kinds of transforma-
tions:

1. Reduction by orthogonal similarity transformations: Given matrices A; €
R™™ ¢ =1,...,p, and projection maps P; onto specified subspaces,

p
Minimize — F(Q) := %Z lai (@)1
i=1
Subject to Q@ € O(n) (16)

where ;(Q) := QT 4;Q — Pi(QT 4;Q).

2. Reduction by orthogonal equivalence transformations: Given matrices
B; € R™*" i =1,...,p, and projection maps R;,

Minimize G(Q,Z) = % Z 18:(Q, Z)|?
i=1

Subject to Q € O(m) ) (17)
Z € O(n)

where 3;(Q, Z) :== Q"B Z — R{(Q" B; Z).



DiSCRETE METHOD: Very few theoretical results or even numerical methods
are available for simultaneous reduction problems [15, 31].

MoTivaTiON: Compute the projected gradient of (16) and (17), respectively.

Frow:

1. Orthogonal similar flow:

dX; P [XG, P(X5)] = [X5, P(X))]T
dt {XZ 2 ]

j=1

(18)

| E—

2. Orthogonal equivalence flow:

iy {Y,Y,-TRJ'(YJ-) — BT ()Y | B (V)Y - m}-’m)y}

dt ¢ ' 2 2
j=1
(19)
IntTIAL ConDITIONS: X;(0) = A;, Y;(0) = B;.
ExaMPLE: Here is a Jacobi flow for computing singular values of a single
matrix:
ax _XXTdiag(X) —(XTdiag(X))T N diag(X)XT — (diag(X)XT)T
dt 2 2
GENERALIZATION: Two other related matrix flows (but not derived from
projected gradient):

X. (20)

1. SVD flow:
= XIy(XXT) ~ (XXX,
X(0) = A (21)
2. QZ flow:
dx _ -
=5 = ML) - (XX, )X,
aXs XXy X !
=2 = Xllg(X5 ' X) — Ho(Xi X5 )Xo, 22)
X1(0) = A17
X5(0) = A

SPECIAL FEATURES:

1. The continuous realization processes (18) or (19) have the advantages that
the desired form to which matrices are reduced can be almost arbitrary,
and that if a desired form is not attainable then the limit point of the
differential system gives a way of measuring the distance from the best
reduced matrices to the nearest matrices that have the desired form.



2. Just as the Toda lattice (12) models the QR algorithm, the system (21)
models the SVD algorithm [14] for the A € R™*™ and (22) models the
QZ algorithm [13] for the matrix pencil (41, A2) € R™™™ x R™*™.

2.6 Inverse Eigenvalue Flows

ORIGINAL PROBLEM: Given a set of real numbers {A1,...,\,}, consider
two kinds of inverse eigenvalue problems:

1. Given Ay, ..., A, € S(n) that are mutually orthonormal, find ¢ = [¢1, . . ., ]
such that

A(e) = Ag + Xn: ciA; (23)

has the prescribed set as its spectrum. The special case is where A(c) is
a Toeplitz matrix which is known, thus far, to be an open problem [22].

2. Find a symmetric non-negative matrix P that has the prescribed set as
its spectrum.

DisCRETE METHOD: A few locally convergent Newton-like algorithms are
available for the first problem [26, 33]. Little is known for the non-negative
matrix problem [3].

MOTIVATION: Minimize the distance between the isospectral surface and
the set of matrices of desired form.

FrLow:

1. Inverse eigenvalue problem [11]:

B XX A+ P(Y)] (21)
where .
P(X)=> <X, A; > A (25)

and < -, > denotes the Frobenius inner product.

2. Inverse eigenvalue problem for non-negative matrices [16]:

dX
dY

INITIAL CONDITIONS: For both (24) and (26), X (0) = diag{A1,...,An}
For (27), Y(0) can be any non-negative matrix.
GENERALIZATION:



1. For the inverse Toeplitz eigenvalue problem, the descent flow (24) may
converge to a stationary point that is not Toeplitz. A new flow that seems
to converge globally is [23].
dX

= = X, k(X)) (28)

where
Tit1,j — Tij—1 fl<i<j<n
k;”(X) = 0 ifl<i=j5<n (29)
Tij—1 — Titl,j ifl<j<i<n

2. The idea of (24) can be generalized to inverse singular value problem:

dX XT(B X)) - (B X)NHTX
dt 2
X (B X)NT — (B X)NTx
where
n
R(X)=>_ < X,B> B (32)
k=1
and By, By,...,B, € R™*™ are prescribed mutually orthonormal matri-
ces. Recently insights drawn from (30) give rise to new iterative methods
[19].

2.7 Complex Flows

ORIGINAL PROBLEM: Most of the discussion hitherto can be generalized
to the complex-valued cases. One such example is the nearest normal matrix
problem [30, 39].

DiSCRETE METHOD: The Jacobi algorithm [39] can be used.

MOTIVATION: The nearest normal matrix problem is equivalent to

1
Minimize — H(U) := [|U"AU ~ diag(U*AU)||?

Subject to UelU(n) (33)
where U (n) is the group of all unitary matrices in C"™*™.
Frow:
dd_(t] _ U[W, diag(W*)] —2[W, diag(W*)]*’ (34)
DY _ [y, Doding(W)] - W, dngW ) -



INTTIAL CONDITIONS: U(0) = I and W(0) = A.

SPECIAL FEATURES: The putative nearest normal matrix to A is given by
7 :=U(o0)diag(W(c0))U(c0)* [15].

GENERALIZATION: Least square approximation by real normal matrices can
also be done by a method described by Chu [17]

dX [ [X,AT] - [X, AT|T
Pl RE 2 (36)
3 Conclusion

Most matrix differential equations by nature are complicated, since the com-
ponents are coupled into nonlinear terms. Nonetheless, as we have demon-
strated, there have been substantial advances in understanding some of the
dynamics. For the time being, the numerical implementation is still very prim-
itive. But most important of all, we think there are many opportunities where
new algorithms may be developed from the realization process. It is hoped that
this paper has conveyed some values of this idea.
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