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Abstract� An inverse eigenvalue problem� where a matrix is to be constructed from some or all
of its eigenvalues� may not have a real�valued solution at all� An approximate solution in the sense of
least squares is sometimes desirable� Two types of least squares problems are formulated and explored
in this paper� In spite of their di�erent appearance� the two problems are shown to be equivalent�
Thus one new numerical method� modi�ed from the conventional alternating projection method� is
proposed� The method converges linearly and globally� and can be used to generate good starting
values for other faster but more expensive and locally convergent methods� The idea can be applied
to multiplicative inverse eigenvalue problems for the purpose of preconditioning� Numerical examples
are presented�
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�� Introduction� Inverse eigenvalue problems are of great importance to many
applications� Discussions on various aspects of the existence theory as well as numerical

techniques have been extensive� See� for example� ��� �� �� �� ��� ��� ���� In this paper
we shall consider inverse eigenvalue problems of the following form ����	

�IEP�� Given real� symmetric n � n matrices A�� A�� � � � � An and real numbers
��n � � � � � ��n� 
nd d � Rn such that eigenvalues ���d� � ��� � �n�d� of

A�d� 	 A� �
nX

k��

dkAk���

satisfy �i�d�  ��i for i  �� �� � � � � n�
Our interest in the IEP is motivated by the problem of optimally preconditioning

a given matrix by a diagonal matrix ���� ���� which is closely related to the following
multiplicative inverse eigenvalue problem	

�MIEP�� Given a real� symmetric n�n matrix A and real numbers ��� � � � � � ��n�

nd d � Rn such that the eigenvalues ���d� � ��� � �n�d� of the matrix

A�d� 	 DA����

where D 	 diagfd�� � � � � dng� satisfy �i�d�  ��i for i  �� �� � � � � n�
The symmetry in the description of problems above and in the discussion hereafter

is not essential� The work can be generalized to more general matrices where complex�
valued eigenvalues may be involved� In that case� the only extra burden is the task of
pairing o� the eigenvalues� This process will become clear in the sequel�
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The MIEPmay be written in the form of the IEP by selectingA�  � and Ak  eka
T
k

for k  �� � � � � n where aTk is the kth row of A and ek denotes the kth standard basis
in Rn� The matrices Ak in this setting� however� are not symmetric� If� in addition� A
is positive de
nite� then the matrix DA is similar to LTDL where L is the Cholesky
factor of A  LLT � We may then convert the MIEP to an IEP by using symmetric

matrices A�  � and Ak  LTEkL with Ek 	 diag�ek��
Friedland ���� has showed that the MIEP �even without the symmetry� is always

solvable over the complex 
eld and that the number of solutions is at most n�� provided
all the principal minors of A are distinct from zero� When restricted to the real 
eld�

however� no theory thus far can generally guarantee the existence of a solution for either
the IEP or the MIEP� This non�existence of a solution can easily be seen by examples�
This paper thus concerns the solution of the IEP or the MIEP in the least squares sense�

We begin in the next section by considering the � � � case to illustrate the non�
existence of a solution for the MIEP� This example also demonstrates an interesting
connection between a least squares MIEP and an optimal preconditioner discussed
in ���� ���� In x� we describe the least squares formulation of an inverse eigenvalue

problem� Our 
rst formulation is simply to generalize the conventional IEP� We relax
the problem to the extent that the set of eigenvalues to be matched is not necessarily the
entire spectrum and the number of free parameters in d is not necessarily the same as the
dimension of the underlying matrices� It will become clear that in order to solve such

a least squares problem� a combinatorics problem naturally arises� This formulation
also inherits the troublesome non�smoothness of eigenvalues� Our second formulation
is to cast the least squares approximation problem as a problem of 
nding the distance
between two interesting geometric objects� One of our contributions in this paper is to

show that� in spite of their di�erent appearance� these two formulations are equivalent�
The second formulation has the advantages that no di�erentiation of eigenvalues is
required and that a variation of the so�called alternating projection method can be

applied� We call our new method a lift and a projection �LP�� More details on how the
proximity map should be de
ned are furnished in x�� The conventional Newton method
is brie�y reviewed in x�� Together with the LP method� we propose a hybrid method
to circumvent some of the di�culties associated with the Newton method� Finally� we

compare the performance of the proposed numerical methods in x��

�� An Example of MIEP� The case for the MIEP when A is a � � � matrix is
simple yet illuminating� We work out the analysis in this section�

Given A 

�
a b

b c

�
and �� 	 ����� �

�
��� the characteristic polynomial of A�d�  DA

for d  �d�� d��T � R� is

cA�x�  x� � �ad� � cd��x� �ac� b��d�d�����

The MIEP is equivalent to selecting d� and d� so that ��� and ��� are the roots of ����
Toward this� we solve d� and d� in terms of ��� and ���� It is not di�cult to see that a
necessary and su�cient condition for the MIEP to have a real solution is

�a�c� � �acb� � b�����
� � ��a�c� � b������

�
� � �a�c� � �acb� � b�����

� � �����
�



λ

λ
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2

*

*

Fig� �� Region of ���
�
� ��

�
� on which the MIEP is solvable�

After rotating the ����� �
�
���axes counterclockwise by an angle of ���� the condition ���

is reduced to

�b� � ac�
�
b����� � ac����

�
� �����

Given any a� b and c� the inequality ��� provides a easy way to check whether the MIEP
with a given pair of eigenvalues ���� �

�
� is solvable�

When A is symmetric and positive de
nite� a typical domain of feasible ��� and

��� occupies a shaded region like that in Figure �� If we assume that ��� � ���� as in
the discussion� then only the shaded area above the main diagonal line is needed� It
is clear from Figure � that there is a good possibility that an arbitrarily given pair of
eigenvalues ����� �

�
�� fail to be feasible for the MIEP�

Suppose now we want to consider a least squares problem of MIEP in the sense of

nding d� � R� so that k��d�� � ��k�  mind�R� k��d� � ��k� Consider the case when
the prescribed eigenpair ��  ����� �

�
�� is outside the shaded region� Figure � clearly

suggests that the corresponding ��d�� of the optimal d� should be exactly the point on

the borderline that is closest to the point ���
Another interesting observation is that if the diagonal matrix D is required to be

positive de
nite� then the condition number ��DA� referred to in ���� is precisely the

ratio ���d�
���d�

� �� The eigenvalues of DA with D 	 diagf��a� ��cg� the optimal positive

de
nite diagonal preconditioner ���� ��� in the sense of ���� ���� are precisely those lying
on the upper borderline in the 
rst quadrant of Figure ��





�� The Least Squares IEP� Thus far� most algorithms discussed in the literature

for solving the IEP have assumed that a �real� solution somehow is known to exist a
prior� This piece of information usually is not available in practice� Furthermore� as we
have seen in x�� a real solution may not exist at all� In this paper we want to study an
approximate solution to the IEP in the least squares sense� A natural reformulation of

the the IEP leads to the following problem	
�LSIEP��� Given real� symmetric n�n matrices A�� A�� � � � � A� and real numbers

��� � � � � � ��m �m � n�� 
nd d � R� and a permutation �  f��� ���� �mg with
� � �� � � � � � �m � n such that the function

F �d� �� 	
�

�

mX
i��

���i�d�� ��i �
�����

where �i�d�� i  �� ���� n� are eigenvalues of the matrix

A�d�  A� �
�X

i��

diAi����

is minimized�
It is noteworthy that the set of prescribed eigenvalues has cardinality m which

might be less than n� Consequently� associated with the LSIEP� is a combinatorics

problem

min
����������m�n

mX
i��

���i�d� � ��i �
�����

that looks for the closest match between a subset of spectrum of A�d� and the prescribed
eigenvalues� Note also that the number of available parameters for adjusting the matrix

A�d� is 	 which could be greater than or less than n�
Clearly� the LSIEP� is a non�linear least squares problem� It is important to observe

that the function F �d� �� is not di�erentiable in d when the permutation � is changed�
Still� many standard optimization techniques might be applicable� In particular� the

Newton method for solving rF  � is possible� At a substantial cost� the Hessian
matrix of F can be explicitly formulated �See ������ We shall see that the Hessian matrix
still exists even if multiple eigenvalues of A�d� are present� �The unbounded terms in
���� will eventually be canceled out at coalescent eigenvalues�� As the separation of

eigenvalues decreases� however� the Hessian matrix becomes increasingly ill�conditioned�
There is an alternative way to propose a least squares problem� Speci
cally� let

O�n� and Dn�m denote� respectively� the sets of all orthogonal matrices in Rn�n and all
�n�m�� �n�m� real diagonal matrices� For a given ��m 	 diagf���� � � � � �

�
mg� consider

the subset

� 	
n
Qdiag���m���Q

T j Q � O�n��� � Dn�m
o

���

and the a�ne subspace

A 	 fA�d�jd � R�g����
�



withA�d� de
ned by ���� Since � contains all symmetricmatrices inRn�n with ���� ���� �
�
m

as part of the spectrum� 
nding the shortest distance betweenA and � would be another
meaningful least squares approximation� We formulate the problem as follows	

�LSIEP��� Find d � R�� Q � O�n�� and � � Dn�m such that the function

G�d�Q��� 	
�

�
kA�d��Qdiag ���m���Q

Tk�F �����

where k � kF denotes the Frobenius matrix norm� is minimized�
At the 
rst glance� the LSIEP� and the LSIEP� appear to be very di�erent� In

particular� it appears that no permutation of eigenvalues is involved in the LSIEP��
However� a process of implicit sorting is indeed happening inside the LSIEP� as we will
show below that the LSIEP� and LSIEP� are equivalent�

We 
rst show the following theorem for arbitrary � and d�

Theorem ���� For any d and �� de�ne ���d� 	 diagf����d�� � � � � ��m�d�g� Let
� denote the complement of � over the set f�� � � � � ng� De�ne �� 	 ���d�� Suppose
columns of Q� are orthonormal eigenvectors of A�d� arranged in such a way that

QT
� A�d�Q�  diag����d�����d�������

Then G�d�Q�����  F �d� ���

Proof� From ���� we have

G�d�Q����� 
�

�
kA�d��Q�diag��

�
m����Q

T
� k

�
F


�

�
kQT

� A�d�Q� � diag���m����k
�
F


�

�
kdiag����d� � ��m����d�� ���k

�
F


�

�
k���d�� ��mk

�
F �

The assertion therefore follows�

We now establish the relationship between the LSIEP� and the LSIEP��
Theorem ���� Suppose �d�� ��� and �d�� Q����� are the global minimizers of the

LSIEP� and the LSIEP�� respectively� Then

�� The permutation �� solves ��� with d  d��
�� d�  d��
�� The columns of Q� are orthonormal eigenvectors of A�d�� arranged in such a

way that QT
�A�d

��Q�  diag �����d�������d
��� �

	� ��  ����d
���


� F �d�� ���  G�d�� Q������
Proof� Since

F �d�� ���  min
d

min
�

F �d� ��  min
�

F �d�� ���

it is obvious that �� must solve ��� with d  d��
�



Let Q�d�� denote the orthogonal matrix of which columns are eigenvectors of A�d��

arranged in such a way that Q�d��TA�d��Q�d��  diag �����d
�������d

���� It follows
from Theorem ��� that

G�d�� Q����� � G�d�� Q�d�������d
���  F �d�� ��������

On the other hand� we have

G�d�� Q�����  min
d��

min
Q

�

�
kA�d��Qdiag���m���Q

Tk�F

 min
d��

�

�
kA�d��Q�d�diag ���m���Q�d�

Tk�F����

 min
d��

�

�
kdiag ����d� � ��m����d�� �� k�F����

� min
d

�

�
k���d�� ��mk

�
F �����

The equality ���� follows from theWielandt�Ho�man theorem ���� Theorem ������ where
columns of the orthogonal matrix Q�d� are eigenvectors of A�d� arranged in such a way
that elements in the diagonal matrix Q�d�TA�d�Q�d� are in the same ordering as those

of diag���m���� The permutation � in ���� simply re�ects such an rearrangement of
eigenvalues of A�d�� �This is the implicit sorting referred to above�� Together with
����� we 
nd that the equality in ���� holds if and only if d  d�  d�� �  �� and

��  ����d
���

Theorem ��� warrants that the LSIEP� can be solved by dealing with the LSIEP�
only� The LSIEP� also provides a geometric interpretation of the LSIEP�� We think
such a connection is quite intriguing�

�� Lift and Projection� Taking advantage of the equivalence between the LSIEP�
and the LSIEP�� we now propose an iterative method that alternates points between �
and A� The idea is essentially the same as the so�called alternating projection method

for convex sets ��� �� ���� except that one of our sets� namely �� is not convex� Our
contribution here is to show that the proximity maps can still be well de
ned� We call
our method a lift and a projection �LP�� A similar idea of the lift and projection has

been used in ���� For the LSIEP�� an extra combinatorics problem is involved� The
cost of computation is one spectral decomposition plus one sorting per lift and two
triangular linear system solving per projection�

Before introducing our method� we stress that no di�erentiation of eigenvalues is

involved in the LP method� We also note that the LP method converges slowly but
globally� We may� therefore� take advantage of a hybrid method by 
rst applying the
LP method to attain a low order of accuracy and then switching to a faster but locally
convergent method for a high order of accuracy� The LP method may also be used at a

step where A�d� appears to have multiple or nearly coalescent eigenvalues� This hybrid
method is discussed in x��

For each given d�k� � R�� the LP method iterates the following two steps	

�
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Fig� �� Geometric sketch of lift and projection�

�� �Lift� Find the point Z�k� � � such that dist�A�d�k��� Z�k��  dist�A�d�k������
We call Z�k� a lift of A�d�k�� onto ��

�� �Projection� Find the point d�k��� � R� such that dist�A�d�k����� Z�k�� 
dist�Z�k��A�� The point A�d�k���� � A is called a projection of Z�k� onto A�

A schematic diagram of the iteration is illustrated in Figure � although the topology of
� is much more complicated�

The projection of Z�k� � Rn�n onto A is easy to do� The vector d�k��� is the solution
of the linear system

�X
i��

hAi� Ajid
�k���
i  hZ�k� �A�� Aji� � j  �� � � � � 	�����

where hA�Bi 	 trace�ATB� is the Frobenius inner product for matrix A and B� Note

that the coe�cient matrix in ���� is independent of k� So the left�hand side of ����
needs to be factorized only once�

The lift step is not as easy because elements in � involve n � m undetermined
eigenvalues� Motivated by the proof of Theorem ���� however� the step can proceed as

follows	 Suppose A�d�k��  Q�d�k��diag����k��d
�k����

��k�
�d�k��� Q�d�k��T is the spectral

decomposition of A�d�k�� where ��k�  ��k��d�k�� is the permutation that solves the

combinatorics problem ��� with d  d�k� and Q�d�k�� is the corresponding orthogonal
matrix of eigenvectors� Then the shortest distance between A�d�k�� and � is attained
at the point ��� ��

Z�k� 	 Q�d�k��diag
�
��m����k�

�d�k��
�
Q�d�k��T �����

	



In other words� in order to 
nd the shortest distance from A�d�k�� to �� it su�ces to 
nd
the shortest distance from A�d�k�� to a substructure Mk of �� where the substructure

Mk 	
n
Qdiag

�
��M ����k�

�d�k��
�
QT jQ � O�n�

o
����

has a much simpler topology than � because the diagonal elements are 
xed� �See
Figure ��� The price we pay for this roundabout is to solve ��� per step� It is worth

noting that when the iterates are reaching convergence the permutations ��k� should
become stablized�

Theorem ���� The LP method is a descent method in the sense that

kA�d�k����� Z�k���k�F � kA�d�k����� Z�k�k�F � kA�d�k��� Z�k�k�F �����

Thus the LP method generates a sequence of matrix pairs f�Z�k�� A�d�k���g that converges
to a �local� stationary point for the problem of minimizing �����

Proof� The second inequality is obvious because A�d�k���� is the projection point
of Z�k� onto A� The 
rst inequality follows from the Wielandt�Ho�man theorem� More

precisely� we observe that

kA�d�k����� Z�k�k�F  kA�d�k�����Q�d�k��diag
�
��m����k�

�d�k��
�
Q�d�k��Tk�F

� kA�d�k�����Q�d�k����diag
�
��m����k���

�d�k����
�
Q�d�k����Tk�F

 kA�d�k����� Z�k���k�F

where the inequality follows from the de
nition of Q�d�k�����
The alternating projection method ��� �� ��� has been used to tackle the IEP by


rst reformulating the problem so as to create convex constraints� In contrast� our
application to the LSIEP� is quite direct� Our approach is interesting and remarkable

in two aspects� One is that� even though the set � is complicated� we can simply
work with one of its substructures� The other is that� even though the substructure
Mk is not convex� the so called proximity map can still be formulated by using the

Wielandt�Ho�man theorem�

�� The Newton Method� We have indicated earlier that the function F �d� ��
is not smooth in �� Since the permutation � is only a discrete variable� such a non�
smoothness does not necessarily preclude a proper application of classical least squares

techniques to the LSIEP�� In this section we brie�y describe how this can be done by
the Newton method�

For any A�d� de
ned by ���� let �qi�d�� �i�d�� denote an eigenpair of A�d�� i�e��

A�d�qi�d�  �i�d�qi�d�� i  �� �� ���� n�����

Having found an optimal permutation �  f��� ���� �mg for problem ���� we categorize
���� into two groups	

q�i�d�
TA�d�q�i�d�  ��i�d�� i  �� �� ����m�����

q�j �d�
TA�d�q�j �d�  ��j �d�� j  �� �� ���� n�m�����

�



The notion here is to assume � is 
xed and to iterate the variable d based on the

relationship ���� since only elements in ���d�  ����� � � � � ��m �
T are involved in ���� It

is important to mention that in our numerical experiments� we do have seen that the
permutation � are changing at the initial stage of iteration�

Upon di�erentiating both sides of ����� we obtain the Jacobian matrix J�d� 

�Jik�d�� of ���d� where

Jik�d� 	

��i�d�


dk
 q�i�d�

TAkq�i�d�� i  �� ����m� k  �� ���� 	�����

It is not di�cult to see that the 
rst and second derivatives of F �d� �� are given� re�
spectively� by

rF �d� ��  J�d�T ����d�� ��������

and

r�F �d� ��  J�d�TJ�d� � S�d������

where

S�d� 	
mX
i��

���i�d� � ��i �r
����i�d�� ��i ������

The Hessian matrix in ���� can be calculated� for example� by using the formula ����


���i�d��


dk
dj
 �

nX
t��

�t ���i

�qt�d�TAkqi�d���qt�d�TAjqi�d��

�i�d� � �t�d�
����

Note that the summation in ���� is over those t for which �t � �i� so the formula is
valid even if �i is repeated� One step of the conventional Newton method applied to
LSIEP� amounts to solving the linear system

�J�d�k��TJ�d�k�� � S�d�k����d�k�  �J�d�k��T ����d
�k��� ��������

and then advancing to d�k��� 	 d�k� ��d�k��
The Newton method� especially in the forming of S�d�� is very expensive� A possible

strategy for remedying this situation is to employ some kinds of hybrid methods� For

example� we could use the LP method in the initial stage to reach convergence at a
relatively low order of accuracy� We then switch to the Newton method for achieving
high order of accuracy� The approach also has the advantage that the permutation �

might get stablized before the Newton method is called� More precisely� we propose the

following hybrid method	
Algorithm ���� LP�Newton Method
�� Choose an arbitrary starting vector d��� � R��

�� For k  �� �� �� � � �� do the LP iteration as follows�
�a� Compute the spectrum decomposition Q�d�k�� and ��d�k���






�b� Find ��k� that solves ��� with d  d�k��
�c� Form Z�k� according to �����
�d� Compute d�k��� from �����

�e� Stop if kd�k��� � d�k�k � ���
�� Set d��� 	 the limit point of the LP iteration�
	� For k  �� �� �� � � �� do the Newton iteration as follows�

�a� Generate the Jacobian matrix ��	� and

�b� Solve the linear equation ��� for �d�k��
�c� d�k��� 	 d�k� ��d�k��
�d� Stop if kd�k��� � d�k�k � ���

Choosing �� small enough will ensure the global convergence of this method�

�� Numerical Experiment� In this section we present some test results of our
methods� We understand that there are many other algorithms for solving non�linear

least squares problems� Some locally convergent methods with cost reduction in mind
include� for example� the Gauss�Newton method that does not compute S�d� and the
Shamanskii method that does not evaluate the Hessian so frequently� We choose to
compare the three methods discussed in this paper � the LP method� the LP�Newton

method and the Newton method�
The experiment was carried out by MATLAB on a DECstation ��������� Initial

values d��� were generated randomly� To assess the e�ciency� we carefully measured
the CPU time for each test� Numerical results indicate that the LP method usually

approached a stationary point quickly at the 
rst few steps� The improvement then
slowed down� This is a common phenomenon of linear convergence� In contrast� the
Newton method converged slowly at the initial stage� but eventually the rates were

picked up and became quadratic� We also have observed cases where the Newton
method failed to converge� All of these observations seem to suggest that a hybrid
method should be more suitable for the least squares inverse eigenvalue problems�

The associated combinatorics problem ��� was converted into a linear sum assign�

ment problem� That is� for each given d� we 
rst create the cost matrix C  �cij�
where

cij 	

�
j�i�d�� ��j j� if � � j � m�

�� otherwise�

We then apply an existing algorithm LSAPR ���� to 
nd a permutation �� that solves

min
��Sn

nX
i��

ci���i�����

where Sn is the symmetric group of all permutations of f�� �� � � � � ng� The core of
LSAPR is the so called shortest augmenting path techniques� Once such an optimal ��

is found� the solution � to ��� is given by

�  fij���i� � mg�����

��



In the case when m  n� i�e�� when the entire spectrum of A is to be matched� it is

not necessary to solve ���� since the optimal � is simply the permutation that arranges
eigenvalues �i�d� in the same ordering as ��i �

After each iteration we measure ek  kd�k� � d�k���k� The iteration is terminated
whenever ek is small enough� For our experiment� the threshold is set at ���	 for all

examples� For the LP�Newton method� the LP iteration is terminated when ek � ���
It remains an open question as to how small �� should be so that the overall cost of
computation would be optimized�

Example �� In this example we test the performance of each individual method�

In particular� we compare the performance of the LP�Newton method when the number
of the LP iterations is speci
ed� The same test data	

A� 

�
�������

� �� � � �
�� � �� � �

� �� � �� �
� � �� � ��
� � � �� �

�
						

�

Ak  �eke
T
k � k  �� �� ���� �

d���  ��������� �������� �������� �������� ��������T �

��  ��� �� �� �� ��T

are used in all experiments� It turns out that all methods converge to the same least

squares solution	

d�  ��������� �������� �������� �������� ��������T �

��d��  ��������� ������� �������� ������� �������T �

Test results� measured in terms of the CPU time in seconds versus the number n of
LP iterations allowed in the LP step� are recorded in Figure �� Under the same stopping
criterion� i�e�� kekk � ���	� the result at n  � represents the performance of the pure
Newton method� whereas the result at n  ��� represents the performance of the pure

LP method�
The sudden drop of the CPU time in Figure � is interesting and important� Since we

know the cost of the LP iteration is linear in n� the drop of the CPU should be attributed
solely to one less Newton iteration required to reach the accuracy of convergence� Note

that the magnitude of each drop is approximately the same� supporting the conjecture
that the drop is caused by one single and resembling event� The staircase in Figure �
is also interesting� It indicates that the extra LP iterations between two consecutive
drops are futile because the number of Newton iterations required to reach the same

accuracy has not been reduced�
Although the size of our test problem is small so that the Newton method is not

unbearably expensive� Figure � does suggest that switching to Newton method after a

certain number ��� in this case� of LP iterations will minimize the over all CPU times�

��
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Fig� �� The numbers of LP iterations vs the CPU times for Example ��

Example �� In this example we want to construct a symmetric Toeplitz ma�

trix with partially prescribed eigenvalues� This is a special case of the famous inverse
Toeplitz eigenvalue problem� We formulate the problem as a least squares problem with
test data given below	

A�  ��

Ak  �A�k�
ij � � R�����

A
�k�
ij 	

�
�� if ji� jj  k � ��

�� otherwise�

d���  �������� ������� ������� ��������������� ������� �������

������� ������� ����������������������� ���������������

��������������������������������������� �������T �

��  ���������������� �� �� �� �� �� ��T �

This time we terminate the LP step in the LP�Newton method according to Al�
gorithm ���� We have observed two interesting results� One is that� although both
methods start from the same point d���� the LP�Newton and the Newton method con�

verge to distinct solutions� They are� respectively�

d�LP�Newton  �������� ��������������� ��������������� ���������������

����������������� ����������������������� ���������������

��������������� �������������������������������T �

and

d�Newton  �������� ����������������������� ������� ���������������
��



�������� ������� ������������������������������� �������

����������������������� ������� ���������������T �

The other is that� although the resulting matrices A�d�� are di�erent� both solutions
produce eigenvalues that agree with the given �� almost perfectly� i�e�� F �d�� ��� � ���	�

Had we known that a perfect match was about to happen� we could have used the
cheaper Gauss�Newton method instead of the Newton method to achieve the ultimate
quadratic rate of convergence� In general� however� the Gauss�Newton method is less
in favor because the LP method does not need the di�erentiation of eigenvalues�

The computational cost is summarized in Table �� As far as the CPU time is
concerned� it is seen that the LP�Newton method converges almost three times faster
than the Newton method� It also indicates that improving the accuracy of the LP step

from ��  ��� to ��  ����� is not necessarily advantageous even though the number of
the Newton iterations is reduced by ��

Algorithm Number of Iterations CPU times �seconds�

� Newton �� �������

� LP�Newton���  ���� �LP� �� �������
�Newton� �

� LP�Newton���  ����� �LP� ��� �������
�Newton� �
Table �

Computational cost for Example ��

The history of errors ek is plotted in Figure �� Observe that the Newton method
wanders for quite a few steps in the initial stage before it eventually converges to a

solution� The LP method� with its descent property� helps to move into a better region
for starting the Newton iteration�

Example �� In this example we test the MIEP with partially prescribed eigenval�
ues� We consider the positive de
nite matrix	
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�����
T E � �
E T E �
� E T E

� � E T

�
				


where
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�����
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�� � �� �
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We 
rst change the problem into an IEP by meanings of the Cholesky factorization
A  LLT � That is� we are now considering an IEP with the following test data	

A�  ��

Ak  LTEkL�

d���  ������������������������ ������� �������

�������� ����������������������� �������

������� ��������������� �����������������������T �

��  ��� �� ��� ��� ��� ��� ��� ��� ��� ��� ���T �

The LP�Newton method converges to a least squares solution

d�  ������������������������� �������� �������

������� �����������������������������

�������� ������� ������� ������� ���������������T �

at which again �� is perfectly matched with �� eigenvalues of A�d��  D�A� In contrast�

it seems reasonable to conclude from Figure � that the Newton method diverges after
�� iterates� On the other hand� with a good start value provided by the LP method
�with ��  ������� the Newton method converges to a solution with desired accuracy

�  ���	 within � iterates�
The computational cost is summarized in Table �� None of the methods is cheap�

but the advantage of the LP�Newton method is obvious in this case�
Acknowledgments� The authors are grateful to the referees for pointing out that

the Hessian formula ���� remains valid at coalescent eigenvalues� Theorem ���� also
suggested by the referees� not only simpli
es the proof of Theorem ��� but is of interest
in its own right�
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Algorithm Number of Iterations CPU times �seconds�

� Newton � �� � �������

� LP�Newton �LP� �� ������
�Newton� �

Table �

Computational cost for Example ��
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