ON THE LEAST SQUARES SOLUTION
OF INVERSE EIGENVALUE PROBLEMS
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Abstract. An inverse eigenvalue problem, where a matrix is to be constructed from some or all
of its eigenvalues, may not have a real-valued solution at all. An approximate solution in the sense of
least squares is sometimes desirable. Two types of least squares problems are formulated and explored
in this paper. In spite of their different appearance, the two problems are shown to be equivalent.
Thus one new numerical method, modified from the conventional alternating projection method, is
proposed. The method converges linearly and globally, and can be used to generate good starting
values for other faster but more expensive and locally convergent methods. The idea can be applied
to multiplicative inverse eigenvalue problems for the purpose of preconditioning. Numerical examples
are presented.
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1. Introduction. Inverse eigenvalue problems are of great importance to many
applications. Discussions on various aspects of the existence theory as well as numerical
techniques have been extensive. See, for example, [1, 2, 5, 6, 11, 12, 13]. In this paper
we shall consider inverse eigenvalue problems of the following form [13]:

(IEP). Given real, symmetric n X n matrices Ag, 4;,..., A, and real numbers
AF < ... < XX, find d € R such that eigenvalues A;(d) < ... < A,(d) of

k=1
satisfy A;(d) = Af for i =1,2,...,n.
Our interest in the IEP is motivated by the problem of optimally preconditioning
a given matrix by a diagonal matrix [15, 16], which is closely related to the following
multiplicative inverse eigenvalue problem:

(MIEP). Given a real, symmetric n X n matrix A and real numbers A} < ... < A%,
find d € R™ such that the eigenvalues A;(d) < ... < A\,(d) of the matrix

(2) A(d) := DA,

where D := diag{dy,...,dn}, satisfy A;(d) = Af for i =1,2,...,n.

The symmetry in the description of problems above and in the discussion hereafter
is not essential. The work can be generalized to more general matrices where complex-
valued eigenvalues may be involved. In that case, the only extra burden is the task of
pairing off the eigenvalues. This process will become clear in the sequel.
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The MIEP may be written in the form of the IEP by selecting Ag = 0 and A = ekaz
for k = 1,...,n where al is the kth row of A and e denotes the kth standard basis
in R*. The matrices Ay in this setting, however, are not symmetric. If, in addition, A
is positive definite, then the matrix DA is similar to LT DL where L is the Cholesky
factor of A = LLT. We may then convert the MIEP to an IEP by using symmetric
matrices Ao = 0 and Ay = LT ExL with Ej, := diag(ez).

Friedland [11] has showed that the MIEP (even without the symmetry) is always
solvable over the complex field and that the number of solutions is at most n!, provided
all the principal minors of A are distinct from zero. When restricted to the real field,
however, no theory thus far can generally guarantee the existence of a solution for either
the IEP or the MIEP. This non-existence of a solution can easily be seen by examples.
This paper thus concerns the solution of the IEP or the MIEP in the least squares sense.

We begin in the next section by considering the 2 x 2 case to illustrate the non-
existence of a solution for the MIEP. This example also demonstrates an interesting
connection between a least squares MIEP and an optimal preconditioner discussed
in [15, 16]. In §3 we describe the least squares formulation of an inverse eigenvalue
problem. Our first formulation is simply to generalize the conventional IEP. We relax
the problem to the extent that the set of eigenvalues to be matched is not necessarily the
entire spectrum and the number of free parameters in d is not necessarily the same as the
dimension of the underlying matrices. It will become clear that in order to solve such
a least squares problem, a combinatorics problem naturally arises. This formulation
also inherits the troublesome non-smoothness of eigenvalues. Our second formulation
is to cast the least squares approximation problem as a problem of finding the distance
between two interesting geometric objects. One of our contributions in this paper is to
show that, in spite of their different appearance, these two formulations are equivalent.
The second formulation has the advantages that no differentiation of eigenvalues is
required and that a variation of the so-called alternating projection method can be
applied. We call our new method a lift and a projection (LP). More details on how the
proximity map should be defined are furnished in §4. The conventional Newton method
is briefly reviewed in §5. Together with the LP method, we propose a hybrid method
to circumvent some of the difficulties associated with the Newton method. Finally, we
compare the performance of the proposed numerical methods in §6.

2. An Example of MIEP. The case for the MIEP when A is a 2 X 2 matrix is

simple yet illuminating. We work out the analysis in this section.

Given A = l Z lc) ] and A* := (A}, A}), the characteristic polynomial of A(d) = DA
for d = [dy,ds]T € R? is
(3) ca(z) = z* — (ady + cdy)z + (ac — b*)d1d,.

The MIEP is equivalent to selecting d; and dy so that A} and A} are the roots of (3).
Toward this, we solve d; and d; in terms of A} and A}. It is not difficult to see that a

necessary and sufficient condition for the MIEP to have a real solution is

(4) (a®c — 2ach® + bM)A1? — 2(aP® — bHYAIAS + (a®c? — 2ach® 4+ b*)A32 > 0.
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Fi1c. 1. Region of (A}, Ay) on which the MIEP is solvable.

After rotating the (A7, A3 )-axes counterclockwise by an angle of 7/4, the condition (4)
is reduced to

(5) (b — ac) (b2j\f — acj\g) > 0.

Given any a, b and c, the inequality (5) provides a easy way to check whether the MIEP
with a given pair of eigenvalues A], A} is solvable.

When A is symmetric and positive definite, a typical domain of feasible A} and
A5 occuples a shaded region like that in Figure 1. If we assume that A7 < A}, as in
the discussion, then only the shaded area above the main diagonal line is needed. It
is clear from Figure 1 that there is a good possibility that an arbitrarily given pair of
eigenvalues (A}, A}) fail to be feasible for the MIEP.

Suppose now we want to consider a least squares problem of MIEP in the sense of
finding d* € R? so that ||A(d*) — X*||2 = mingege [|A(d) — A*||. Consider the case when
the prescribed eigenpair A* = (A}, A}) is outside the shaded region. Figure 1 clearly
suggests that the corresponding A(d*) of the optimal d* should be exactly the point on
the borderline that is closest to the point A*.

Another interesting observation is that if the diagonal matrix D is required to be
positive definite, then the condition number x(DA) referred to in [15] is precisely the
ratio ifgg > 0. The eigenvalues of DA with D := diag{1/a,1/c}, the optimal positive
definite diagonal preconditioner [10, 21] in the sense of [15, 16], are precisely those lying

on the upper borderline in the first quadrant of Figure 1.
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3. The Least Squares IEP. Thus far, most algorithms discussed in the literature
for solving the IEP have assumed that a (real) solution somehow is known to exist a
prior. This piece of information usually is not available in practice. Furthermore, as we
have seen in §2, a real solution may not exist at all. In this paper we want to study an
approximate solution to the IEP in the least squares sense. A natural reformulation of
the the TEP leads to the following problem:

(LSIEP1). Given real, symmetric n X n matrices Ag, Ay, ..., Ay and real numbers
A< ... <X, (m < n), find d € R* and a permutation o = {oy,...,0,} with
1<o0; < <o, <nsuch that the function

1 & .
(6 F(d,0) = 5 > 0ld) — NP,
=1
where \;(d), : = 1,...,n, are eigenvalues of the matrix
£
(7) A(d) = Ao + Z d; As;,

=1
1s minimized.
It is noteworthy that the set of prescribed eigenvalues has cardinality m which

might be less than n. Consequently, associated with the LSIEP1 is a combinatorics
problem

m

(8) 15«712-127,”5” ;()\Gi(d) — )\:)27

that looks for the closest match between a subset of spectrum of A(d) and the prescribed
eigenvalues. Note also that the number of available parameters for adjusting the matrix
A(d) is £ which could be greater than or less than n.

Clearly, the LSIEP1 is a non-linear least squares problem. It is important to observe
that the function F(d, o) is not differentiable in d when the permutation o is changed.
Still, many standard optimization techniques might be applicable. In particular, the
Newton method for solving VF = 0 is possible. At a substantial cost, the Hessian
matrix of F' can be explicitly formulated (See (28)). We shall see that the Hessian matrix
still exists even if multiple eigenvalues of A(d) are present. (The unbounded terms in
(28) will eventually be canceled out at coalescent eigenvalues.) As the separation of
eigenvalues decreases, however, the Hessian matrix becomes increasingly ill-conditioned.

There is an alternative way to propose a least squares problem. Specifically, let
O(n) and D™ ™ denote, respectively, the sets of all orthogonal matrices in R™*™ and all

(n —m) X (n —m) real diagonal matrices. For a given AX := diag{A},..., A% }, consider
the subset
(9) I:={Qdiag(A%,A)Q" | Q € O(n),A € D" ™}

and the affine subspace

(10) A= {A(d)|d € R*}
4



with A(d) defined by (7). Since I’ contains all symmetric matricesin R™*" with A}, ..., \*
as part of the spectrum, finding the shortest distance between A and I" would be another
meaningful least squares approximation. We formulate the problem as follows:

(LSIEP2). Find d € R*, @ € O(n), and A € D™™ such that the function

(1) C(d4,Q.1) = 5| A(d) ~ Qaing (A7, ) Q7

where || - ||r denotes the Frobenius matrix norm, is minimized.

At the first glance, the LSIEP1 and the LSIEP2 appear to be very different. In
particular, it appears that no permutation of eigenvalues is involved in the LSIEP2.
However, a process of implicit sorting is indeed happening inside the LSIEP2 as we will
show below that the LSIEP1 and LSIEP2 are equivalent.

We first show the following theorem for arbitrary ¢ and d.

THEOREM 3.1. For any d and o, define A,(d) := diag{)s,(d),...,As,.(d)}. Let
o denote the complement of o over the set {1,...,n}. Define Ay := Az(d). Suppose
columns of Qy are orthonormal eigenvectors of A(d) arranged in such a way that

(12) QT A(d)Q; = diag(A,(d), Ax(d)).

Then G(d, Qy, Ay) = F(d,0).
Proof. From (12) we have

G(d, Qp, Ny) = %HA(d)—Qudiag(A;,Au)Qﬂ%
- %HQﬂTA(d)Qﬂ — diag(Ar, Ap)|E
= %Hdiag(A,(d) — A As(d) — My)1F
= S IA(d) ~ ALl

The assertion therefore follows. 0O
We now establish the relationship between the LSIEP1 and the LSIEP2.
THEOREM 3.2. Suppose (d*,0*) and (dy, @+, A1) are the global minimizers of the
LSIEP1 and the LSIEP2, respectively. Then
1. The permutation o* solves (8) with d = d*.
2. d*=d,.
3. The columns of Q1 are orthonormal eigenvectors of A(d*) arranged in such a
way that QT A(d*)Q4 = diag(A,+(d*), Az=(d*)).
4. Ay = Az(d).
5 F(d*,o*)=G(dy,Q+,A1).
Proof. Since
F(d* o") = rrbinrr}rinF(d, o) = rr}rinF(d*, o),

it is obvious that o* must solve (8) with d = d*.
5



Let Q(d*) denote the orthogonal matrix of which columns are eigenvectors of A(d*)
arranged in such a way that Q(d*)TA(d*)Q(d*) = diag (A,+(d*), Az=(d*)). Tt follows
from Theorem 3.1 that
(13) G(d;,Q+,Ay) < G(d%, Q(d"), A=(d")) = F(d*,o").

On the other hand, we have

. 1 . N
G(dy, @+, A4) = minmin ]| A(d) — Qdiag(A},, A)QT]3

dA Q 2
1 ) 9
(14) = fgkﬂgﬂA(d) — Q(d)diag (A}, A) Q(d)"||%
1 2
(15) = Ig{kﬂ§||dlag(Aa(d) — AL, As(d) — A) ||

1
(16) min 2 [[As(d) — AL 7

The equality (14) follows from the Wielandt-Hoffman theorem [18, Theorem 6.3.5] where
columns of the orthogonal matrix Q(d) are eigenvectors of A(d) arranged in such a way
that elements in the diagonal matrix Q(d)T A(d)Q(d) are in the same ordering as those
of diag(A},,A). The permutation ¢ in (15) simply reflects such an rearrangement of

Y

eigenvalues of A(d). (This is the implicit sorting referred to above.) Together with
(13), we find that the equality in (16) holds if and only if d = d* = d;, 0 = ¢* and
Ay =As(d). O

Theorem 3.2 warrants that the LSIEP1 can be solved by dealing with the LSIEP2
only. The LSIEP2 also provides a geometric interpretation of the LSIEP1. We think
such a connection is quite intriguing.

4. Lift and Projection. Taking advantage of the equivalence between the LSIEP1
and the LSTEP2, we now propose an iterative method that alternates points between T’
and A. The idea is essentially the same as the so-called alternating projection method
for convex sets [4, 9, 17], except that one of our sets, namely T', is not convex. Our
contribution here is to show that the proximity maps can still be well defined. We call
our method a lift and a projection (LP). A similar idea of the lift and projection has
been used in [7]. For the LSIEP2, an extra combinatorics problem is involved. The
cost of computation is one spectral decomposition plus one sorting per lift and two
triangular linear system solving per projection.

Before introducing our method, we stress that no differentiation of eigenvalues is
involved in the LP method. We also note that the LP method converges slowly but
globally. We may, therefore, take advantage of a hybrid method by first applying the
LP method to attain a low order of accuracy and then switching to a faster but locally
convergent method for a high order of accuracy. The LP method may also be used at a
step where A(d) appears to have multiple or nearly coalescent eigenvalues. This hybrid
method is discussed in §5.

For each given d*) € R, the LP method iterates the following two steps:
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project

~ | project A(d

A \Z
A(d (k+2) )

A(d (k+1) )

FiG. 2. Geometric sketch of lift and projection.

1. (Lift) Find the point Z(*) € T such that dist(A(d®), Z(*)) = dist(A(d*)),T).
We call Z(*) a lift of A(d®)) onto T.
2. (Projection) Find the point d**1) ¢ R’ such that dist(A(d**V)), Z(*)) =
dist(Z®)  A). The point A(d*+1)) € A is called a projection of Z*) onto A.
A schematic diagram of the iteration is illustrated in Figure 2 although the topology of
I’ is much more complicated.
The projection of Z(¥) € R™" onto A is easy to do. The vector d*1) is the solution
of the linear system

£
(17) S (A AdE = (Z®) — 45, A5, i=1,... L

i=1
where (A, B) := trace( AT B) is the Frobenius inner product for matrix A and B. Note
that the coefficient matrix in (17) is independent of k. So the left-hand side of (17)
needs to be factorized only once.

The lift step is not as easy because elements in I' involve n — m undetermined
eigenvalues. Motivated by the proof of Theorem 3.2, however, the step can proceed as
follows: Suppose A(d*)) = Q(d(k))diag(Aa(k)(d(k)),Aa(—k)(d(k))) Q(d®™)T is the spectral
decomposition of A(d®)) where o) = o*)(d(*)) is the permutation that solves the
combinatorics problem (8) with d = d(*) and Q(d®)) is the corresponding orthogonal
matrix of eigenvectors. Then the shortest distance between A(d¥)) and T is attained
at the point [3, 5]

(18) Z® = Q(d®)diag (AL, Azger(d™)) Q(dM)T.
7



In other words, in order to find the shortest distance from A(d(*)) to T, it suffices to find
the shortest distance from A(d®)) to a substructure My, of T', where the substructure

(19) M; = {Qdiag (A3, Azr(d™)) Q71Q € O(n)}

has a much simpler topology than I' because the diagonal elements are fixed. (See
Figure 2.) The price we pay for this roundabout is to solve (8) per step. It is worth
noting that when the iterates are reaching convergence the permutations o(® should
become stablized.

THEOREM 4.1. The LP method is a descent method in the sense that

(20) 1A(d*D) — ZED)5 < JAdED) - 205 < (JAD) - 203

Thus the LP method generates a sequence of matriz pairs {(Z*), A(d*®)))} that converges
to a (local) stationary point for the problem of minimizing (11).

Proof. The second inequality is obvious because A(d**1)) is the projection point
of Z¥) onto A. The first inequality follows from the Wielandt-Hoffman theorem. More
precisely, we observe that

JA®D) — Z® )3 = || A(d*)) — Q(d®))diag (AL, A= (d™)) Qd®)T|%
> [|A(d®) — Q(d* 1)) diag (A, Agrry(d®H1))) Q(A*D)T |3,
= || AR+ — Z(+D) 12,

o(k+1)

where the inequality follows from the definition of Q(d*+1)). O

The alternating projection method [4, 9, 17] has been used to tackle the IEP by
first reformulating the problem so as to create convex constraints. In contrast, our
application to the LSIEP2 is quite direct. Our approach is interesting and remarkable
in two aspects. One is that, even though the set I' is complicated, we can simply
work with one of its substructures. The other is that, even though the substructure
M} 1s not convex, the so called proximity map can still be formulated by using the
Wielandt-Hoffman theorem.

5. The Newton Method. We have indicated earlier that the function F(d, o)
is not smooth in o. Since the permutation ¢ is only a discrete variable, such a non-
smoothness does not necessarily preclude a proper application of classical least squares
techniques to the LSIEP1. In this section we briefly describe how this can be done by
the Newton method.

For any A(d) defined by (7), let (¢:(d), Ai(d)) denote an eigenpair of A(d), i.e.

(21) A(d)gi(d) = M(d)gi(d), s = 1,2, ...,n

Having found an optimal permutation o = {01, ...,0m} for problem (8), we categorize
(21) into two groups:

(22) 0o )T A()oi(d) = Mo(d), i = 1,2,y
(23) 4o, ()T A(d)g, (d) = Aoy (d), 5 =1,2,..,n— m.

oo



The notion here is to assume o is fixed and to iterate the variable d based on the
relationship (22) since only elements in A, (d) = [As,,- .., Ao, |T are involved in (7). It
is important to mention that in our numerical experiments, we do have seen that the
permutation o are changing at the initial stage of iteration.
Upon differentiating both sides of (22), we obtain the Jacobian matrix J(d) =
[Jie(d)] of A,(d) where
0Xs,(d)

(24) Jad) = 50 = @) Auar(d), i = L, k=1L

It is not difficult to see that the first and second derivatives of F(d, o) are given, re-
spectively, by

(25) VF(d, o) = J(d)T(A(d) — %),

and

(26) V2F(d, o) = J(d)TJ(d) + S(d),
where

(1) 5(d) == 30l d) = NIV 0(d) — 1)

The Hessian matrix in (27) can be calculated, for example, by using the formula [19]

(Ni(d) o & [9:(d)" Argi(d)][g:(d)" Ajqi(d))]
(28) 0d0d; =2 P Ai(d) — A(d)

Ae# X

Note that the summation in (28) is over those t for which A; # A;, so the formula is
valid even if A; is repeated. One step of the conventional Newton method applied to
LSIEP1 amounts to solving the linear system

(29) (J(d*NT J(d®) + S(dPNALHE = —J(dENT (A, (dF)) — 2*).

and then advancing to dF+1) . — k) 1 Ad(R),

The Newton method, especially in the forming of S(d), is very expensive. A possible
strategy for remedying this situation is to employ some kinds of hybrid methods. For
example, we could use the LP method in the initial stage to reach convergence at a
relatively low order of accuracy. We then switch to the Newton method for achieving
high order of accuracy. The approach also has the advantage that the permutation o
might get stablized before the Newton method is called. More precisely, we propose the
following hybrid method:

ALGORITHM 5.1. LP-Newton Method

1. Choose an arbitrary starting vector d® € RE.
2. For k=0,1,2,..., do the LP iteration as follows:
(a) Compute the spectrum decomposition Q(d®) and A(d*)).
9



(b) Find o*) that solves (8) with d = d¥).
(c) Form Z*) according to (18).
(d) Compute d*+1) from (17).
(e) Stop if ||[dE+) — dF)|| < ¢;.
3. Set d©) := the limit point of the LP iteration.
4. For k=0,1,2,..., do the Newton iteration as follows:
(a) Generate the Jacobian matriz (24) and
(b) Solve the linear equation (29) for Ad*),
(0) d#D) .= d) 4 AK)
(d) Stop if ||d*+) — dF)|| < e,.

Choosing €; small enough will ensure the global convergence of this method.

6. Numerical Experiment. In this section we present some test results of our
methods. We understand that there are many other algorithms for solving non-linear
least squares problems. Some locally convergent methods with cost reduction in mind
include, for example, the Gauss-Newton method that does not compute S(d) and the
Shamanskii method that does not evaluate the Hessian so frequently. We choose to
compare the three methods discussed in this paper — the LP method, the LP-Newton
method and the Newton method.

The experiment was carried out by MATLAB on a DECstation 5000/200. Initial
values d(®) were generated randomly. To assess the efficiency, we carefully measured
the CPU time for each test. Numerical results indicate that the LP method usually
approached a stationary point quickly at the first few steps. The improvement then
slowed down. This is a common phenomenon of linear convergence. In contrast, the
Newton method converged slowly at the initial stage, but eventually the rates were
picked up and became quadratic. We also have observed cases where the Newton
method failed to converge. All of these observations seem to suggest that a hybrid
method should be more suitable for the least squares inverse eigenvalue problems.

The associated combinatorics problem (8) was converted into a linear sum assign-
ment problem. That is, for each given d, we first create the cost matrix C = [¢;5]
where

S { Xi(d) — 3], if1<j<m,
2]

0, otherwise.

We then apply an existing algorithm LSAPR [20] to find a permutation ¢* that solves

n

30 I i (i
(30) PILED
where S, is the symmetric group of all permutations of {1,2,...,n}. The core of

LSAPR is the so called shortest augmenting path techniques. Once such an optimal ¢*
is found, the solution o to (8) is given by

(31) o = {1|¢*(2) < m}.
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In the case when m = n, i.e., when the entire spectrum of A is to be matched, it is
not necessary to solve (30) since the optimal o is simply the permutation that arranges
eigenvalues );(d) in the same ordering as A}.

After each iteration we measure e, = ||d(k) — d(k_1)||. The iteration is terminated
whenever e is small enough. For our experiment, the threshold is set at 1078 for all
examples. For the LP-Newton method, the LP iteration is terminated when e; < €.
It remains an open question as to how small €; should be so that the overall cost of
computation would be optimized.

Example 1. In this example we test the performance of each individual method.
In particular, we compare the performance of the LP-Newton method when the number
of the LP iterations is specified. The same test data:

0 -1 0 0 0
~1 0 -1 0 0

Ay = 0 -1 0 -1 0];
0 0 -1 0 -1
0 0 0 -1 0

A = degel, k=1,2,...,5
d® = [0.63160,0.23780,0.90920,0.98660,0.50070]7;
o= [1,1,2,3,4)F

are used in all experiments. It turns out that all methods converge to the same least
squares solution:

d* 0.44230, 0.60440, 0.65660, 0.60440, 0.44230] 7 ;
A(d*) = [0.58884,1.0422,2.07421,3.1446,4.1501]T.

Test results, measured in terms of the CPU time in seconds versus the number n of
LP iterations allowed in the LP step, are recorded in Figure 3. Under the same stopping
criterion, i.e., ||eg|| < 1078, the result at n = 0 represents the performance of the pure
Newton method, whereas the result at n = 250 represents the performance of the pure
LP method.

The sudden drop of the CPU time in Figure 3 is interesting and important. Since we
know the cost of the LP iteration is linear in n, the drop of the CPU should be attributed
solely to one less Newton iteration required to reach the accuracy of convergence. Note
that the magnitude of each drop is approximately the same, supporting the conjecture
that the drop is caused by one single and resembling event. The staircase in Figure 3
is also interesting. It indicates that the extra LP iterations between two consecutive
drops are futile because the number of Newton iterations required to reach the same
accuracy has not been reduced.

Although the size of our test problem is small so that the Newton method is not
unbearably expensive, Figure 3 does suggest that switching to Newton method after a
certain number (23 in this case) of LP iterations will minimize the over all CPU times.

11
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Example 2. In this example we want to construct a symmetric Toeplitz ma-
trix with partially prescribed eigenvalues. This is a special case of the famous inverse
Toeplitz eigenvalue problem. We formulate the problem as a least squares problem with

test data given below:

Ay = 0

Ay = (AE;C)) c R20%x20
o { 1, ifli—jl=k-1;

* 0, otherwsse.

d® = [1.1650,0.6268,0.0751,0.3516, —0.6965,1.6961, 0.0591,

1.7971,0.2641,0.8717, —1.4462, —0.7012, 1.2460, —0.6390,
0.5773, —0.3600, —0.1356, —1.3493, —1.2704, 0.9845]7;
X = [-5,—4,-3,—2,—-1,0,1,2,3,4,5]".

This time we terminate the LP step in the LP-Newton method according to Al-
gorithm 5.1. We have observed two interesting results. One is that, although both
methods start from the same point d(®), the LP-Newton and the Newton method con-

verge to distinct solutions. They are, respectively,

&b Newon, = [0.8486,0.8424, —0.0050, 0.3076, —0.5089, 1.6325, —0.0659,
1.72764, —0.00038,1.1018, —1.5155, —0.8286, 1.1952, —0.7433,
0.0336, —0.0737,0.0356, —1.5870, —0.1220, —0.2275]7,

and

= [7.3464,1.5410,—6.9636, —1.5020, 5.6980, 5.0777, —4.4890,
12

*
dNewton



—6.4796,3.3743,8.2720, —0.6983, —9.4107, —1.0345, 6.8718,
3.1606, —8.8348, —4.3902, 2.4603, 6.7335, —4.9145] .

The other is that, although the resulting matrices A(d*) are different, both solutions
produce eigenvalues that agree with the given A* almost perfectly, i.e., F'(d*,o*) &~ 1078.
Had we known that a perfect match was about to happen, we could have used the
cheaper Gauss-Newton method instead of the Newton method to achieve the ultimate
quadratic rate of convergence. In general, however, the Gauss-Newton method is less
in favor because the LP method does not need the differentiation of eigenvalues.

As far as the CPU time is

concerned, it is seen that the LP-Newton method converges almost three times faster

The computational cost is summarized in Table 1.

than the Newton method. It also indicates that improving the accuracy of the LP step
from €; = .01 to €; = 0.001 is not necessarily advantageous even though the number of

the Newton iterations is reduced by 2.

Algorithm Number of Iterations | CPU times (seconds)
1 | Newton 24 917.215
LP-Newton(e; = .01) (LP) 57 305.156
(Newton) 7
3 | LP-Newton(e; = .001) (LP) 434 349.195
(Newton) 5
TABLE 1

Computational cost for Ezample 2.

The history of errors ey is plotted in Figure 4. Observe that the Newton method
wanders for quite a few steps in the initial stage before it eventually converges to a
solution. The LP method, with its descent property, helps to move into a better region
for starting the Newton iteration.

Example 3. In this example we test the MIEP with partially prescribed eigenval-
ues. We consider the positive definite matrix:

T FE 0 0
E T FE 0
A= 0 F T FE
0 0 FE T
where
4 —1 0 0
—1 4 —1 0
T = 0 —1 4 —1 |’
0 0 —1 4
E — —I4.
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We first change the problem into an IEP by meanings of the Cholesky factorization
A= LLT. That is, we are now considering an IEP with the following test data:

Ao = 0,
A, = LTEL;
d® = [1.5578,—2.4443, —1.0982,1.1226,0.5817,

—0.2714,0.4142, —0.9778, —1.0215, 0.3177,
1.5161,0.7494, —0.5077, 0.8853, —0.2481, —0.7262] " ;
A = [1,5,10,15,20,25,30,35,40,45, 50]7.

The LP-Newton method converges to a least squares solution

d* = [10.2309,—3.0078, —1.6975,10.1958,7.2102,
2.4626, 5.8098, —1.9979, —1.53203.7608,
10.0604, 8.5959, 0.2992, 8.0485, 3.4645, —1.0845]7,

at which again A* is perfectly matched with 11 eigenvalues of A(d*) = D*A. In contrast,
it seems reasonable to conclude from Figure 5 that the Newton method diverges after
40 iterates. On the other hand, with a good start value provided by the LP method
(with ¢ = 0.001), the Newton method converges to a solution with desired accuracy
€ = 1078 within 3 iterates.

The computational cost is summarized in Table 2. None of the methods is cheap,
but the advantage of the LP-Newton method is obvious in this case.

Acknowledgments. The authors are grateful to the referees for pointing out that
the Hessian formula (28) remains valid at coalescent eigenvalues. Theorem 3.1, also
suggested by the referees, not only simplifies the proof of Theorem 3.2 but is of interest
in its own right.
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Algorithm || Number of Iterations | CPU times (seconds)
1 | Newton > 40 > 0923.123
LP-Newton (LP) 35 92.644
(Newton) 3
TABLE 2

Computational cost for Example 3.
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