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Abstract: A multistep method with matricial coefficients is developed. It can be used to solve stiff initial value problems of the form 

y’= Ay + g(x,y). This method bears the nature of the classical Adams-Bashforth-Moulton PC formula and can be shown to be 

consistent, convergent and A-stable. A careful reformulation of this method legitimatizes the implementation of this algorithm in a 

variable-step variable-order fashion. Numerical test results from a PECE mode of this method show its possible advantages. 
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1. Introduction 

Since the codes DVDQ of Krogh [ 141 and DIFSUB of Gear [ 10,l l] were developed, the effectiveness of 
a variable-step variable-order formulation of the classical Adams method has gained a great recognition in 
solving general initial value problems. This spirit was also carried on by Shampine and Gordon in their 
code STEP [26] which is known to be among the most effective and the most carefully decumented 
available at this time. Though the code STEP can diagnose the stiffness, still not is it adequate for handling 
stiff systems. The reason for this shortcoming is well understood from the Dahlquist stability theory [5]. It 
is also generally believed that most of the methods used for solving stiff systems are necessarily implicit 

[5,17,27] and hence demand the use of some expensive Newton-like iterations [ 121. 
In this paper we consider a special class of stiff systems, i.e. a stiff initial value problem of the form 

Y’=AY+g(x,Y), Y(Q) =y,, x E [Q. bl (1.1) 

where A is an n X n real constant matrix of which all eigenvalues have negative real parts and ]]ag/ay]] is 
small relative to JIAJI. It deserves to note that a much larger class of problems 

Y’=A(x)Y +g(x,y), Y(U) =yo (1.2) 

can also be considered by rewriting it in the form 

Y’=AY+ {[A(x)-AIY +g(x?Y)), Y(Q) =?-h (1.3) 

if A can be chosen to satisfy conditions of (1.1) and to keep /IA(x) -A]] uniformly small for at least a short 
period of x. A multistep method which does not suffer from the difficulties mentioned above is developed 

for solving (1.1). This method bears the merit of the classical predictor-corrector schemes and can be 
regarded as the nature extension of the code STEP to matricial coefficients. As a result, we may take a 
great advantage of the software designs of the code STEP. 

The development of this method is also motivated by several other researchers. The formulations 
considered by Certaine [4], Lawson [ 191, Lee and Preiser [20] are special cases of our consideration. The 
methods suggested by Jain [ 131, Miranker [22,23], Murphy [24], Lambert and Sigurdsson [ 161 are different 
from our method only in the numerical representations of the integrals which will be introduced in the next 
section. 
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We begin at Section 2 with the basic fixed-step formulation of this multistep method. After defining a 
generalized Adams-Bashforth-Moulton PECE mode, we then state some theorems concerning the con- 

sistency, convergence and A-stability of this mode. These theorems can easily be generalized to the 
variable-step variable-order case [26]. In Section 3 a variable-step PECE mode is reformulated. This 

approach makes it possible to calculate the matricial coefficients to any desired order in a very efficient 
way. In the special case when A = 0, this derivation coincides with that by Shampine and Gordon. Finally 

we present some test results in Section 4 to evidence the possible effectiveness of this method. 

2. Basic formulation - fixed-step scheme 

Let xk denote the k th mesh point along the variable axis and h,, , = x~+ , - xk the step size to be used 
at the next move. We shall usey, to represent a numerical approximation to the exact solution y( x~) at the 
mesh point xk. Let g, = g(x,, yk). By considering the integral equation 

y(x,+,) = eAhn+‘y(x,) +eAX”+’ 
/ 

X,+1 

e-“g(T, _dT))dT 
xn 

which is equivalent to problem (1. I), we are motivated to form the following formula 

Y n+1= eAhn+% + h,+, i Qkign-,+ ,- 

(2.1) 

(2.2) 
i-o 

The summation in (2.2) is an approximation to the integral 

/ 

1 
e A(‘-a)hn+Ig(xn + ah,+,,y(x, + ah,+,))da 

0 
(2.3) 

where (Y = (7 - x,)/h,+ ,, and Qkr’s are some matricial coefficients to be determined. 
Let us consider the fixed-step explicit scheme first. Assuming QkO = 0 in (2.2) and regarding g as a 

function of (Y, we use a vector-valued polynomial P(cr) of degree < k to interpolate g componentwise at 

pomts x,-k+ 1,‘. . , x,sothatP(l -i)=gn_i+, fori= l,..., k. This polynomial is given by the Lagrangian 
formula 

p(a) = i g.-.+,,fi, a 5;; l . (2.4) 
i-l 

jti 

Now the integral (2.3) is approximated by 

/‘eA(‘-“)“P(,)d,= i 
0 i-1 

(2.5) 

where h,, , is abbreviated as h. Comparing (2.2) and (2.5) we see it is reasonable to choose Qkr in (2.2) as 

Qk, = J’e”” -a’” fi OL ;‘_s * da. (2.6) 
0 J-1 

j* I 

As an example, when k = 4, (2.2) becomes 

P”+~ =eAhyn+h J 
‘eAc’-a)h[i(cx+ l)(a+2)(a+3)gn 

0 

-fa(a+2)(a+3)g,,_,+$-~(a+ 1)(~+3)g,_,+(cr+ l)(a+2)g,_3]dol. (2.7) 

Here the notation p,+ , is used to indicate that it is the ‘predicted value’ of y(x,+ ,). The scheme (2.2) along 
with (2.6) is called a generalized Adams-Bashforth formula of order k because, if A = 0, (2.2) is reduced to 
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the classical linear multistep scheme. The word ‘order’ will be justified later. An implicit scheme of order 

k + 1 can be formed in exactly the same way if the polynomial P*(a) interpolating the prints x,_~+ ,, . . . , 

X n+, with values P*(l - (~)=g,_,+, for i = 0 ,..., k is used. The resulting matricial coefficients of this 

implicit scheme is denoted by Q,. It is worth noting that 

,cc@:, = ,$, Qkr =l’eA”“,hda 

is always bounded. Now we make the following definition. 

Definition 2.1. By a (k, k + I)-order PECE mode we mean the numerical scheme consisting of a predictor 

of order k and a corrector of order k + 1 in the form of (2.2). i.e. 

P: Pn+l= eAhy, + h i @,+,gn-;+,, 
1=l 

E: g,p+, =dxn+,rPn+,), 
k 

c: Y,+l= eAhyn + h c %g,-,+ I + h@Zod’+ 1 T 

i-1 

E: g,+l =dxn+,,yn+,). (2.8) 
Apparently, to compute these matricial coefficients is not an easy and economical task. The situation is 

even worsened when the variable-step scheme is to be adopted. The algorithm we develop in the next 
section, however, helps to facilitate this difficulty. In fact, we shall see in that algorithm only matrix 
multiplications are involved. Let us conclude this section with three major theorems concerning the 
consistency, convergence and A-stability of the mode (2.8). They are obvious extensions of classical results 

PI. 

Theorem 2.2. Assume g E Ck+‘, then the local truncation error cp( y(x,), h), defined by 

C’(y(x,), h) =y(x,+I I--eAhy(x,)-hi ~krg(X,-,+,,Y(X,-,+,)) (2.9) 
i= I 

of the explicit scheme (2.2) with step number k is 0( hk+ ’ ). With a similar definition the local truncation error 
C(y(x,), h) of the implicit scheme is O(hk+‘). 

Theorem 2.3. Let the (k, k + I)-order PECE mode (2.8) be applied to solve problem (1.1) on [a, b]. Suppose 

g E C’ and ]]ag/ay]] Q L, for some constant L, > 0. If all starting values y, for i = 1,. . . , k - 1 satisfy 

]]y(x,)-y,]] q E,, then for x, E [a, b] we have 

Ily(x,) -y,Jl G [E, + &]e(xn-u)d4 (2.10) 

where 

A = &(a* + hL,II@:oll~), 

6 = mn~llWo~~P(y(x,), h) +e(y(x,,), h)ll, (2.11) 

a = i ]]@ki]] and a* = i ]]@:,]I. 
1-l i=o 

Znparticular, ifgECk+’ andEo=O(hk+‘), then ]]y(x,)-y,,]l=O(hk+‘). 

Theorem 2.4. The multistep scheme (2.2) based on the Pade approximation to all its matrix exponentials is 
A-stable. 
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3. Efficient formulation - variable-step scheme 

The subroutine STEP in [26] gives an efficient way of generating coefficients for the linear multistep 
method which results in substantial savings of the overhead and memory storages. We now reformulate 

their settings in the matrix form. It will be seen at the end of this section that all the advantages of STEP 

are preserved. 
Let the following quantities be defined. 

h,=x,-x,_,, 
x - x, 

S=h’ n+l 

$,(n+ l)=h,+,+ ... +h,_,+z, i2 1 

a,(n+ l)= 
h n+l 

$,(n+ 1)’ ia l, 

+,(4=d%l=&?~ +,(n)=+,(n).-- #,_,(n)g[x,, x,-,I....x,-,+,I. i> 1 

Recall that the predicted value of y(x,+ ,) is the vector 

P ?I+,= 
eAhn+ my, + Jx”“eA(“n+~-“p,,,( 7)dT 

X” 

where pk.” is the interpolating polynomial given by 

(x - %Jdxn~ X,-II + 

A typical term, for i > 2, of P~.~(x) can be written as 

If we introduce quantities c,,,(s) and @T(n) defined by 

I’3 i= I, 

and 

+:(n) = P,(n + l>+,(n), 

then (3.3) can be written as 

PdX) = ,g, c,.nW6(4 

and (3.2) becomes 

P e n+,= Ahn+ly,, + h,,, ;$, ( J,le’ri-~)h”+lc,..(s)ds)~~(~). 

.1 

(3.1) 

(3.2) 

X,-k+ I 1. 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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Let 

d,,,(s) = eA(‘-“““+]c,,,(S), 

it follows that 

d,,,,(s) = 

i= 1. 

i = 2, 

i>3, 

and 

pII+,= eAhn+‘~n + Ant, i (~k,,,W+W 
i= 1 

Observe, for a fixed n and any i > 3, 

/ 

s 

d,,,(s,)ds, 
0 

- 
J ‘a,-,(n + l)~~‘d,-,.~(s,)ds,ds,. 
0 

(3.12) 

If we define 

d,($(.s) =JxIb”-‘*.. , ~“d;,,(s,))d~,,ds, . . . ds,_,. 

then (3.12) is equivalent to 

d,‘.‘,‘(s) = cY,_,(n + l)s+ 
[ 

;;$,’ d,‘?,..(s) -(Y,_,(n + l)d,‘?,JS). 
I In I 
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(3.9) 

(3.10) 

(3.11) 

(3.13) 

(3.14) 

It is not hard to show now, by induction and integration by parts, the following identity holds for any 
i>, 3. 

#4,‘(s)= a,_,(n+ l)s+ 
[ 

Icli-2(n) 

*i-](n) I 

4?',.,(.s) -qa,_,(n + l)d,‘!:,!J(s). (3.15) 

Scaling these quantities by 

0 ,.y= (4 - lM.4,‘(1), 

we then arrive at one of the important identifies 

(3.16) 

w I.4 =W r-l.q -a,_,(n+ l)~,-,,q+, foria3. (3.17) 

Up to this point, all these quantities we have derived are formally then same as those by Shampine and 
Gordon [26] except that these are in matrix form. When A is identically zero, the quantities defined in 

(3.10), (3.12), (3.15) and (3.17) become diagonal matrices and, in fact, each diagonal matrix is of the form 
cl where the scalar c is the coefficient used by Shampine and Gordon. In this case, the quantites for i = 1 
and i = 2 can be handled trivially. In the other case when A is a matrix as stated in problem (1. l), it can be 
shown from (3.13) that d,‘],‘(s) satisfies the equation 

(3.18) 
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and, by induction, di,t,(.s) satisfies 

(3.19) 

for all q 2 2. Similarly, we have 

(-Ah,+,)d$!b(s) = SeA(‘-s,h~+, - d,“:(s), 

(-Ah,+,)dj$(s) = Q;‘,(S) - dl(yi(~) for q a 2. (3.20) 

Resorting to the definition (3.16), we obtain 

( -Ahn+,)~,,, = I - eAhn+,, 

( -Ahn+,)~,,q = (q - l)o,,,_, - eAhn+l for qa 2, (3.21) 

(-&I+,)%,, =I-a,.,, (-Ah,+,)~~.,=(q- ~)Q~,~-,--Q~.~ forqa2. 

In general, w,,~ and qq for every q > 1 can be solved directly from (3.21) once A -’ is known. But for the 
case when A is very ill-conditioned or even is singular, it would be wise to reformulate the problem in a way 
similar to (1.3) so that A is better conditioned and nonsingular. 

Since d,‘.L,( 1) = w,,,, the scheme (3.11) becomes 

pncl = eAh ““Y, + h,+, i %,e+ (3.22) 
i- I 

We now make a correction on this predicted value. The corrected value of Y( x, + , ) is given by 

Y,+, = eA’n+l y, +/x”+‘eA(x*+I-T)p:+ ,.n( r)dr (3.23) 
X” 

where pz+ ,,n(~) is the interpolating polynomial of degree -z k + 1 such that pz+ ,.n(~,_,+ ,> = g,_,+, for 
i= 1 ,...,k andp,*+,.,(x,+,)=g(x,+,,p,+,). Since 

Pk*+,,n(X)=Pk,n(X)+(X-X,)... (X--X,-k*,)gPIX,+,r...rX,-X+,l 

=Pkn(4 +Ck+&M+,b + 1) (3.24) 

where the superscript p is used to indicate that the value g,, , is replaced by g( x,,+ ,. p,+ ,), we can 

substitute (3.24) into (3.23) to get 

Y ntl =Pn+I +k+,%+,.,+kP+,(n+ 1). (3.25) 

To appreciate the above scheme we illustrate the inter-relation between the coefficients of (3.17)) and 
(3.21) in Table 1. The arrows emanate from the generators and point to the generated values. 

Table 1 
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Several advantages are manifestly clear now: 
(i) We only need to computer A-’ once and for all throughout the calling of the whole algorithm 

because (Ah,,,)-’ = (Ah,,,,-’ .hold/hnew can be updated by scalar multiplications. 

(ii) If the S!L~ succeeds and the step size is doubled, then eAhn=w = (eAheld)’ can be obtained by matrix 

multiplications. Furthermore, any reasonable step size selection mechanism should not cause frequent 
reductions of step size, so the overhead resulting from the computation of e Ah is expected to be small in the 

long run. 
(iii) When the classical implicit linear multistep scheme with step size h 

i a,~,-,+I =hi PA-,+, 
r=O i=o 

(3.26) 

is applied to solve problem (1. l), at each step one has to solve the nonlinear equation 

Y n+l =hPof(x,,+,,x,+,)+~ (3.27) 

where 

fb,r)=h+dx7A and a=$ P,fn-,+, - 2 a,~,-,+~ 
r=l i= I 

(w is a known quantity at the current state). In order to apply the contraction mapping theorem, it is 
required to have 

k = hl&,lL, < 1 (3.28) 

where L, is the Lipschitz constant for f. In constrast, when an implicit multistep scheme (2.2) with step size 
4 is applied, the nonlinear equation to be solved becomes 

Y II+1 = hDkOg(X n+l,Yn+l)fh 

where cc1 = hC;“E ,Qkrgn_,+, - e”‘y,. Again we require the condition 

(3.29) 

(3.30) 

Under the assumption that the iterative method used to solve (3.27) and (3.29) converges at the same rate, 
it is seen that 

(3.31) 

Thus for the problem (1.1) where L, is much greater than L,, the step size h of our scheme (2.2) can be 
chosen significantly larger than that of the linear scheme (3.26). 

(iv) Apart from the facts that wiq’s are matrices, $,‘s are defined over g, and w,~‘s for i = 1 or 2 are 
generated according to (3.21), symbolically (3.17) and (3.1) are exactly the same as those in [26]. Therefore, 

the efficient software designs of the code STEP can be perfectly transfered into our code. This advantage 
includes the substantial reduction of the overhead and the memory storages. In particular, the PECE mode 
(2.8) which advances from x, to x,+ , is now given by 

Computingo ,.,, i= l,..., k+ 1; 

P: r#~~(rz)=/?,(n+ l)&(n), i= l,..., k, 

&+,(n + 1) = 0, 

E: 

&(n+ l)=+T+,(n+ l)++:(n), i=k,..., 1; 

g ,P+, =g(%+I~Pn+I); 
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c: Yn+l =pn+i +k+,%+,,,(g,P+1-44(n+ 1)); 
E: g,+l =dxn+,a,+,L 

h+,(n+ l)=s,+,-$b+ 113 
+,(n+ l)=$(n+ 1)+&+&r+ l), k= l...., 1. (3.32) 

4. Numerical examples 

Test results of problems representing both linear and nonlinear stiff systems are presented in this 
section. We also give an ‘informal’ comparison of our algorithm NLMSUB with Gear’s DIFSUB or 
Lawson’s IRKSUB by listing their test data from the reference. It should be emphasized that the principal 
objective of these tests is to confirm the workability of this multistep method rather than to make the 

detailed comparison with available methods, although several results seem to reveal some significant 
advantages. 

The subroutine NLMSUB is developed based on the prototype code STEP. We replace the scalar 
coefficients in STEP by matricial coefficients which are generated according to the scheme (3.17) and 
(3.21). The matrix exponential e Ah is calculated by Ward’s method [25,33]. Finally and most importantly, 
the error control mechanism is modified so as to fit into our matrix formulation: The actual treatments 
would be too tedious to discuss here and we would rather avoid the details. 

Problem 1 [ 181. 

0, I -1, 

1, 

y’=U 0, 0, 0, -If: 
0, 0, 900: 

I;ii]u~Y+u[ ~i-i~ii~~l]~ y(O)= [ ;], 

-1, 1, 1, 1 UC+ 1 and x E [0,25]. 

Test results (with local error control lo-‘) are given in Table 2. 

Notation. The maximum error ERR is measured by - log(X[yi(x) - y,]‘)“’ on the CYBER 750 system. 

Remarks. This problem fits exactly into our model and hence we expect accurate numerical outputs. The 
large angles formed by its eigenvalues ( - 100 k 900i and f i) with the negative real axis give Gear’s method 
some hardtime as is expected. The matrix U is used to couple all components and hence makes the problem 
more complicated. The computation in our algorithm actually terminated at x = 39.21 instead of 25 
whereas the next allowable step size was as large as 39. So conceivably the above data is to be even more 
prominent if the integration range is [0,80]. Since the numerical difficulty for a stiff system usually appears 
in the steady-state part, our method seems to be more efficient for at least this class of problems. 

Table 2 

Table 3 

DIFSUB IRKSUB NLMSUB 

DIFSUB IRKSUB NLMSUB 

ERR 4.55 4.22 6.75 

STEP 2982 532 25 

FNS 8332 2986 51 

JACOB 31 41 0 

PADE 0 0 1 

TIME 106.03 41.88 0.19 

ERR 5.31 5.40 5.23 

STEP 650 1575 286 

FNS 1839 18805 322 

JACOB 66 319 0 

INV 66 951 31 

PADE 0 0 36 

TIME 0.597 6.171 1.716 
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Problem 2 [7]. 

-1, 0, 0, 0 r2 

0, - 10, 0, 0 2oy; 

y’ = 0. 0, -40, 0 J+ 8O(_$+L’-g 

0, 0. 0, - 100 200( yf + J;’ + y-j 

where x E [0,20]. 
Test results (with local error control 10p6) are given in Table 3. 

y(0) = 

237 

Remarks. This problem has a very strong nonlinear coupling from the smooth components to the transient 
components and hence causes great difficulty. In fact, this coupling causes the trasient components to have 
very large positive derivative at the initial phase. This tendency eventually is diminished and the order is 
lowered when the smooth components cannot match the rapid decay of the transient. It is probably due to 

this reason that the step size has to be changed frequently. 

Problem 3 [ 151. 

-P,, Pz, 0, 0 
-P2, -P,, 03 0 

0, 0, - 100, 0 
0, 0, 0, -0.1 

where z = Uy and x E [0,50]. 
Test results (with local error control 10w4) are given in Table 4. 

1 _ U’y-t U 

2 2 
i1 -i2 

2 
z,z2 

z3 

2 
z4 

-2 

y(O)= u _; 

[ I -1 

Remarks. It can be shown that eigenvalues of the Jacobian matrix of the above system are given by 
z, - ,f3, & It2 -&]i, 21, - 100 and 2z, - 0.1. By varying values of /3, and p2, this nonlinear system will 
present different characteristics. When /?, = - 10 and & = 0. all eigenvalues are real numbers because 
z2( x) = 0. One has to note, however, that this actually is a mixed-type problem because of the presence of 
positive eigenvalues in the transient region. If p, = 1 and & = 100, then all eigenvalues have negative real 
parts and the first two form very large angles (nearly 88’) with the negative x-axis. The accuracy returned 
is satisfactory, but the step sizes used are relatively small (average 6.2 X lo-*). When j3, = 10 and & = 100, 
we have similar distribution of eigenvalues (with angles nearly 84”), but the step sizes used are relatively 
large (average 5.2 X lo-‘). The reason for this contrast is not clear. If p, = - 10 and fi2 = 10, then again 
this is a mixed-type problem of which some eigenvalues are moving from the right half-plane to the left 
half-plane. The result shows a frequent reduction on the step size whereas the ‘global error’ implies a larger 
step size could have been used. Probably this is due to the deficiency of the error control mechanism that 

we used. 

Table 4 

fl,= -10 P,=l p,=i p, = - 10 

P, =0 &= IOf) p2= 100 Pz= IO 

ERR 2.84 3.45 3.70 5.35 
STEP 63 809 96 1866 
FNS 127 1619 195 3933 
INV 4 3 6 200 
PADE 3 2 5 199 
TIME 0.440 2.71 I 0.667 17.942 
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