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Abstract

Multivariate eigenvalue problems for symmetric and positive de�nite matrices arise
from multivariate statistics theory where coe�cients are to be determined so that the
resulting linear combinations of sets of random variables are maximally correlated�
By using the method of Lagrange multipliers such an optimization problem can be
reduced to the multivariate eigenvalue problem� For over thirty years� an iterative
method proposed by Horst ���� has been used for solving the multivariate eigenvalue
problem� Yet the theory of convergence has never been complete� The number of
solutions to the multivariate eigenvalue problem also remains unknown� This paper
contains two new results� Using the degree theory we �rst prove a closed form on
the cardinality of solutions for the multivariate eigenvalue problem� We then prove
a convergence property of Horst�s method by forming it as a generalization of the so
called power method� The discussion leads to new formulations of numerical methods�



�� Introduction�

Given a symmetric and positive de�nite matrix A � Rn�n and a set

P 	
 fn�� � � �nmg���

of positive integers with
Pm

i�� ni 
 n� let A be partitioned into blocks

A 


�
�����

A�� A�� � � � A�m

A�� A�� � � � A�m
���

���
���

Am� Am� � � � Amm

�
��������

with Aii � Rni�ni � A multivariate eigenvalue problem �MEP� is to �nd real scalars
��� � � � � �m and a real column vector x � Rn such that equations

Ax 
 x���

jjxijj 
 �� i 
 �� � � � � m���

are satis�ed� where  is the diagonal matrix

 
 diagf��I �n��� � � � � �mI �nm�g���

with I �ni� the identity matrix of size ni� and x � Rn is partitioned into blocks

x 
 �xT� � � � � � x
T
m�

T���

with xi � Rni �
We �rst note that a multivariate eigenvalue problem is fundamentally di�erent

from the so called multiparameter eigenvalue problem ����� The latter problem is�
given Ai� Bis � Rni�ni � to solve the equations

�Ai �
mX
s��

�sBis�xi 
 �� i 
 �� � � � � m���

for � 
 ���� � � � � �m�
T � Rm and xr � Rni �

Equations ��� and ��� represent a non�linear algebraic system in n�m unknowns�
Trivially� ifm 
 �� then ��� is simply a classical symmetric eigenvalue problem� In this
case� it is well understood that� counting multiplicity� there are exactly n eigenvalues
and that� counting negative signs� there are exactly �n eigenvectors if all eigenvalues
are distinct� When m � �� however� the concept of characteristic polynomial is no
longer applicable� In fact� very little theory is known concerning the characteristic of
a solution to the �MEP��

The �rst contribution of this paper is that we are able to determine the cardinality
of solutions to the �MEP� by using the degree theory� We prove that a total ofQm

i����ni� solutions exist for the �MEP� in the generic case� Our method is similar
in spirit to that developed in ��� with generalizations� The result apparently is new�
As a by�product� the homotopy may also be used as a numerical method to �nd all
solutions� if so desired� of the �MEP��

The �MEP� has its origins in the determination of canonical correlation coe�cients
for multivariate statistics ���� ��� ���� The history goes back to that Hotelling ���� �rst

�



studied the so called maximal correlation problem which later on has been developed
into what is known as the canonical correlation analysis� The numerical method
proposed then was somewhat awkward and ine�cient� Later� Horst ���� proposed an
iterative approach to solve the maximal correlation problem� In spite of a seemingly
successful numerical experiment� however� no rigorous proof has even been developed
to show that the iterative procedure converges and that the limit point obtained gives
maximal correlation�

The second contribution of this paper is that we reformulate Horst�s iterative
algorithm as a generalization of the so called power method ���� We provide a proof
that shows the method does converge monotonically� but only to a local maximal
correlation� We give an example that shows that Horst�s iteration has a good chance
of not converging to the absolute maximal correlation�

The paper is organized as follows	 The statistical background of the �MEP� is
reviewed in section �� Readers who are familiar with the background of the �MEP� or
are interested only in the linear algebra may pass over this section entirely� In section ��
we use the homotopy theory to prove the cardinality of solutions to the �MEP�� To
accomplish this� we establish several auxiliary lemmas which are of interest in their
own right� In section �� we reformulate Horst�s algorithm and proves the convergence
properties� The key of our success lies in the fact that there are only �nitely many
solutions to the �MEP��

Many open questions remain to be studied� The power method can be thought
of as a Jacobi�like iterative scheme� Thus other iterative techniques used for linear
algebraic equations ���� such as the Gauss�Seidel method or the SOR method� can
be modi�ed to solve the �MEP�� Multivariate shifting is another possible way to �nd
other solutions of the �MEP�� Some of these issues are brie�y mentioned in the last
section� The details of these new formulations will be discussed in a forthcoming paper
����

�� Statistical Background�

In this section we provide a somewhat detailed statistical background of the
�MEP�� The discussion should also make this paper more self�contained� However�
readers may choose to skip this section entirely without worries of discontinuity�

For clearity� the following rule is used in naming the notation� A calligrahpic
letter� X � denotes a scalar random variable� an accented letter� �X� denotes an array
of random variables while an upper case letter� X or �� denotes a matrix�

Given an n�dimensional random variable �X 	
 �X�� � � � �Xn� with a certain distri�
bution function� let �x��� � � � � x�n�� � 
 �� � � � � k� denote a random sample of size k of
this variable� For convenience� we use

X 	
 �x�i����

to denote the k�n sample matrix� As the notion for a random variable can be carried
over in a parallel manner to a random sample and vise versa� in what follows we
shall not make careful distinction between a random variable Xi and its corresponding
random sample �x�i� � � �xki�

T �
By shifting if necessary� we may assume without loss of generality that the sample

mean �i 	

Pk

���
x�i
k for each of the random variable Xi is zero� It follows then the

n� n matrix

� 	
 XTX���

�



represents the covariance matrix of the random sample X � Clearly � is symmetric�
We further assume as a generic case that there is no degenerate component and no
linear dependence among the components X�� � � � �Xn� It is a well known fact that �
is positive de�nite �����

Corresponding to the same conformation as in ���� let the components of �X be
divided into mutually disjoint groups

�X 
 � �X�� � � � � �Xm������

Then each �Xi is an ni�dimensional random variable� Let the matrix

� 
 ��ij�����

be partitioned in the same way as ���� Then �ii represents the covariance matrix of
the k � ni sample block Xi where the sample matrix X is partitioned as

X 
 �X�� � � � � Xm������

In practice it is often desirable to simplify the analysis by combining all ni com�
ponents of �Xi linearly into a single new variable Zi� For i 
 �� � � � � m� let bi � Rni

denote the coe�cients of linear combinations for variable �Xi� De�ne the n�m matrix

B 	


�
�����
b� � � � � �
� b� �
���

� � �
���

� � � � bm

�
����� �����

Then the sample matrix X is transformed into the n �m matrix

Z 	
 XB 	
 �Z�� � � � � Zm������

The covariance matrix corresponding to the new random sample Z is given by

� 	
 ZTZ 
 BT�B�����

Consider the case m 
 � as an example� It is often desirable to use Z� to predict
Z�� Thus it is imperative to �nd b� and b� so that the correlation coe�cient between
the two new random samples Z� and Z� is as large as possible� The covariance matrix
of Z is seen to be the �� � matrix

� 


�
bT����b� bT����b�
bT����b� bT����b�

�
�����

The correlation coe�cient � to be maximized is

� 

bT����b�q

bT����b�

q
bT����b�

�����

If the variances of Z� and Z� are normalized to unity� then to maximize � is equivalent
to

Maximize bT�b����

Subject to bTi �iibi 
 �� for i 
 �� �����

�



where

b 	
 �bT� � b
T
� �

T �����

As each �ii is symmetric and positive de�nite� the Cholesky decomposition

�ii 
 TT
i Ti����

exists� Introduce the block diagonal matrix

T 	
 diagfT�� T�g����

and de�ne

x 	
 Tb 	
 �xT� � x
T
� �

T �����

A 	
 T�T�T������

where T�T 
 T��
T
� Clearly A is still symmetric and positive de�nite� The problem

���� and ���� is now transformed into

Maximize xTAx����

Subject to xTi xi 
 �� i 
 �� ������

Using the method of Lagrange multipliers� we now form the Lagrangian function

��x� ��� ��� 	
 xTAx�
�X

i��

�i�x
T
i xi � ������

with �� and �� as the Lagrange multipliers� Upon di�erentiating ����� it is now clear
that the maximal correlation problem ���� and ���� for m 
 � is reduced to the
��variate eigenvalue problem ��� and ����

When m � �� the requirement of maximizing the correlation coe�cients between
the m random samples Z�� � � � � Zm needs to be modi�ed� Intuitively� the more similar
the vectors Z�� � � � � Zm are to each other� the more closely the correlation coe�cients
will approach unity� Thus it makes sense to require that the sum of the o��diagonal
elements of m�m matrix � in ���� be maximized subject to the condition that the
diagonal elements of � be unity� Apparently the maximal correlation problem for
m � � case can now be formulated in the same way as ���� and ����� We may repeat
the same procedure as for the case m 
 � to argue that a solution to the maximal
correlation problem

Maximize xTAx����

Subject to xTi xi 
 �� i 
 �� m�����

is necessarily a solution to the multivariate eigenvalue problem�

Suppose a set of solutions fb���� � � � � � b
���
m g to the maximal correlation problem has

been determined� We may wish to �nd yet another set of solutions fb���� � � � � � b
���
m g

so that the resulting composites Z
���
� � � � � � Z

���
m are also maximally correlated� Since

the second measurement is conducted independently of the �rst one� it is natural to

require that variables within the same class are uncorrelated� That is� each Z
���
i is

�



correlated zero with the corresponding Z
���
i � This procedure may be repeated until

we have obtained p 	
 minfn�� � � � � nmg sets of solutions� The zero correlation is

required between any two variables in the class fZ���
i � � � � � Z

�p�
i g� The reason why such

a repeated measurement is needed can be found from many real�world applications ����
��� ���� We note that variables from di�erent classes are not subject to any correlation
restrictions� although ideally we would like these variables to be zero correlated as well�

The new problem mentioned above was originally studied by Hotelling ���� who
mainly focused on the case wherem 
 �� But the numerical method proposed was very
ine�cient� Horst ���� then developed a direct approach �for m 
 �� which we found
was utilizing techniques of what is now known as the singular value decomposition� It
is worthwhile to rewrite the direct method in terms of the current notion as follows	

We �rst generalize the notation B in ���� to be the n� �p matrix

B 	


�
B� �
� B�

�
	


�
b
���
� � � � b

�p�
� � � � � �

� � � � � b
���
� � � � b

�p�
�

�
����

The random sample Z then becomes an n� �p matrix

Z 	
 XB 	
 �Z
���
� � � � � � Z

�p�
� � Z

���
� � � � � � Z

�p�
� ������

Consider the �p� �p covariance matrix � 
 BT�B of Z� Recall that each �ii has a
Cholesky decomposition ����� Let

T�T� ���T
��
� 
 QT

�DQ�����

be the singular value decomposition ��� of the n� � n� matrix T
�T
� ���T

��
� � It follows

that

� 


�
BT
� T

T
� Q

T
� �

� BT
� T

T
� Q

T
�

� �
I �n�� D

D I �n��

� �
Q�T�B� �

� Q�T�B�

�
�����

If we choose the vectors in B� and B� to be

B� 
 T��� QT
� In��p����

B� 
 T��� QT
� In��p����

where Is�t mean the �rst s � t submatrix of the identity� than

� 


�
I �p� �

� I �p�

�
����

where � is the diagonal matrix of singular values �� � � � � � �p � �� In other words�
if ���� and ���� are satis�ed� then �i is precisely the highest correlation coe�cient

between Z
�i�
� and Z

�i�
� and each of these two variables is uncorrelated to any other Z

�t�
s

for s 
 � or �� and t �
 i�
For m � �� the coe�cient matrix B is generalized to a block diagonal matrix

B 	
 diagfB�� � � � � Bmg����

where each Bi is an ni � p matrix

Bi 	

h
b
���
i � � � � � b

�p�
i

i
����

�



and the random sample becomes

Z 	
 XB 	
 �Z
���
� � � � � � Z

�p�
� � � � � � Z���

m � � � � � Z�p�
m ������

Unfortunately Horst�s direct method cannot be generalized to solve the general m
case� The reason is simply because there is no way to transform all m �m blocks of
size p� p in

� 
 �BT
i �ijBj �����

into diagonal matrices simultaneously when m � �� To remedy this� it was at this
point that Horst introduced his iterative method ���� ��� without a proof�

�� Homotopy Method and Cardinality�

In this section we use the degree theory to prove the cardinality of solutions to the
�MEP�� The theory has been used as a major tool in analysis to prove the existence
of solutions for a wide variety of problems� For a complete mathematical treatment
of the theory� we refer to the book ����� The degree theory can often be implemented
as a numerical means� known as the homotopy method� to compute a solution of a
nonlinear system� Applications of homotopy methods can be found� for example� in
��� �� �� �� �� ��� ��� ��� ����

Rewrite the multivariate eigenvalue problem as a nonlinear system	

F �x�� 
 �����

where F 	 Rn � Rm �� Rn �Rm is de�ned by

F �x�� 	


�
������

x�Ax
xT� x���

�
���

xTmxm��
�

�
������ �����

In general� it is not an easy task to �nd a solution for ����� It seems perhaps even
harder to count the total number of solutions� On the other hand� consider a simple
�MEP�	

Dx 
 x����

jjxijj 
 �� i 
 �� � � � � m�

where D is a diagonal matrix with distinct elements d
���
� � � � � � d

���
n� � � � � � d

�m�
� � � � � � d

�m�
nm �

It is trivial to see that
Lemma ���� The problem ���� has exactly

Qm
i�� �ni solutions� These are� for

i 
 �� � � � � m�

�i 
 d
�i�
ji

����

xi 
 �e�ni�ji

where ji 
 �� � � � � ni and e
�t�
s denotes the sth column of the identity matrix I �t��

�



Our basic idea is to construct a homotopy between ���� and ��� so that no homo�
topy curve will escape to in�nity or turn back� Toward this end� we de�ne a function
H 	 Rn �Rm �R �� Rn �Rm as follows 	

H�x�� t�D� 	


�
������

x� �D� t�A�D��x
xT� x���

�
���

xTmxm��
�

�
����������

where D is a diagonal matrix whose elements will be speci�ed later� The main concern
is to show that the Jacobian Dx���tH of H is of full rank if D is appropriately chosen�
In what follows we establish several auxiliary lemmas to help this investigation� The
lemmas� which themselves are of interest� concern the the spectrum property when a
simple matrix M is perturbed by a diagonal matrix�

A matrix M is simple if and only if the algebraic multiplicities and geometric
multiplicities of each of its eigenvalues coincide� Symmetric matrices are automatically
simple� We begin with a fact that follows from a more general result in ���� Theorem
������	

Lemma ���� SupposeM is a simple matrix in Rn�n and r � � is a positive integer�
Then � is an eigenvalue of M of multiplicity r if and only if � is an eigenvalue of all
q � q principal submatrices of M whenever q � n� r � ��

For convenience� we denote the diagonally perturbed matrix by

M 
M�D� 	
M �D����

with D 
 diagfd�� � � � � dng� We claim that
Lemma ���� Let E 	
 f�d�� � � � � dn� � Rnj M has multiple eigenvaluesg� Then

the complement U of E is open� dense and has full Lebesgue measure in Rn�
Proof� Let

Er 	
 f�d�� � � � � dn� � Rnj M has zero eigenvalue of multiplicity rg�����

By Lemma ���� there exists an �n�r���n�r� principal submatrix �M ofM such that
�M is nonsingular� Without loss of generality� we may assume �M is the leading prin�
cipal submatrix ofM� i�e�� �M is indexed by f�� � � � � n� rg� All principal submatrices
of M with size � n � r � � are singular� In particular� for i 
 �� � � � � r the principal
submatrixMi indexed by f�� � � � � n� r� n� r � ig is singular�

De�ne

fi�d�� � � � � dn� 	
 det�Mi������

Then the value of �d�� � � � � dn� which causes M to have rank n � r must satisfy the
system of equations

F�d�� � � � � dn� 
 �����

where F 	 Rn �� Rr is de�ned by F 	
 �f�� � � � � fr��
Observe that

	fi
	dn�r�i


 det� �M� �
 �����

�



and� hence�

	F
	�dn�r��� � � � � dn�


 det� �M�I �r�����

is nonsingular� By the implicit function theorem� we thus know fdn�r��� � � � � dng can
be rewritten as functions of fd�� � � � � dn�rg� Thus Er is necessarily embedded in a
manifold of dimension n� r�

Let e 	
 ��� � � � � �� � Rn� Obviously� 
 e � �Er contains all values of �d�� � � � � dn�
such that M �D has an eigenvalue of multiplicity r� From the fact that

E 

 e � �
n�

r��

Er�����

we see that U is open� dense and has full Lebesgue measure in Rn�
By using the resultant theorem� a complex version of the above lemma has been

proved in ��� Theorem ����� The new contribution here is that Lemma ��� is for real
simple matrices perturbed by real diagonal matrices�

We note that ���� is only a necessary condition for M being rank de�cient by
r� Conceivably� the set Er could be much smaller than what the dimension n � r

suggests� This is especially so whenM is a symmetric matrix as we have the following
observation	

Rewrite M as

M 


�
�M �P
�PT �R

�
�����

Let

�L 


�
I �n�r� �

�� �M�� �P�T I �r�

�
�����

Then the rank condition ofM is the same as that of

N 	
 �LM �LT 


�
�M �

� �R� �PT �M�� �P

�
�����

In particular� if M is of rank n � r� then the lower right r � r block of N must be
identically zero� which gives rise to r�r� ���� equations in the d�� � � � � dn�

The r diagonal elements of �R� �PT �M�� �P are readily solvable for dn�r��� � � � � dn
in terms of d�� � � � � dn�r� as is predicted by the implicit function theorem in the proof
of Lemma ���� The o��diagonal elements impose r�r����� extra conditions for which
d�� � � �dn�r must satisfy� For r 
 �� it is easy to see that this extra condition is not a
trivial equation for d�� � � �dn��� Therefore� E� should be a manifold of dimension n��
�rather than n� ��� It should be rather convincing �though tedious to prove� that Er

is in general a manifold of codimension r�r � ���� as there are a total of r�r � ����
equations d�� � � � � dn must satisfy� Obviously� Er is empty if r is too big� Indeed� by
the Wilson�Ledermann bound ����� Er is empty if

r � d�n� �� p�n� �

�
e�����

�



We do not intend to provide here a proof for the exact dimension of each Er� For the
purpose of this paper it su�ces to see from the above argument that

Lemma ���� For any generic and symmetric matrix M � dim�Er� � n � � for
r � � and� hence� dim�E� � n� ��

We demonstrate the case n 
 � and r 
 � as an example� Suppose M is denoted
as M 	
 �mij �� The extra equation to be satis�ed by d� and d� is

m	
 

m��m��m���m��m��d��m��m��m���d�m��m���m��m��m���m��m��m��

m��m���m��d��d�m���d�d��m
�
��

and E� is made of points �d�� d�� d	� d
� where

d� 

d�m��m���d�m��m���m��m��m���m��m��m���m��m

�
���m��m��m���m��m��m���m��m��m��

d�m���m��m���m��m��

d	 

d�m��m���d�m��m���m��m��m���m��m��m���m��m

�
���m��m��m���m��m��m���m��m��m��

d�m���m��m���m��m��

d
 

d�m��m���d�m��m���m��m��m���m��m��m���m��m��m���m��m��m���m��m

�
���m��m��m��

d�m���m��m���m��m��
�

Obviously� E� is a ��dimensional manifold parameterized in d��
We are now ready to establish one of the major results�
Lemma ���� The set of D such that the matrix � �D� t�A�D�� is of rank less

than n �m for some  and some t � ��� �� is of measure zero�
Proof� For convenience� we denote

A 
 A�� t� D� 	
 � �D� t�A�D�������

Observe that each of the m diagonal blocks of A takes the form

Aii 
 �iI
�ni� � ��� t�diag�d

�i�
� � � � � � d�i�ni �� tAii�����

If the rank of A is less than n � m� then one of the diagonal blocks of A must be
rank de�cient by at least two� Equivalently� this implies that for some � � ���	� the

matrix �diag�d
�i�
� � � � � � d

�i�
ni � � Aii has an eigenvalue with multiplicity at least two� By

Lemma ���� the union over �

�
�������

f�d�i�� � � � � � d�i�ni �j�diag�d�i�� � � � � � d�i�ni � �Aii has multiple eigenvaluesg

is of dimension at most ni��� Thus� over all� the set of D such that ��D�t�A�D��
is of rank less than n � m for some  and some t � ��� �� is at most of geometric
dimensional n � ��

Henceforth� we shall assume that D in ���� has been chosen so that A�� t� D� has
rank at least n�m for all  and all t� We now prove the existence of the homotopy
curves�

Lemma ���� The point � � Rn � Rm is a regular value for H� That is� for each
�x�� t� � Rn � Rm � R such that H�x�� t� 
 � the Jacobian matrix D�x���t�H has
rank n�m�

�



Proof� For convenience� we divide the Jacobian matrix D�x���t�H into blocks	

�
A B C
BT � �

�
����

where A is as given in �����

B 	


�
�����
x� � � � � �
� x� � � � �
���

� � �
���

� � � � xm

�
���������

and

C 	
 �D� A�x�����

If H�x�� t� 
 �� then

Ax 
 ������

indicating that x is an eigenvector of A with corresponding eigenvalue zero�
Suppose for a certain � � i � m� there exists yi � Rn such that

Ayi 


�
��������

�
���
xi
�
���

�
��������
�����

Then� by the symmetry of A� we know


 Ayi� x �

 yi�Ax �
 ������

On the other hand� we should have


 Ayi� x �

 xi� x �
 ������

This contradiction implies that none of the m columns of B can be in the range of A�
As A is at least of rank n�m by Lemma ���� it is now clear that the n� �n�m�

matrix �A�B� is of rank n� It is also clear the rows of �BT � �� are not in the row space
of �A�B�� Thus the assertion is proved�

By now� the following theorem is a standard result from the di�erential topology�
Theorem ���� The set  	
 f�x�� t�jH�x�� t� 
 �g is a one dimensional

smooth submanifold in Rn �Rm � R�
Furthermore� as D�x���t�H is nonsingular� the implicit function theorem asserts

that each component of  can be characterized as a function of t� Also if �x�� t� �  �
then

mX
i��

��i 
 jjxjj 
 jj���� t�D � tA�xjj � m�jj��� t�Djj� jjtAjj������

�	



implying that no homotopy curve can diverge to in�nity for t � ��� ���
Putting all the above arguments together� we have proved that for i 
 �� � � � � m�

the solution to the initial value problem

d

dt

�
����������

x�
���
xm
��
���
�m

�
����������




�
A B
BT �

��� � �C
�

�
����

xi��� 
 �e�ni�ji
����

�i��� 
 d
�i�
ji

����

is a curve in Rn � Rm that extends from t 
 � to t 
 �� From Lemma ���� we thus
conclude that

Theorem ���� For a generic and symmetric matrix A� the �MEP� has exactlyQm
i�� �ni solutions�
We believe the result of Theorem ��� is new� Moreover� it should be pointed out

that the positive de�niteness of the matrix A is not needed in the proof of Theorem ����

�� Power Method and Convergence�

Horst�s algorithm may be reformulated as follows	
Algorithm ���� �Horst�s Algorithm�

Given x��� 
 �x
���
�

T
� � � � � x

���
m

T
�T with jjx���i jj 
 �� do

for k 
 �� �� � � �
for i 
 �� � � � � m

y
�k�
i 	


mX
j��

Aijx
�k�
j �����

�
�k�
i 	
 jjy�k�i jj�����

x
�k���
i 	


y
�k�
i

�
�k�
i

�����

end
end

Theoretically it is possible that jjy�k�i jj 
 � and� hence� ���� is not well de�ned�
Such a breakdown� though rarely occurring in practice� can easily be remedied by re�

de�ning x
�k���
i to be an arbitrary unit vector in Rni � say x

�k�
i itself� and then continuing

the iteration�
To our knowledge� Horst�s iterative algorithm has never been rigorously proved

to converge although some intuitive support as well as some numerical evidence are
mentioned in ���� ���� In this section we prove a convergence property of Algorithm ���
for the �MEP��

We �nd it is more convenient to write the above algorithm in the compact form	

Ax�k� 
 �k�x�k�������

��



where

x�k� 	
 �x
�k�
�

T
� � � � � x�k�m

T
�T����

and

�k� 	
 diagf��k�� I �n��� � � � � ��k�m I �nm�g�����

The iterative scheme may be viewed as a generalization of the classical power
method� The convergence property of this method� nonetheless� is not nearly obvious�
As an example� without the positive de�niteness� the method may fail to converge�

This can be seen from the �� � matrix A 


�
� b
b c

�
with m 
 �� There are exactly

four feasible solutions �������� For any values of b and c satisfying jbj 
 �� c 
 � and
jbj 
 �c� the matrix A is not positive de�nite� In this case the iterations alternate
between ��� �� and ������� or between ������� and ���� ��� No convergence occurs�
As another example that will be illustrated later� a limit point of the method may
depend upon the starting point� The maximal correlation problem may have multiple
local solutions even if the matrix A is positive de�nite�

To study the convergence property of Horst�s algorithm for the �MEP�� we denote
the objective function in ���� by

r�x� 	
 xTAx����

for x � Rn� We claim that
Theorem ���� Suppose A is symmetric and positive de�nite� Then fr�x�k��g

with x�k� generated by ���� is a monotonically increasing sequence and converges�
Proof� From ����� we know that

r�x�k�� 
 x�k���
T
�k�x�k������

We also know

r�x�k���� 
 x�k���
T
Ax�k��� � x�k���

T
�k�x�k��� � x�k���TAx�k������

Subtracting ���� from ����� we obtain

r�x�k����� r�x�k�� 
 x�k���
T
�k��x�k��� � x�k�� � x�k���

T
A�x�k��� � x�k�������

On the other hand� observe that

x�k�
T
�k��x�k��� � x�k�� � x�k�

T
A�x�k��� � x�k��


 x�k�
T
Ax�k� � x�k�

T
�k�x�k� � x�k���

T
�k�x�k��� � x�k�

T
Ax�k�


 �����

because x�k�
T
�k�x�k� 


Pm
i�� �

�k�
i � Subtracting ���� from the right�hand side of �����

we �nd that

r�x�k����� r�x�k�� 
 �x�k��� � x�k��T �A� �k���x�k��� � x�k�������

��



As �k� is a diagonal matrix with positive elements� the matrix A � �k� remains to
be symmetric and positive� It follows that

r�x�k���� � r�x�k�������

The convergence of the monotone sequence fr�x�k��g is obvious since for all x we
have

�njjxjj� � r�x� � ��jjxjj�����

where

�� � � � �� �n����

are the eigenvalues of A�
It is instructive to motivate Theorem ��� from another viewpoint� Let Si 	


fxijxi � Rni � jjxijj 
 �g� The feasible set ���� for the maximal correlation problem
may be regarded as the manifold

Qm
i�� Si embedded in

Qm
i��R

ni with product topology�
The tangent space T�x�����xm�

Qm
i�� Si� therefore� is given by

Qm
i�� TxiSi� It is easy to

show that the gradient rr�x� projected onto TxiS�i� is twice of the vector

gi�x� 	

mX
j��

Aijxj� 
 xi�
mX
j��

Aijxj � xi�����

Observe then


 x�k��� � x�k�� g�x�k�� � 

mX
i��


 x
�k���
i � x

�k�
i � gi�x

�k�� �



mX
i��

	
jjy�k�i jj � 
 x

�k�
i � y

�k�
i ��

jjy�k�i jj



����

while each term in ���� is non�negative� That is� the vector x�k��� � x�k� forms an
acute angle with the projected gradient g�x�k�� of r�x�k�� and� thus� probably �though
not necessarily� points to an ascent direction for r�x��

De�ne the residual

�x�k�� 	
 Ax�k� � �k�x�k�


 �k��x�k��� � x�k������

where the second equality follows from ����� If the equality in ���� holds for some k�
then from ���� it must be x�k��� 
 x�k�� We �nd from ���� that x�k� solves ��� exactly�
In general we have

Theorem ���� The residual f�x�k��g in the Horst�s algorithm converges to zero
as k �� 	�

Proof� By the de�nition ����� all �
�k�
i remain bounded as jjx�k�jj� � m for all k�

It follows from ���� that there exists a constant � � � such that

r�x�k����� r�x�k�� � �jjx�k��� � x�k�jj�����

for all k� The assertion follows from ���� and the fact that fr�x�k��g converges�
��



At this point it is not obvious that the sequence fx�k�g itself converges� But it
is clear the sequence fx�k�g does have have cluster point�s� due to its boundedness�
From Theorem ���� it follows every cluster point x� satis�es ��� with eigenvalues
��i 	
 jj

Pm
j��Aijx

�
j jj�

De�ne

���k� 	
 min
��j�m

�
�k�
j����

and

�� 	
 lim inf ���k������

Consider the case when �� 
 �� Then there exists a subsequence fkjg of positive
integers such that

���kj� 

�

j
�����

Any convergent subsequence of the subsequence fx�kj�g must be such that one of the
eigenvalues ��i is zero� We do not think this will happen often for a generic A�

The following lemma from real analysis is useful�
Lemma ���� Let fakg be a bounded sequence of real numbers with the property

jak�� � ak j �� � as k �� 	� If there are only �nitely many limit points for the
sequence� then fakg converges to a unique limit point�

Proof� Suppose fa�kg and fa�kg are two subsequences of fakg which converge�
respectively� to two distinct limit points� x and y� Let z denote any �xed real number
between x and y� For a positive number r let Bx�r� denote the neighborhood �x �
r� x� r� of x�

For any � � � which is less than �

 minfjx� zj� jy� zjg� there exists a large enough

integer K 
 K��� such that

a�k � Bx���

a�k � By���

jak�� � akj 
 �

for all k � K� In�nitely many elements of fakg must leave Bx��� to enter By��� and
vise versa� Thus there exists an index � � K such that a� � Bz���� This shows that
z is also a limit point�

Since z is arbitrary� we have shown any number between x and y is a limit point�
This contradicts the assumption that there are only �nitely many limit points�

In the following we prove that Algorithm ��� generates a convergent sequence
f�k�� x�k�g� We believe this result is new�

First we prove that
Theorem ���� The sequence f�k�g converges as k goes to in�nity�
Proof� We have seen already that the sequence f�k�g is bounded� Suppose

f�kj�g is a convergent subsequence� Then the corresponding fx�kj�g also has a con�
vergent subsequence� Without causing any ambiguity� we may assume the subse�
quence f��kj�� x�kj��g converges� By Theorem ���� it follows that the limit point of
f��kj�� x�kj��g is a solution of the �MEP�� By Theorem ���� there are only �nitely
many such limit points�

��



For convenience� we rewrite the matrix A as a column of m blocks� that is� A 


�A�� � � � � Am�T where Ai 	
 �Ai�� � � � � Aim�� Then �
�k�
i 
 jjAix

�k�jj� Observe that

j��k���i � �
�k�
i j 
 j jjAix

�k���jj � jjAix
�k�jj j � jjAi�x

�k��� � x�k��jj�

From ���� and Theorem ���� it follows that j��k���
i � �

�k�
i j �� � as k �� 	� The

assertion now follows by applying Lemma ��� to the sequence f��k�i g for each i 

�� � � � � m�

Then we prove that
Theorem ���� The sequence fx�k�g converges as k goes to in�nity�
Proof� The proof basically is the same as that in Theorem ���� as we observe

from ���� and Theorem ��� that componentwise the di�erence between x�k��� and
x�k� converges to zero as k goes to in�nity�

We now illustrate the dependence of the method upon the starting point� Consider
the positive de�nite matrix

A 


�
������

������ ������ ������� ������� �������
������ ������ ������ ������ ������

������� ������ ������ ������� �������
������� ������ ������� ������ ������
������� ������ ������� ������ ������

�
������

with m 
 �� n� 
 � and n� 
 �� It turns out that the sequence fx�k�� ��k�� � �
�k�
� g

converges to

x� 
 �������� ��������������� ������� �������T
��� 
 ������

��� 
 ������

if x��� 
 �������� ������� ������� ������� �������T� and to

x�� 
 �������� ������� �����������������������T
���� 
 ������

���� 
 ������

if x��� 
 �������� ������� ������� ���������������T � On the other hand� by repeatedly
applying the method to randomly generated starting points� it is interesting to �nd
the statistics that approximately ��! of the points give convergence to x� while all
the remaining converge to x��� This ratio stays about the same regardless whether a
normal distribution or a uniform distribution is used as the generator� This is a clear
indication that out of the �� solutions to this �MEP� there are two local maxima to
the maximal correlation problem� The example also illustrates that Horst�s algorithm
has a substantial possibility of not converging to the absolute maximal correlation�

�� Conclusion and Future Research�

Having demonstrated the convergence of Horst�s algorithm for the �MEP�� it is
clear that there are still many other numerical issues worthy of investigation� For
example� let

 	
 diagf��I �n��� � � � � �mI �nm�g����

��



where each �i is a real number� Then �A� �x 
 x if and only if Ax 
 � ��x� In
other words� like the power method� multivariate shifting is a possible strategy to �nd
other solutions of the �MEP�� To which solution does the algorithm converge based on
the starting value for x��� and on the shift parameters is thus an interesting problem�
A theoretical problem associated with the multivariate shifting is related to the so
called educational testing problem� that is� for what  will the matrix A �  become
positive semi�de�nite�

On the other hand� the scheme involved in ���� is very analogous to the so called
Jacobi method used in solving linear equations� It is thus rather natural to formulate
the following Gauss�Seidel method for the �MEP�	

Algorithm ���� �Gauss	Seidel Algorithm�

Given x��� 
 �x
���
�

T
� � � � � x

���
m

T
�T with jjx���i jj 
 �� do

for k 
 �� �� � � �
for i 
 �� � � � � m

y
�k�
i 	


i��X
j��

Aijx
�k���
j �

mX
j�i

Aijx
�k�
j����

�
�k�
i 	
 jjy�k�i jj�����

x
�k���
i 	


y
�k�
i

�
�k�
i

�����

end
end

Let the matrix A be decomposed as

A 
 D � UT � U����

where D is the main diagonal part of A and U is the strictly upper triangular part of
A� Then Algorithm ��� may be written as

�D� U�x�k� 
 ��k� � UT �x�k��������

Similarly� a SOR algorithm may be formulated as
Algorithm ���� �SOR Algorithm�

Given x��� 
 �x
���
�

T
� � � � � x

���
m

T
�T with jjx���i jj 
 �� do

for k 
 �� �� � � �
for i 
 �� � � � � m

y
�k�
i 	


i��X
j��

Aijx
�k���
j �

mX
j�i

Aijx
�k�
j����

�
�k�
i 	
 jjy�k�i jj�����

z
�k���
i 	


y
�k�
i

�
�k�
i

������

y
�k�
i 	
 �iz

�k���
i � ��� �i�x

�k�
i�����

�
�k�
i 	
 jjy�k�i jj������

x
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y
�k�
i

�
�k�
i
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end
end

We note that the relaxation parameters �i in each block may be chosen di�er�
ently� We also remark that the scaling in ����� may be done di�erently� including the

possibility of de�ning �
�k�
j 	
 � for all j and all k�

If we de�ne

"�k� 	
 diagf��k�� I �n��� � � � � ��k�m I �nm�g�����

and

� 	
 diagf��I �n��� � � � � �mI �nm�g������

then Algorithm ��� may be written in matrix form	

��I � ��"�k� ���D � U��x�k� 
 �"�k��k� � �UT �x�k���������

which includes ���� as a special case�
Apparently a partial list of topics that deserves further research should include

proof of convergence� rate of convergence� acceleration of convergence and so on for
each of these methods� Work on some of these aspects to the �MEP� will be expounded
upon in a forthcoming paper in progress�

��
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