On a Multivariate Eigenvalue Problem:

[. Algebraic Theory and a Power Method

Moody T. Chu! and J. Loren Watterson
Department of Mathematics
North Carolina State University
Raleigh, NC 27695-8205

September 21, 1995

! This research was supported in part by National Science Foundation under grants DMS-
9006135 and DMS-9123448.



Abstract

Multivariate eigenvalue problems for symmetric and positive definite matrices arise
from multivariate statistics theory where coefficients are to be determined so that the
resulting linear combinations of sets of random variables are maximally correlated.
By using the method of Lagrange multipliers such an optimization problem can be
reduced to the multivariate eigenvalue problem. For over thirty years, an iterative
method proposed by Horst [12] has been used for solving the multivariate eigenvalue
problem. Yet the theory of convergence has never been complete. The number of
solutions to the multivariate eigenvalue problem also remains unknown. This paper
contains two new results. Using the degree theory we first prove a closed form on
the cardinality of solutions for the multivariate eigenvalue problem. We then prove
a convergence property of Horst’s method by forming it as a generalization of the so
called power method. The discussion leads to new formulations of numerical methods.



1. Introduction.
Given a symmetric and positive definite matrix A € R™*™ and a set

(1) P:={ni,...nm}

of positive integers with > />, n; = n, let A be partitioned into blocks

A A ... A
A1 Ay ... A
(2) A= ) ) .
Aml Am2 s Amm
with A;, € R™*™. A multivariate eigenvalue problem (MEP) is to find real scalars
A1, ...y A and a real column vector z € R™ such that equations
(3) Az = Az
(4) llzi|| = 1,i=1,...,m

are satisfied, where A is the diagonal matrix
(5) A = diag{A J™] A, 1]}
with I the identity matrix of size n;, and z € R™ is partitioned into blocks

(6) o= [oF,..., 0L
with z; € R™.

We first note that a multivariate eigenvalue problem is fundamentally different
from the so called multiparameter eigenvalue problem [19]. The latter problem is,
given A;, B;; € R™*™  to solve the equations

(7 (Ai =D ABig)z;=0,i=1,...,m

s=1

for A= [A1,.. -, Am)T € R™ and z, € R™.

Equations (3) and (4) represent a non-linear algebraic system in n +m unknowns.
Trivially, if m = 1, then (3) is simply a classical symmetric eigenvalue problem. In this
case, it is well understood that, counting multiplicity, there are exactly n eigenvalues
and that, counting negative signs, there are exactly 2n eigenvectors if all eigenvalues
are distinct. When m > 1, however, the concept of characteristic polynomial is no
longer applicable. In fact, very little theory is known concerning the characteristic of
a solution to the (MEP).

The first contribution of this paper is that we are able to determine the cardinality
of solutions to the (MEP) by using the degree theory. We prove that a total of
[Ti%,(2n;) solutions exist for the (MEP) in the generic case. Our method is similar
in spirit to that developed in [3] with generalizations. The result apparently is new.
As a by-product, the homotopy may also be used as a numerical method to find all
solutions, if so desired, of the (MEP).

The (MEP) has its origins in the determination of canonical correlation coefficients
for multivariate statistics [10, 12, 13]. The history goes back to that Hotelling [10] first
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studied the so called maximal correlation problem which later on has been developed
into what is known as the canonical correlation analysis. The numerical method
proposed then was somewhat awkward and inefficient. Later, Horst [12] proposed an
iterative approach to solve the maximal correlation problem. In spite of a seemingly
successful numerical experiment, however, no rigorous proof has even been developed
to show that the iterative procedure converges and that the limit point obtained gives
maximal correlation.

The second contribution of this paper is that we reformulate Horst’s iterative
algorithm as a generalization of the so called power method [8]. We provide a proof
that shows the method does converge monotonically, but only to a local maximal
correlation. We give an example that shows that Horst’s iteration has a good chance
of not converging to the absolute maximal correlation.

The paper is organized as follows: The statistical background of the (MEP) is
reviewed in section 2. Readers who are familiar with the background of the (MEP) or
are interested only in the linear algebra may pass over this section entirely. In section 3,
we use the homotopy theory to prove the cardinality of solutions to the (MEP). To
accomplish this, we establish several auxiliary lemmas which are of interest in their
own right. In section 4, we reformulate Horst’s algorithm and proves the convergence
properties. The key of our success lies in the fact that there are only finitely many
solutions to the (MEP).

Many open questions remain to be studied. The power method can be thought
of as a Jacobi-like iterative scheme. Thus other iterative techniques used for linear
algebraic equations [9], such as the Gauss-Seidel method or the SOR method, can
be modified to solve the (MEP). Multivariate shifting is another possible way to find
other solutions of the (MEP). Some of these issues are briefly mentioned in the last
section. The details of these new formulations will be discussed in a forthcoming paper

[6].

2. Statistical Background.

In this section we provide a somewhat detailed statistical background of the
(MEP). The discussion should also make this paper more self-contained. However,
readers may choose to skip this section entirely without worries of discontinuity.

For clearity, the following rule is used in naming the notation. A calligrahpic
letter, X', denotes a scalar random variable, an accented letter, X, denotes an array
of random variables while an upper case letter, X or {1, denotes a matrix.

Given an n-dimensional random variable X := (Xy,...,X,) with a certain distri-
bution function, let [z¢1,...,2¢n], € = 1,...,k, denote a random sample of size k of
this variable. For convenience, we use

(8) X i= [ogi]

to denote the k X n sample matrix. As the notion for a random variable can be carried
over in a parallel manner to a random sample and vise versa, in what follows we
shall not make careful distinction between a random variable A; and its corresponding
random sample [z4;, ... 2Zx]7.

By shifting if necessary, we may assume without loss of generality that the sample
mean p; = 22:1 z,fi for each of the random variable A} is zero. It follows then the

n X n matrix

(9) A:=XTX
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represents the covariance matrix of the random sample X. Clearly A is symmetric.
We further assume as a generic case that there is no degenerate component and no
linear dependence among the components A7, ..., A,. It is a well known fact that A
is positive definite [22].

Corresponding to the same conformation as in (6), let the components of X be
divided into mutually disjoint groups

(10) X =(Xy,...,Xm)
Then each X; is an n;-dimensional random variable. Let the matrix

(11) A = [Ag]

be partitioned in the same way as (2). Then A,; represents the covariance matrix of
the & X n; sample block X; where the sample matrix X is partitioned as

(12) X =[X1,..., Xm]

In practice it is often desirable to simplify the analysis by combining all n; com-
ponents of X; linearly into a single new variable Z;. For ¢ = 1,...,m, let b, € R™
denote the coefficients of linear combinations for variable X;. Define the n x m matrix

by 0 ... O
0 by 0
(13) B:= . . .
0 cee by

Then the sample matrix X is transformed into the n X m matrix

(14) Z:=XB:=[Z1,...,2m)

The covariance matrix corresponding to the new random sample Z is given by
(15) Q:= 277 = BTAB.

Consider the case m = 2 as an example. It is often desirable to use Z; to predict
Z,. Thus it is imperative to find b; and b, so that the correlation coefficient between
the two new random samples Z; and Z, is as large as possible. The covariance matrix
of Z is seen to be the 2 X 2 matrix

- [ Db 6T ALb,
b Ag1by BT Agaby |

(16)
The correlation coefficient p to be maximized is
. bT A12by

/6T Ar1b1y/6T Agoby

If the variances of Z; and Z; are normalized to unity, then to maximize p is equivalent

(17)

to
(18) Maximize b7 Ab
(19) Subject to b7 Ayb; =1, for i =1,2
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where
(20) b:=[b7,b;5]".

As each A;; is symmetric and positive definite, the Cholesky decomposition
(21) Ay = TIT;

exists. Introduce the block diagonal matrix

(22) T := diag{T1,T»}
and define

(23) z = Tb:= [mf,:cg]T,
(24) A = T TAT

where 7-T = 71T, Clearly A is still symmetric and positive definite. The problem
(18) and (19) is now transformed into

(25) Maximize T Az
(26) Subject to =z az;=1,4i=1,2.

Using the method of Lagrange multipliers, we now form the Lagrangian function

2
(27) d(z, A1, Ng) = 2T Az — Z Ai(zFz; — 1)

=1

with A; and Ay as the Lagrange multipliers. Upon differentiating (27), it is now clear
that the maximal correlation problem (18) and (19) for m = 2 is reduced to the
2-variate eigenvalue problem (3) and (4).

When m > 2, the requirement of maximizing the correlation coeflicients between
the m random samples Z1, ..., Z,, needs to be modified. Intuitively, the more similar
the vectors Zy,..., Z,, are to each other, the more closely the correlation coefficients
will approach unity. Thus it makes sense to require that the sum of the off-diagonal
elements of m x m matrix Q in (15) be maximized subject to the condition that the
diagonal elements of {1 be unity. Apparently the maximal correlation problem for
m > 2 case can now be formulated in the same way as (18) and (19). We may repeat
the same procedure as for the case m = 2 to argue that a solution to the maximal
correlation problem

(28) Maximize  zT Az
(29) Subject to ele;=1,i=1,m.

is necessarily a solution to the multivariate eigenvalue problem.

Suppose a set of solutions {bgl), .. .,b&{)} to the maximal correlation problem has
been determined. We may wish to find yet another set of solutions {bgz), .. .,bﬁ)}
so that the resulting composites Z§2), .. .,Z,(f) are also maximally correlated. Since
the second measurement is conducted independently of the first one, it is natural to
require that variables within the same class are uncorrelated. That is, each ZZ-(z) is

4



correlated zero with the corresponding ZZ-(l). This procedure may be repeated until
we have obtained p := min{n,...,n,} sets of solutions. The zero correlation is
required between any two variables in the class {ZZ-(l), ey ZZ-(p)}. The reason why such
a repeated measurement is needed can be found from many real-world applications [10,
12, 13]. We note that variables from different classes are not subject to any correlation
restrictions, although ideally we would like these variables to be zero correlated as well.
The new problem mentioned above was originally studied by Hotelling [10] who
mainly focused on the case where m = 2. But the numerical method proposed was very
inefficient. Horst [12] then developed a direct approach (for m = 2) which we found
was utilizing techniques of what is now known as the singular value decomposition. It
is worthwhile to rewrite the direct method in terms of the current notion as follows:
We first generalize the notation B in (13) to be the n X 2p matrix

B0 ] e s 0 0
(30) B'_[ 0 Bz]'_l 0 ... o &Y ... P

The random sample Z then becomes an n X 2p matrix
(31) Z:=XB:=[2",...,72®) 7z . 7).

Consider the 2p X 2p covariance matrix & = BTAB of Z. Recall that each Aj; has a
Cholesky decomposition (21). Let

(32) Ty AT = QT DQ,

be the singular value decomposition [8] of the n; X ny matrix Tl_TAlgTz_l. It follows
that

(33) 0= BITIQT 0 Il p Q:1T1 By 0
0 BITIQT D Il 0 Q.T2B, |-
If we choose the vectors in By and Bs to be
(34) B, = T1_1Q{In1 Xp
(35) By = T3'Q3Inyxp

where I,y; mean the first s X ¢ submatrix of the identity, than

YIS
where ¥ is the diagonal matrix of singular values o1 > ... > o, > 0. In other words,

if (34) and (35) are satisfied, then o, is precisely the highest correlation coefficient

between ZP and Zéz) and each of these two variables is uncorrelated to any other th)
for s=1or 2, and t # 1.
For m > 2, the coeflicient matrix B is generalized to a block diagonal matrix

(37) B := diag{B1,...,Bn}
where each B; is an n; X p matrix

(38) B; = [ptY,..., 6]

5



and the random sample becomes
(39) Z:=XB:=[2", .., zP . z0 . 7).

Unfortunately Horst’s direct method cannot be generalized to solve the general m
case. The reason is simply because there is no way to transform all m X m blocks of
size p X p in

(40) Q = [B] A;Bj]

into diagonal matrices simultaneously when m > 2. To remedy this, it was at this
point that Horst introduced his iterative method [12, 13] without a proof.

3. Homotopy Method and Cardinality.

In this section we use the degree theory to prove the cardinality of solutions to the
(MEP). The theory has been used as a major tool in analysis to prove the existence
of solutions for a wide variety of problems. For a complete mathematical treatment
of the theory, we refer to the book [16]. The degree theory can often be implemented
as a numerical means, known as the homotopy method, to compute a solution of a
nonlinear system. Applications of homotopy methods can be found, for example, in
1,2, 3, 6, 5, 15, 18, 20, 21].

Rewrite the multivariate eigenvalue problem as a nonlinear system:

(41) F(z,A)=0
where F': R™ X R™ — R™ X R™ is defined by

Az — Az

T
;11

(42) F(z,A) := :

:z;lr‘bzm—l

In general, it is not an easy task to find a solution for (41). It seems perhaps even
harder to count the total number of solutions. On the other hand, consider a simple

(MEP):

(43) Dz = Az

||

1,2=1,...,m.

O OB RO}

where D is a diagonal matrix with distinct elements d;’,...,dn/,. ..

It is trivial to see that
LemMMmA 3.1. The problem (43) has exactly %, 2n; solutions. These are, for
1=1,...,m,

(44) A= d¥
T, = :l:eg-?i]
where 7, = 1,...,n; and e&t] denotes the sth column of the identity matriz I,



Our basic idea is to construct a homotopy between (43) and (3) so that no homo-
topy curve will escape to infinity or turn back. Toward this end, we define a function

H:R*"XR™x R— R™x R™ as follows :
Az — [D+t(A—- D)z

T

zyz1—1
(45) H(z,A,t; D)= 2
z;‘I,‘Lzm—l

2

where D is a diagonal matrix whose elements will be specified later. The main concern
is to show that the Jacobian D, H of H is of full rank if D is appropriately chosen.
In what follows we establish several auxiliary lemmas to help this investigation. The
lemmas, which themselves are of interest, concern the the spectrum property when a
simple matrix M is perturbed by a diagonal matrix.

A matrix M is simple if and only if the algebraic multiplicities and geometric
multiplicities of each of its eigenvalues coincide. Symmetric matrices are automatically
simple. We begin with a fact that follows from a more general result in [11, Theorem
1.4.9]:

LEMMA 3.2. Suppose M is a simple matriz in R™™ andr > 1 is a positive integer.
Then X is an eigenvalue of M of multiplicity v if and only if X is an eigenvalue of all
g X q principal submatrices of M whenever ¢ > n—r + 1.

For convenience, we denote the diagonally perturbed matrix by

(46) M=M(D):=M+D

with D = diag{di,...,dn}. We claim that
LemMmA 3.3. Let E := {(d1,...,dn) € R™ M has multiple eigenvalues}. Then

the complement U of E s open, dense and has full Lebesgue measure in R™.
Proof. Let

(47) E, :={(d1,...,d,) € R"| M has zero eigenvalue of multiplicity r}.

By Lemma 3.2, there exists an (n—) x (n— r) principal submatrix M of M such that
M is nonsingular. Without loss of generality, we may assume M is the leading prin-
cipal submatrix of M, i.e., M is indexed by {1,...,n — r}. All principal submatrices

of M with size > n — r + 1 are singular. In particular, for 2 = 1,...,r the principal
submatrix M, indexed by {1,...,n — r,n — 7 + i} is singular.

Define
(48) fi(d17"'7dn) = det(M'L)

Then the value of (di,...,d,) which causes M to have rank n — r must satisfy the
system of equations

(49) F(dy, ... dn) =0

where F : R® — R" is defined by F := (f1,..., fr)-
Observe that

0f; .
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and, hence,

oOF -
51 = det(M)IT"]
( ) a(dn—r—l—la ceey dn) ( )
is nonsingular. By the implicit function theorem, we thus know {d,,_r11,...,dn} can
be rewritten as functions of {dy,...,dn_}. Thus E, is necessarily embedded in a

manifold of dimension n — r.
Let e:=[1,...,1] € R™. Obviously, < e > ®E, contains all values of (dy,...,dn)
such that M + D has an eigenvalue of multiplicity ». From the fact that

(52) E=<e>a ] E,

r=2

we see that U is open, dense and has full Lebesgue measure in R®. O

By using the resultant theorem, a complex version of the above lemma has been
proved in [5, Theorem 2.3]. The new contribution here is that Lemma 3.3 is for real
simple matrices perturbed by real diagonal matrices.

We note that (49) is only a necessary condition for M being rank deficient by
r. Conceivably, the set E, could be much smaller than what the dimension n — r
suggests. This is especially so when M is a symmetric matrix as we have the following
observation:

Rewrite M as

wel4]
Let

. Jin—r] 0
(54) L= [ _(M—lrﬁ)T Il ] :

Then the rank condition of M is the same as that of
aagsT | M 0

(55) Ni= LML = [ 0 R—PTMIP ] '

In particular, if M is of rank n — r, then the lower right r X r block of A' must be

identically zero, which gives rise to 7(r + 1)/2 equations in the dy, ..., dn.

The r diagonal elements of R — PTM 1P are readily solvable for dp,—r11,...,dn
in terms of dy,...,d,_y, as is predicted by the implicit function theorem in the proof
of Lemma 3.3. The off-diagonal elements impose 7(r — 1)/2 extra conditions for which
di,...dn_, must satisfy. For r = 2, it is easy to see that this extra condition is not a
trivial equation for dy, ...d,_3. Therefore, E5 should be a manifold of dimension n—3
(rather than n — 2). It should be rather convincing (though tedious to prove) that E,
is in general a manifold of codimension r(r + 1)/2 as there are a total of 7(r + 1)/2
equations dy,...,d, must satisfy. Obviously, E, is empty if r is too big. Indeed, by
the Wilson-Ledermann bound [14], E, is empty if

(56) N _2‘/m1.
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We do not intend to provide here a proof for the exact dimension of each E,. For the
purpose of this paper it suffices to see from the above argument that

LEMMA 3.4. For any generic and symmetric matric M, dim(E,) < n — 3 for
r > 2 and, hence, dim(E) < n — 2.

We demonstrate the case n = 4 and r = 2 as an example. Suppose M is denoted
as M := [m;;]. The extra equation to be satisfied by d; and d; is

m3qa =
migmogmyigtmyiamizdy —miamysmas+d; mogmay —mlgmlamu +mosgmozmyg
mi1mag+midy+dymay+didy —mi,

and E, is made of points (d1, d2, d3, ds) where

dy =
2
dimagmaz —di maamas —maamaamiy +mi3maamis+maami, +magmazmy — M2 M4 M3 — 123Ny
dimas+magmi —migmis

ds =
2
dimaszmas —di mazmas+m11 Moz mas —M13M1a M3 +Maa M, —M12M13M34a +M12 3314 — N1 N33 M2g
dimast+magmi) —migmia

dg =
2
dimygmas—di ma3mas +m11 M M3 — NI4T 3TN — T2 TN14 N3 —TN11 23 TNag +M3 ™, +Mmiami3Tay
dimaz—mi3mia+mazmy; :

Obviously, F; is a 1-dimensional manifold parameterized in d;.

We are now ready to establish one of the major results.

LeMMA 3.5. The set of D such that the matrizc A — (D +t(A— D)) is of rank less
than n — m for some A and some t € (0,1) is of measure zero.

Proof. For convenience, we denote

(57) A=A(At,D):=A— (D +t(A- D)).
Observe that each of the m diagonal blocks of A takes the form
(58) Aii = MIM) - (1 - t)diag(dl?, ..., d0)) — ¢4,

If the rank of A is less than n — m, then one of the diagonal blocks of A must be
rank deficient by at least two. Equivalently, this implies that for some 7 € (0, 00) the
matrix Tdiag(dgz), .. .,d,(f.)) + A;; has an eigenvalue with multiplicity at least two. By

7

Lemma 3.4, the union over 7

U {(dgi), . .,d,(fi))|7'dia,g(dgi), . .,d,(fi)) + A;; has multiple eigenvalues}
T€(0,00)

is of dimension at most n; — 1. Thus, over all, the set of D such that A—(D+t(A— D))
is of rank less than n — m for some A and some t € (0,1) is at most of geometric
dimensional » — 1. O

Henceforth, we shall assume that D in (45) has been chosen so that A(A, ¢, D) has
rank at least » — m for all A and all . We now prove the existence of the homotopy
curves.

LEMMA 3.6. The point 0 € R™ X R™ 15 a regular value for H. That s, for each
(z,A,t) € R™ X R™ X R such that H(z,A,t) = 0 the Jacobian matriz D o nH has
rank n + m.



Proof. For convenience, we divide the Jacobian matrix D, s ) H into blocks:

2 X

where A is as given in (57),

1 0 0
0 ) 0
(60) B:= )
0 T
and
(61) C:=(D-Ax.
If H(z,A,t) =0, then
(62) Az =0,

indicating that z is an eigenvector of A with corresponding eigenvalue zero.
Suppose for a certain 1 < ¢ < m, there exists y; € R™ such that

0
(63) Ayz = Z,;
0
Then, by the symmetry of A, we know
(64) < Ay, z >=<y;, Az >= 0.
On the other hand, we should have
(65) < Ay z >=< z;,z >= 1.

This contradiction implies that none of the m columns of B can be in the range of A.

As A is at least of rank n —m by Lemma 3.5, it is now clear that the n X (n 4+ m)
matrix [A, B] is of rank n. It is also clear the rows of [BT, 0] are not in the row space
of [A, B]. Thus the assertion is proved. D

By now, the following theorem is a standard result from the differential topology.

THEOREM 3.7. The set I' := {(z,A,t)|H(z,A,t) = 0} is a one dimensional
smooth submanifold in R™ X R™ X R.

Furthermore, as Dy 5 +)H is nonsingular, the implicit function theorem asserts
that each component of I' can be characterized as a function of ¢. Also if (z,A,¢) € T,
then
(66) > = 1Azl =I((1 - t)D + tA)z|] < m([|(1 - t)D|| + [[£Al]),

1=1
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implying that no homotopy curve can diverge to infinity for ¢ € (0, 1).
Putting all the above arguments together, we have proved that for ¢ = 1,...,m,
the solution to the initial value problem

1
: -1
d | zp, _ A B —C
(67) dt | M _[BTO] [0]
[ Am ]
(68) 2;(0) = +e™
(69) M) = dY

is a curve in R™ X R™ that extends from ¢ = 0 to ¢ = 1. From Lemma 3.1, we thus
conclude that

THEOREM 3.8. For a generic and symmetric matriz A, the (MEP) has ezactly
[~ 2n; solutions.

We believe the result of Theorem 3.8 is new. Moreover, it should be pointed out
that the positive definiteness of the matrix A is not needed in the proof of Theorem 3.8.

4. Power Method and Convergence.
Horst’s algorithm may be reformulated as follows:
ArvcoRrIiTEM 4.1. (Horst’s Algorithm)

T T
Given z(©) = (mgo) ,...,:c,(,?) Y with ||:c§0)|| =1, do
fork=1,2,...
fori=1,...,m
(70) yz(k) = Z Aijmgk),
7=1
(71) W=l
end
end

Theoretically it is possible that ||y1(k)|| = 0 and, hence, (72) is not well defined.
Such a breakdown, though rarely occurring in practice, can easily be remedied by re-
defining :cgk-l_l) to be an arbitrary unit vector in R™, say :cgk) itself, and then continuing
the iteration.

To our knowledge, Horst’s iterative algorithm has never been rigorously proved
to converge although some intuitive support as well as some numerical evidence are
mentioned in [12, 13]. In this section we prove a convergence property of Algorithm 4.1

for the (MEP).
We find it is more convenient to write the above algorithm in the compact form:
(73) Az(F) — pA(R)(k+1)

11



(74) P
and

The iterative scheme may be viewed as a generalization of the classical power
method. The convergence property of this method, nonetheless, is not nearly obvious.
As an example, without the positive definiteness, the method may fail to converge.

This can be seen from the 2 X 2 matrix A = L lc) with m = 2. There are exactly

b

four feasible solutions (+1,+1). For any values of b and ¢ satisfying || < 1, ¢ < 0 and
|b| < —c, the matrix A is not positive definite. In this case the iterations alternate
between (1,1) and (1,—1), or between (—1,—1) and (—1,1). No convergence occurs.
As another example that will be illustrated later, a limit point of the method may
depend upon the starting point. The maximal correlation problem may have multiple
local solutions even if the matrix A is positive definite.

To study the convergence property of Horst’s algorithm for the (MEP), we denote
the objective function in (28) by

(76) r(z) =z’ Az

for z € R™. We claim that
THEOREM 4.1. Suppose A is symmetric and positive definite. Then {r(z(*))}
with z(F) generated by (73) is a monotonically increasing sequence and converges.
Proof. From (73), we know that

(77) r(2®) = BT A E) (k)
We also know
(78) r(2® D) = DT go(e41) o G br)T (B (k1) _ f (et D)T (k)
Subtracting (77) from (78), we obtain
(79) r(a® ) — p(2®) = DT AE (GE+1) _ gy 4 41T g5 (+1) _ (R,
On the other hand, observe that

2T A®) (41 _ g(R)y 1 (BT (k1) _ 4 (R))

BT 4z(®) _ BT AR g (B) 4 p k)T A (k) (R +1) _ o (0T 4, (k)
(80) = 0

because z(¥) ARz (*) = Do )\gk). Subtracting (80) from the right-hand side of (79),
we find that

(81) (2T — p(2(B)) = (2(k+1) — gNT (4 4 AR (z(R+1) _ gk,
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As A(F) is a diagonal matrix with positive elements, the matrix A + A®*) remains to
be symmetric and positive. It follows that

(82) r(z®)) > r(z()y,

The convergence of the monotone sequence {r(z(*))} is obvious since for all z we
have

(83) pnlz|? < r(z) < pall2|®
where
(84) B> >

are the eigenvalues of A. O

It is instructive to motivate Theorem 4.1 from another viewpoint. Let S; :=
{zilz; € R™, ||z;]| = 1}. The feasible set (29) for the maximal correlation problem
may be regarded as the manifold []i~, S; embedded in [];%, R™ with product topology.
The tangent space Z(4, . o,,)[li=1 5, therefore, is given by [[24 7;,5;. It is easy to
show that the gradient Vr(z) projected onto 7,,5(%) is twice of the vector

(85) gz(m) = ZAijmj— < mi:ZAijmj > z,;.

Observe then

<o) —o®) ga®) > = 3 <2t 2l g,(a®) >
=1
m (k) (k) _2
(86) = ; (H'!/z I Inyk)II )

while each term in (86) is non-negative. That is, the vector z(¥*1) — z(¥) forms an
acute angle with the projected gradient g(z(*)) of (z(*¥)) and, thus, probably (though
not necessarily) points to an ascent direction for r(z).

Define the residual

§(z®) = Ag() — AK)g(R)
(87) - A(k)(m(k+1) _ m(k))

where the second equality follows from (73). If the equality in (82) holds for some k,
then from (81) it must be z(**1) = z(k). We find from (87) that z(¥) solves (3) exactly.
In general we have

THEOREM 4.2. The residual {§(z(*))} in the Horst’s algorithm converges to zero
as k — oo.

Proof. By the definition (71), all )\gk) remain bounded as ||z(®)]|? < m for all k.
It follows from (81) that there exists a constant K > 0 such that

(88) r(zF4)) — p(2(®)) > k| |2F+D) — z(R)| 2

for all k. The assertion follows from (87) and the fact that {r(z(*¥))} converges. O
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At this point it is not obvious that the sequence {z(¥)} itself converges. But it
is clear the sequence {z(*¥)} does have have cluster point(s) due to its boundedness.
From Theorem 4.2, it follows every cluster point z* satisfies (3) with eigenvalues

A= || 2T Ayl

Define
(k) . (k)
(89) AV \min A
and
(90) X := lim inf A(),
Consider the case when A = 0. Then there exists a subsequence {k;} of positive
integers such that
5k) < 1
(91) A< =,
J

Any convergent subsequence of the subsequence {:c(ki)} must be such that one of the
eigenvalues A} is zero. We do not think this will happen often for a generic A.

The following lemma from real analysis is useful.

LEMMA 4.3. Let {ax} be a bounded sequence of real numbers with the property
|ak+1 — ag| — 0 as k — oco. If there are only finitely many limit points for the
sequence, then {ay} converges to a unique limit point.

Proof. Suppose {aq,} and {ag,} are two subsequences of {ar} which converge,
respectively, to two distinct limit points, z and y. Let z denote any fixed real number
between z and y. For a positive number » let B,(r) denote the neighborhood [z —
r,z + 7] of z.

For any € > 0 which is less than
integer K = K (¢) such that

1

4 min{|z — 2|, |y — 2|}, there exists a large enough

ao, € Bg(e)
ag, € By(ﬁ)

lak+1 —ak] < €

for all £ > K. Infinitely many elements of {ax} must leave B,(€) to enter By(€) and
vise versa. Thus there exists an index v > K such that a, € B,(€). This shows that
z is also a limit point.

Since z is arbitrary, we have shown any number between z and y is a limit point.
This contradicts the assumption that there are only finitely many limit points. O

In the following we prove that Algorithm 4.1 generates a convergent sequence
{A®) £(k)}. We believe this result is new.

First we prove that

THEOREM 4.4. The sequence {A(k)} converges as k goes to infinity.

Proof. We have seen already that the sequence {A(k)} is bounded. Suppose
{A(*)} is a convergent subsequence. Then the corresponding {z(¥)} also has a con-
vergent subsequence. Without causing any ambiguity, we may assume the subse-
quence {(A(ki),:c(ki))} converges. By Theorem 4.2, it follows that the limit point of
{(A®3), z(k))} is a solution of the (MEP). By Theorem 3.8, there are only finitely
many such limit points.
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For convenience, we rewrite the matrix A as a column of m blocks, that is, A =

[A1,..., Ap])T where A; := [A;1,..., Aiypn]. Then )\gk) = ||4;z(®)||. Observe that
P AP = (1|4 ]| - [ 4] < [|4i(e®D — 2®)).

From (88) and Theorem 4.1, it follows that |)\§k+1) — )\gk)| — 0 as k — oo. The

assertion now follows by applying Lemma 4.3 to the sequence {)\gk)} for each 7 =
1,...,m. O

Then we prove that

THEOREM 4.5. The sequence {:c(k)} converges as k goes to infinity.

Proof. The proof basically is the same as that in Theorem 4.4, as we observe
from (88) and Theorem 4.1 that componentwise the difference between z(¥+1) and
z(¥) converges to zero as k goes to infinity. O

We now illustrate the dependence of the method upon the starting point. Consider
the positive definite matrix

4.3299 2.3230 -1.3711 -—-0.0084 —-0.7414

2.3230 3.1181 1.0959  0.1285  0.0727

A= —-13711 1.0959 6.4920 -1.9883 —0.1878
—0.0084 0.1285 —1.9883 2.4591 1.8463
—-0.7414 0.0727 -—-0.1878 1.8463 5.8875

with m = 2, n;y = 2 and ny = 3. It turns out that the sequence {:c(k),)\gk),)\gk)}
converges to

z* = [0.9357,0.3528,—0.9341,0.3508,0.0667]7
XY = 6.5186
AL = 82116

if z(°) = [0.9777,0.2098, 0.5066,0.5069,0.6975]7, and to

z** = [0.7166,0.6975,0.5654, —0.4327, —0.7022]T
AP = 6.2405
AR = 7.8607

if 2(®) =[0.7914,0.6114,0.4753,0.2517, —0.8431]7. On the other hand, by repeatedly
applying the method to randomly generated starting points, it is interesting to find
the statistics that approximately 60% of the points give convergence to z* while all
the remaining converge to z**. This ratio stays about the same regardless whether a
normal distribution or a uniform distribution is used as the generator. This is a clear
indication that out of the 24 solutions to this (MEP) there are two local maxima to
the maximal correlation problem. The example also illustrates that Horst’s algorithm
has a substantial possibility of not converging to the absolute maximal correlation.

5. Conclusion and Future Research.

Having demonstrated the convergence of Horst’s algorithm for the (MEP), it is
clear that there are still many other numerical issues worthy of investigation. For
example, let

(92) T := diag{y 1™, ..., yI"1}
15



where each v, is a real number. Then (A—TI')z = Az if and only if Az = (T'+ A)z. In
other words, like the power method, multivariate shifting is a possible strategy to find
other solutions of the (MEP). To which solution does the algorithm converge based on
the starting value for (%) and on the shift parameters is thus an interesting problem.
A theoretical problem associated with the multivariate shifting is related to the so
called educational testing problem, that is, for what I' will the matrix A — I’ become
positive semi-definite.

On the other hand, the scheme involved in (71) is very analogous to the so called
Jacobi method used in solving linear equations. It is thus rather natural to formulate
the following Gauss-Seidel method for the (MEP):

ALGORITHM 5.1. (Gauss-Seidel Algorithm)

T T
Given z(©) = (mgo) ,...,:c,(,?) Y with ||:c§0)|| =1, do
fork=1,2,...
fori=1,...,m
2—1 m
(93) g = 3 45 L3 452
7=1 7=
(94) W=,
(95) W) B
end
end

Let the matrix A be decomposed as
(96) A=D+UT+U

where D is the main diagonal part of A and U is the strictly upper triangular part of
A. Then Algorithm 5.1 may be written as

(97) (D + U)a®) = (AR) — gT)g(e+1),

Similarly, a SOR algorithm may be formulated as
AvLGorITHM 5.2. (SOR Algorithm)

Given z(0) = (mgo)T, . .,:cg,?)T)T with ||:c§0)|| =1, do
fork=1,2,...
fori=1,...,m
2—1 m
(98) 78 = 3 4l 13 450
7=1 7=
(99) &9 = g,
(100) SOSIN
M «-— (k) .
(101) y* = 2% 41— W)
(102) A=,
(103) NN
i -« A(k) .
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end
end
We note that the relaxation parameters w; in each block may be chosen differ-
ently. We also remark that the scaling in (100) may be done differently, including the

possibility of defining fgk) := 1 for all 7 and all &.

If we define
(104) =®) = diag{¢M1lm], . P 1inml}
and
(105) Q = diag{w I™), ... w I},

then Algorithm 5.2 may be written in matrix form:
(106) [(I—)E® (D + U)]z® = (2RAK) _ QuT)glktl),

which includes (97) as a special case.

Apparently a partial list of topics that deserves further research should include
proof of convergence, rate of convergence, acceleration of convergence and so on for
each of these methods. Work on some of these aspects to the (MEP) will be expounded
upon in a forthcoming paper in progress.
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